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Preface

As its title indicates, this book aims to be a comprehensive, self-contained compendium
of results on continuous nowhere differentiable functions, collecting many results hitherto
accessible only in the scattered literature.

Motivation for Writing This Book

Why did the authors, both specialists in several complex variables, decide to write a book on
continuous nowhere differentiable functions? Let us try to answer this question:

(a) Whenever we would give a lecture on real analysis, we felt unsatisfied, since there was
almost no time to discuss continuous nowhere differentiable functions in detail. Therefore,
we could only mention the existence of such functions in most of our lectures. Moreover,
whenever we wanted to deal with such functions in a proseminar, it was difficult to find
a source book. Some information could be found in a master’s thesis by J. Thim (see
[Thi03]), which presented a more detailed description of these functions. Later, during
the writing of this book, we found another survey article by A.N. Singh (see [Sin35]).
With few sources available, we thought that a modern and complete description of how
these functions appeared would be of great use, both for students and for colleagues
creating their lectures and preparing proseminars.

(b) Looking back to the middle of the nineteenth century, we see that that was an important
time in the history of mathematics, when many arguments turned from being based more
or less on heuristics into being grounded in precise definitions and proofs. We are still
experiencing the consequences of this birth of mathematical precision. It is interesting
to see how the methods used to discuss continuous nowhere differentiable functions has
changed over time and to observe that there are still problems that have not been solved.

We hope that the reader will accept our motivation and that our book can be used for
learning some very nice mathematics or for preparing proseminars or lectures on analysis.
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Remarks for the Reader

To make a big part of the material accessible even to high-school graduates, we ordered the
content into four main parts:

e Part I: Classical results.
In this part are collected all results from the middle of the nineteenth century up to about
1950. The proofs are based on complicated arguments, but to understand them requires
only some basic facts from analysis.

e Part II: Topological methods.
This part is based on standard techniques from functional analysis that are certainly taught
in any beginning course.

e Part III: Modern approach.
This part requires some more highly developed ideas from analysis, such as measure theory
and Fourier transforms.

e Part IV: The Riemann function.
This part is in some sense unusual. On the one hand, it does not directly follow the theme of
the book, since the Riemann function discussed here does not belong to the class of nowhere
differentiable functions. On the other hand, it is more difficult and requires knowledge from
several different fields of mathematics. To help the reader, we have placed such information
in an appendix.

Nevertheless, we are convinced that at least 10 % of the book may be understood by high-
school graduates, 40 % by students of mathematics who have completed a first analysis course,
and the remainder by master’s-level students.

We did not include any exercises, as they can be found in many textbooks. But the reader
will find the word EXERCISE at different places in the text. It is at such points that the reader
is asked to stop reading and to extend our arguments into greater detail.

Moreover, whenever some function is discussed in the book, the reader is asked to continue
its study. For example, if f is claimed to be nowhere differentiable on the interval [0, 1] and
nothing, even later in the text, is said about infinite derivatives, then the reader should try
to discuss this question on his own. In any case, any additional information in such directions
that we have found in the literature has been added to the text.

Each chapter begins with a brief summary of its content. Moreover, the reader will find
open problems in some chapters. They are indicated by the sign .. . . All these problems
are collected at the end of the book, see List of Problems section in Appendix C. The reader
is asked to work on these questions, although they do not seem to be simple to solve. For
notation that may appear in the text without explanation, the reader is asked to consult
Sect. B.1.

We wish to thank all our colleagues who told us about gaps in this book during its writing.
In particular, we thank Dr. P. Zapalowski for all the corrections he made. It would not
have been possible to reach the current level of presentation without his precise and detailed
observations. Nevertheless, according to our experiences with our former books, we are sure
that many errors have remained, and we are responsible for not detecting them.

We will be pleased if readers inform us about any observations they may have while study-
ing the text. Please use the following e-mail addresses:

e Marek.Jarnicki@im.uj.edu.pl
e Peter.Pflug@uni-oldenburg.de
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Chapter 1
Introduction: A Historical Journey

Isaac Newton (1643-1727) first developed calculus having been inspired by the physical world:
the orbit of a planet, the swing of a pendulum, perhaps even, as legend has it, the motion
of falling fruit. His thinking led to a geometric intuition about mathematical structures.
They should make sense in the same way that a physical object would. As a result, many
mathematicians concentrated on “continuous” functions. Conceptually, these are the functions
that can be drawn without taking pen away from paper. There will be no gaps or sudden
jumps.

A first “definition” of a function was given by Leonhard Euler (1707-1783) in [Eul4§],
page 4: “A function of a real variable is an analytic expression that is built from the variable,
numbers, and constants.”! Functions in that sense are automatically everywhere continuous
(in the modern sense) up to possibly a discrete set of discontinuities.

Nevertheless, the notion of a function remained a vague one for a long time. It seems that in
1873, Lejeune Dirichlet (1805-1859) became the first to give a precise definition (see [DS00],
§1): “Fix two values a and b. Then x may be thought as a quantity that may take all values
between a and b. Assume that to every x a value y = f(x) is associated such that if x runs
continuously through the interval from a to b, then y = f(z) changes also in a continuous
way. Then y is called a continuous function of x on the interval. It is not necessary that y be
built according to one law for each x; even more, there is no need to think of this relation in
the form of a mathematical operation.”?

Even more, Dirichlet pointed out that his definition does not require a common rule regard-
ing how such a function should be built. It is allowed that the function may be constructed
from different pieces or even more, it may be given without a common rule for its pieces.?

Note that Dirichlet defines a “continuous function,” but it is clear how the term function
has to be understood out of his definition. It is important and new that a function is no

1 “Functio quantitatis variabilis est expressio analytica quomodocunque composita ex illa quantita variabili
et numeris seu quantitatibus constantibus.”

2 “Man denke sich unter a und b zwei feste Werthe und unter z eine verdnderliche Grésse, welche nach und
nach alle zwischen a und b liegenden Werthe annehmen soll. Entspricht nun jedem z ein einziges endliches y
und zwar so, dass, wiahrend = das Intervall von a bis b stetig durchlauft, y = f(z) sich ebenfalls allméhlich
verdndert, so heisst y eine stetige oder continuirliche Function von x fiir dieses Intervall. Es ist dabei gar nicht
nothig, dass y in diesem ganzen Intervalle nach demselben Gesetze von z abhéngig sei, ja man braucht nicht
einmal an eine durch mathematische Operationen ausdriickbare Abhéngigkeit zu denken.”

3 “Diese Definition schreibt den einzelnen Theilen der Curve kein gemeinsames Gesetz vor; man kann sich
dieselbe aus den verschiedenartigsten Theilen zusammengesetzt oder ganz gesetzlos gezeichnet denken.” See
[DS00], § 153.

(© Springer International Publishing Switzerland 2015 1
M. Jarnicki, P. Pflug, Continuous Nowhere Differentiable Functions, Springer
Monographs in Mathematics, DOI 10.1007/978-3-319-12670-8_1



2 1 Introduction: A Historical Journey

longer something that is given by a closed analytic expression. It is the above definition that
is familiar to today’s mathematicians: to any point x of a certain set X one and only one
value f(z) is given, and the whole association is called the function f.

Nevertheless, the experiences at that time made people believe that for every continuous
curve, it was possible to find the slope at all but a finite number of points. This seemed to
match intuition: a line might have a few jagged bits, but there would always be a few sections
that were “smooth.” The French physicist and mathematician André-Marie Ampere (1775
1836) even published a proof of this claim (see [Amp06]). His argument was built on the
“intuitively evident” fact that a continuous curve must have sections that increase, decrease,
or remain flat. This meant that it must be possible to calculate the slope in those regions.
Ampere did not think about what happened when the sections became infinitely small, but he
claimed that he did not need to. His approach was general enough to avoid having to consider
things that were “infiniment petits.” Most mathematicians were happy with his reasoning.
By the middle of the nineteenth century, almost every calculus textbook quoted Ampere’s
proof.

But during the 1860s, rumors began circulating about a strange function that contradicted
Ampere’s theorem. In Germany, the great Bernhard Riemann (1826-1866) told his students
that he knew of a continuous function that had no smooth sections, and for which it was
impossible to calculate the derivative of the function at any point. Riemann did not publish
a proof, and neither did Charles Cellérier (1818-1889), at the University of Geneva, who—
despite writing that he had discovered something “very important and I think new” —stuffed
the work into a folder that would become public only after his death decades later (see [Cel90]).
Over the years, it was found that the function Riemann proposed does not fulfill the property
of being nowhere differentiable. Although his function is, in fact, somewhere differentiable,
we decided to put an extensive discussion of this function into our book, showing the current
state of knowledge (see Chap. 13).

Such a monster of a function was finally publicly accessible in 1872, when Karl Weierstrass
(1815-1897) announced in a lecture in front of the Konigliche Akademie der Wissenschaften,
Berlin, that he had found a function that was continuous everywhere and yet not smooth
at any point. He had constructed it by adding together an infinitely long sequence of cosine
functions. To be more precise, it is given by the following formula:

flz)= i a” cos(b"mx), x€R,

n=1

where a € (0,1), b is an odd integer, and ab > 1 + %w.

As a function, it was ugly and awkward. It was not even clear what it would look like
when plotted on a graph. But that did not matter to Weierstrass. His proof consisted of
equations rather than shapes, and that is what made his announcement so powerful. Not only
has he created a monster, he has built it from concrete logic. He had taken his new, rigorous
definition of a derivative and shown that it was impossible to calculate one anywhere for this
new function.

The lecture by Weierstrass was not immediately published, but it seems that his example
reached many mathematicians at that time. Thus Paul du Bois-Reymond (1831-1889) wrote
to Weierstrass asking for details. After Weierstrass had sent him his notes, Bois-Reymond
published the example (see [BR74]). Bois-Reymond added the following comment, showing
the influence that this example had had on him: “There is not only no implication between
continuity and differentiability at one point, but it is an exciting result that there exists a
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continuous function in an interval having no differential quotient at any point of it.”* This is
the first example of a continuous nowhere differentiable function published in a mathematical
journal.

After the Weierstrass lecture and before its publication by Bois-Reymond, Gaston Darboux
(1842-1917) also observed another similar monster. He showed that the function

i. n—i—llx) rzeR

is continuous but nowhere differentiable (see [Dar75, Dar79]). His proof in the first cited paper
is very sketchy, while the second paper contains more details of the proof. It is interesting
to observe that in his preface to the first paper, he mentioned names like Riemann, Hankel,
Schwarz, and Klein, but omitted to cite Weierstrass. This was also the case in the second
paper, even though Weierstrass had protested in a letter to Bois-Reymond, claiming that the
first examples were due to him (see [Wei23], page 211).

Also Ulisse Dini (1845-1918) published in 1877 a paper (see [Din77]) in which he presented
another example, namely

o0 a
= 1-3-5.--(2n—1 R
;1_3_5.”(2n_1)cos( (2n—1)x), z€R,

which is continuous but nowhere differentiable if a > 1 4 %w. He referred to the example of
Weierstrass, but his aim was to find other such strange functions.

This result® threw the mathematics community into a state of shock. The French mathe-
matician Emile Picard (1856-1941) pointed out that if Newton had known about such func-
tions, he would have never created calculus. Rather than harnessing ideas about the physics
of nature, he would have been stuck trying to clamber over rigid mathematical obstacles. The
monster also began to trample over previous research. Results that had been “proven” began
to buckle. Ampere had used the vague definitions favored by Cauchy to prove his smoothness
theorem. Now his arguments began to collapse. The vague notions of the past were hopeless
against the monster. Worse, it was no longer clear what constituted a mathematical proof.
The intuitive geometry-based arguments of the previous two centuries seemed to be of little
use. If mathematics tried to wave the monster away, it would stand firm. With one bizarre
equation, Weierstrass had demonstrated that physical intuition was not a reliable foundation
on which to build mathematical theories. So this new mathematics (arithmetic analysis) led
to a breaking away from trusting one’s intuition, geometric or otherwise.

Established mathematicians tried to brush the result aside, arguing that it was awkward
and unnecessary. They feared that pedants and troublemakers were hijacking their beloved
subject. At the Sorbonne, Charles Hermite (1822-1901) wrote to Stieltjes (see [BB05], page
318): “I turn with terror and horror from this lamentable scourge of functions with no deriva-
tives.”® Henri Poincaré (1854-1912)—who was the first to call such functions monsters—

4 “Mit der Existenz eines Differentialquotienten hat die Bedingung der Stetigkeit nicht allein fiir einen einzel-
nen Punkt nichts zu schaffen, sondern es ist eines der ergreifendsten Ergebnisse der neueren Mathematik, dass
eine Funktion in allen Punkten eines Intervalles stetig sein kann, ohne fiir einen Punkt dieses Intervalles einen
bestimmten Differentialquotienten zu ergeben.”

5 The present paragraph and others as well are taken from the lovely article [Kucl4], sometimes word for
word (see also [Vol1987, Vol1989]).

6 “Je me détourne avec effroi et horreur de cette plaie lamentable des fonctions continues qui n’ont point de
dérivées.”
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denounced Weierstrass’s work as “an outrage against common sense.” He claimed that the
functions were an arrogant distraction, and of little use to the subject. “They are invented
on purpose to show that our ancestors’ reasoning was at fault,” he said, “and we shall never
get anything more out of them.” See [Poi99], page 159.

Many of the old guard wanted to leave Weierstrass’s monster in the wilderness of math-
ematics. It did not help that nobody could visualize the shape of this strange function they
were dealing with—only with the advent of computers did it become possible to plot it. Its
hidden form made it hard for the mathematics community to grasp how such a function could
exist. Weierstrass’s style of proof was also unfamiliar to many mathematicians. His argument
involved dozens of logical steps and ran to several pages. The trail of ideas was subtle and
technically demanding, with no real-life analogies to guide the way. The general instinct was
to avoid it.

But with the dawn of the twentieth century, situation changed. Even physicists began
to discuss strange curves like the Ludwig Boltzmann (1844-1906) nonrectifiable H-curve,
which was used to describe the movement of particles in statistical mechanics. In fact, much
later, Norbert Wiener (1894-1964) was able to prove that the trajectory of a particle, in
view of Brownian motion, is not rectifiable. The twentieth century has forced upon us the
inadequacy of so-called ordinary curves to represent the facts of nature. Let us quote the
French physicist Jean Baptiste Perrin (1870-1942), who helped to prove that atoms and
molecules exist, an achievement that earned him the 1926 Nobel Prize in physics. In his 1913
book Les atomes, about the motion of atoms (see the English translation [Per16]), he writes
in the introduction: “I wish to offer a few remarks designed to give objective justification for
certain logical exigencies of the mathematicians. It is well known that before giving accurate
definitions we show beginners that they already possess the idea of continuity. We draw a
well-defined curve and say to them, holding a ruler against the curve, ‘You see that there is
a tangent at every point.” Or again, in order to impart the more abstract notion of the true
velocity of a moving object at a point in its trajectory, we say, ‘You see, of course, that the
mean velocity between two neighbouring points on this trajectory does not vary appreciably
as these points approach infinitely near to each other.” And many minds, perceiving that
for certain familiar motions this appears true enough, do not see that there are considerable
difficulties in this view. To mathematicians, however, the lack of rigour in these so-called
geometrical considerations is quite apparent, and they are well aware of this childishness
of trying to show, by drawing curves, for instance, that every continuous function has a
derivative. Though derived functions are the simplest and the easiest to deal with, they are
nevertheless exceptional; to use geometrical language, curves that have no tangents are the
rule, and regular curves, such as the circle, are interesting though quite special cases. At first
side the consideration of such cases seems merely an intellectual exercise, certainly ingenious
but artificial and sterile in application, the desire for absolute accuracy carried to a ridiculous
pitch. And often those who hear of curves without tangents, or underived functions, think at
first that Nature presents no such complications, nor even offers any suggestion of them. The
contrary, however is true, and the logic of mathematicians has kept them nearer to reality
than the practical representations employed by physicists.”

Or consider Grace Chisholm Young’s (1868-1944) apologia (see [Youl6al, §18) of contin-
uous nowhere differentiable functions, in which she says, “We of the twentieth century are
bound to recognise it in its full importance. These curves (i.e. such without tangents) afford us
a means of rendering more veracious the representation of the physical universe by the realm
of Mathematics.” So the last resistance to this kind of new function gradually disappeared.

In addition to Cellérier, another mathematician, Bernard Bolzano (1781-1841), found
a function continuous but not differentiable at many points. This function is contained
in Bolzano’s book Functionenlehre, written around 1834, but published only in 1930.
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The function itself remained unpublished until 1921, when it was discovered by the young
Czech mathematician M. Jasek, who was asked by the Bohemian Academy of Sciences to go
through Bolzano’s manuscripts. Bolzano’s function is the limit of a sequence of effectively
given piecewise linear functions. Bolzano himself comments thus on his function: “The func-
tion F) considered in I, §75, changes its increasing and decreasing behavior so many times
that for no value of = does there exist a small enough w so that it is possible to believe that
F, is continuously increasing or continuously decreasing between z and x + w. This function
gives us a proof that even a continuous function can have no derivative for so many values of
the variable that between each two such points there is a third one for which there is also no
derivative to be found.””

A precise proof that his function is continuous and even nowhere differentiable was given
by Karel Rychlik (1855-1968) in 1922 (see his comment in [Ryc23]) and by Vojtéch Jarnik
(1897-1970) (see [Jar22]). Because of its late publication, this kind of function did not have
as great an influence on the early discussions about continuous but nowhere differentiable
functions as did the example of Weierstrass.

A number of papers dealing with new examples of continuous nowhere differentiable func-
tions appeared. In fact, in the bibliography of Emde-Boas (see [Boa69]) there are eight articles
listed before 1900 and 33 papers during the period 1901-1931; see also the bibliography in
[Sin35] and the one for this book. Even more, the Weierstrass example began to appear
in several textbooks, for example in U. Dini: Grundlagen fiir eine Theorie der Funktionen
einer verdnderlichen reellen Grosse (see [Din92]), F. Klein: Anwendungen der Differential-
und Integralrechnung auf Geometrie. Eine Revision der Prinzipien (see [Kle02]), M. Pasch:
Verdnderliche und Funktion (see [Pasl4]), E.W. Hobson: The theory of functions of a real
variable and the theory of Fourier series (see [Hob26]). For example, let us quote U. Dini
from his book, §145: “The theorems proved in the last paragraphs should be able to reject,
at least from the better books, the belief up to now that a continuous function has to have
a derivative.”® Finally, modern mathematics, such as the theory of fractals, has sufficiently
proved the importance of the existence of these monster functions.

In developing the discussion of these monster functions, there are first examples that, under
certain restrictions on their parameters, can be handled by simple means. The discussion of
these particular functions is exactly the content of Part I. Later on, mathematicians became
interested in understanding the role of the parameters that lead to a function being nowhere
differentiable. More difficult reasoning became necessary to study such functions. Moreover,
one-sided derivatives and also infinite derivatives became of interest. Results of this kind will
be discussed in Part III.

But apart from all these examples, more is true, namely that most of the continuous
functions are monster functions. This kind of investigation has its basis in the theorem of
Baire. It was Stefan Banach (1892-1945) who proved that the complement of the set of
continuous nowhere differentiable functions is of first category, i.e., is a rather small set. As
it turned out, most continuous functions behave in a strange way and are thus themselves
monsters of various types. This is the content of Part II. Note that this abstract approach

7 “Die in I, §75, betrachtete Function Fy, bey welcher das Steigen und Fallen so vielmals abgewechselt, dass
es zu keinem Werthe von z ein w klein genug gibt, um behaupten zu kénnen, dass Fj innerhalb z und = 4+ w
fortwéhrend wachse oder fortwahrend abnehme, gibt uns einen Beweis, dass eine Function sogar stetig seyn
konne und doch keine abgeleitete hat fiir so viele Werthe ihrer Veranderlichen, dass zwischen je zwey derselben
sich noch ein dritter, fiir welchen sie abermahls keine abgeleitete hat nachweisen.”

8 “Den in den letzten Paragraphen bewiesenen Sitzen diirfte, wie uns scheint, die Aufgabe zufallen, kiinftig
aus den bessern Lehrbiichern den bis in die neueste Zeit als Grundlage der Differentialrechnung figurirenden
Leitsatz zu verdriangen, nach welchem die Existenz der Derivierten jeder endlichen und stetigen Function
wenigstens im Allgemeinen ausser Zweifel sein sollte.”
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does not give any effective example of such a function. Thus it makes the study of concrete
examples not superfluous at all. The notion of being of first category has certain refinements
such as porosity. Looking at even stranger monsters such as continuous functions having
nowhere finite or infinite one-sided derivatives ended with a negative result: those functions
are rare among the continuous ones. Such functions, as was shown by Stanistaw Saks (1897—
1942) in 1932, are of first category among all continuous functions. So there was no immediate
deduction that such functions exist. Earlier, in 1924, Abram Samoilovitch Besicovitch (1891—
1970) had already constructed such an example using very difficult geometric reasoning. In
Chap. 11, we will present, in addition to concrete examples, a categorial argument showing,
in fact, that there are many of those monsters.

Later, at the end of the twentieth century and into the current one, there appeared authors
who have constructed Weierstrass-type monsters with additional pathologies. It has been a
generalized trend in mathematics toward the search for large algebraic structures of patho-
logical objects such as the continuous nowhere differentiable functions. The lineability of this
type of functions has been thoroughly studied in recent years. Recall that a subset M of a
topological vector space X is called lineable (resp. spaceable) in X if there exists an infinite-
dimensional linear space (resp. an infinite-dimensional closed linear space) Y C M \ {0}.
These notions of lineable and spaceable were originally coined by V.I. Gurariy (1935-2005).
The very first result in this direction was also due to him (see [Gur67, Gur91]). He showed that
the set of continuous nowhere differentiable functions on [0, 1] is lineable. Further, V.P. Fonf,
V.I. Gurariy, and M.I. Kadets (see [FGK99]) proved that the set of nowhere differentiable
functions on [0, 1] is spaceable. To give the reader a feeling for such results, we discuss some
of them in Chap. 12.

We close this discussion by emphasizing that we have given only our own historical journey.
We do not claim that it is a complete survey.



Part 1
Classical Results



Chapter 2
Preliminaries

Summary. This chapter contains definitions and auxiliary results related to various notions of nowhere
differentiability. In particular, in § 2.3, we present a proof of the famous Denjoy—Young—Saks theorem, which

may permit the reader to understand better the sense of nowhere differentiability.

2.1 Derivatives

Let I C R be an arbitrary interval containing at least two distinct points.
Definition 2.1.1. For a function ¢ : I — C, set
— (T
Ap(t,u) = M, t,bu€el, t #u.
W —

Recall that ¢ has a (finite) derivative ¢'(t) at a point ¢ € I if the limit

/ e .
p(t) = lim Ap(t u)

exists and is finite. In the case ¢ : I — R, we may also consider an infinite derivative ¢ (t)
if the limit
'(t) ;= lim Ap(t
¢'(t):= lim Ap(t, u)

exists but is infinite, i.e., ¢'(t) € {—00, +00}.
Remark 2.1.2. If ¢ : I — C, then

ug — t t— uy
Ap(ur, ug) = ———Ap(t, ug) + ——— Ap(t, u1),
Uz — Uy U2 — Uy
tour,us € I, up <t < us.
(© Springer International Publishing Switzerland 2015 9
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Consequently:

(a) If a finite derivative ¢'(t) exists at an interior point ¢ € int I, then

O(t)= lim Ap(ur,us);
uy,uz—t
up <t<usz

note that this fact was already known to T.J. Stieltjes (cf. [Stil4]).
(b) If ¢ : I — R, then

min{ Ap(t, uz), Ap(t,u1)} < Ap(ur, uz) <max{Ap(t, uz), Ap(t, u1)},
tour,ug € I, up <t < us.

In particular, if an infinite derivative ¢’ (t) exists at an interior point ¢ € int I, then

O'(t)= lim Ap(ui,uz).
’U,17’U,2—)t
up <t<usz

Definition 2.1.3. Let ¢ : I — C, t € I. We say that ¢ has a finite right- (resp. left-) sided
derivative ¢', (t) (vesp. ¢’ (t)) at t if the limit

¢ (t) ;= lim Ap(t,u) = lim Ap(t,u)

ISu—t ISu—t+
u>t
! e . _ .
(resp. oL (t) = I;luf%% Ap(t,u) = Dliglt_ Agp(t, u))

exists and is finite. In the case ¢ : I — R, we allow infinite one-sided derivatives ¢', (t) €
{—00, +00}. Notice that:
e ift € Iis the right endpoint of the interval, then ¢/ () is not defined and ¢’ (t) = ¢'(t);
e if ¢ € I is the left endpoint of the interval, then ¢’ () is not defined and ¢', (t) = ¢'(t).
One-sided derivatives are also called unilateral derivatives.

Remark 2.1.4. Let ¢ : I — C.

(a) If a finite ¢/, (t) exists, then for every C' > 0, we have

¢L(t)=  lim Ap(u',u).

Isu u"’ —t, t<u’ <u”
wl —
| =t |<C

Indeed, we have ¢(u) = ¢(t) + ¢, (t)(u — t) + a(u)(u —t), t < u € I, where
lim, ¢+ a(u) = 0. Hence

p(t) + L (O — 1) + a(u”)(w” — 1)

!/ "
Ap(u',u") = T
_p(t) + ¢ () (u — 1) + a(uw)(u — 1)
u’ —ul
" !
/ u’ —1 " u —t / /
= P o) — ) o, e )

t<u’<u”

provided ﬁ is bounded.
(b) An analogous result may be easily obtained for finite left derivatives.
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(¢) Notice that (a) is not true for infinite unilateral derivatives.
For example, let ny = 2, ng41 = n3, k € N. Define ¢ : [O, i] — R, »(0) :=0,

1
o(u) == —, u e {n%, n%}, o(u) = ngr1u, u € [n;, nl3:|, k € N.

ng k k k+1 k

Observe that <p is continuous and ¢’ (0) = +oo. In fact, for u € [n—ly7 n%]? we have
k k
Ap(0,u) = —— >ny. For u € [T, —15] we have Ap(0,u) = ngt1.
+

Take uj, := 13 L uy = 7z Then Ap(uy,uy) =0 and “’“ 0 <2

(d) A finite derwatlve o (t ) exists at an interior point ¢t € 1nt I iff

Ves0 550 V t—s<as<t<bi<t+s : |A@(ar,b1) — Ap(az, ba)| < e.
a;,b; €1, a;<b;, 1=1,2
Indeed, if the above condition is satisfied, then taking a; = ag =t (resp. by = by =t), we
conclude that a finite one-sided derivative ¢/, (t) (resp. ¢’ (t)) exists. Taking a; = by =,
we get ¢/, (t) = ¢’_(t). Conversely, if ¢'(t) € R exists, then we use Remark 2.1.2(a).

We will use also the following more general derivatives, introduced, e.g., by U. Dini in
[Din92].

Definition 2.1.5. Let ¢ : I — R, t € I. The lower (resp. upper) right Dini derivative
D o(t) (resp. DT p(t)) of v at t is defined as

Dip(t) == liminf Ap(t,u) € R

ISu—t+

(resp. Dto(t) == }im SL:E Ap(t,u) € R).
Su—r

Analogously, the lower (resp. upper) left Dini derivative D_p(t) (resp. D™ (t)) of ¢ at ¢ is
defined as

D_¢p(t) := liminf Ap(t,u) € R

ISu—t—

(resp. D™ (t) := limsup Ap(t,u) € E).

ISu—t—

Similarly to the above, DV (t) and D4p(t) (resp. D™ p(t) and D_p(t)) are not defined if
t € I is the right (resp. left) endpoint of the interval.

Remark 2.1.6. (a) ¢/ (t) exists iff DTp(t) = Dyo(t); ¢ (t) exists iff D™p(t) = D_o(t).

(b) D™= —-D_(~¢), Drp=—D"(—¢).

(¢) D=¢(t) = —Dyp(—t), D_p(t) = —D+p(—t), where ¢(t) := p(—t) (provided that —
I).

Remark 2.1.7. If ¢ : I — R is continuous, then the functions DTy, Dy, D™ ¢, D_¢p are
Borel measurable.

We will prove that D+ is Borel measurable (the remaining cases are left to the reader as
an EXERCISE). We may assume that the right endpoint of I does not belong to I. It suffices
to show that for every C € R, the set Ac :={t € I : DV p(t) < C} is Borel measurable. Fix
a C €R. Let N € N be such that I,, ;== {t € [ : t+ 2 € I} # @ for n > N. Now we need only
observe that in view of the continuity of ¢, we have
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ac= U N fren A=A o 1

neNn, keN heQn(0,1)

Notice that the result remains true for arbitrary Borel-measurable functions ¢ : I — R
(cf. [Ban22]).

2.2 Families of Continuous Nowhere Differentiable Functions

Recall that our principal aim is to discuss continuous nowhere differentiable functions. To sim-
plify notation related to nowhere differentiability, we define the following classes of continuous
nowhere differentiable functions.

— ND(I) := the set of all ¢ € C(I,C) that are nowhere differentiable in the finite sense;

— ND°(I) := the set of all ¢ € C(I) that are nowhere differentiable in the finite or infinite
sense;

— ND_(I) := the set of all ¢ € C(I,C) such that for every t € I, there is neither a finite
right nor a finite left derivative at t;

-~ NDP(I) = B(I) := the set of all Besicovitch functions, i.e., the set of all ¢ € C(I) such
that for every t € I, there is neither a finite or infinite right nor a finite or infinite left
derivative at ¢ (cf. § 7.5);

— M(I) := the set of all Morse functions, i.e., the set of all ¢ € C(I) such that

max{|DTo(t)[,|D1p(t)]} = max{|D¢(t)], |[D_p(t)[} = +oo, teI;

we skip the left (resp. right) max{...} if ¢ is the right (resp. left) endpoint of the interval;
— BM(I) = B(I) N M(I) := the set of all Besicovitch-Morse functions (cf. § 11.1).

Notice that

BM(I) C M(I) C ND4(I) C ND(I),
BM(I) C B(I) =NDI(I) C ND>*(I).

Remark 2.2.1. Observe that if I is an open interval, then there exists a real-analytic in-
creasing diffeomorphism ¢ : R — I. In particular, if a continuous function ¢ : I — C
belongs to one of the above classes of nowhere differentiable functions on I, then the function
o o belongs to the corresponding class on R.

The above remark permits us to transport many results from I to R and vice versa.

2.3 The Denjoy—Young—Saks Theorem

The following result may give some feelings for the general behavior of functions with respect
to their differentiability. On a first reading, the reader may skip the proof.

Theorem 2.3.1 (Denjoy—Young—Saks). Let I C R be an arbitrary nontrivial interval. Let
f I — R. Then there exists a set E C I of Lebesque measure zero such that for every
x €I\ E, either

e a finite f'(x) exists, or

e Dtf(x)=D_f(x) €R and Dif(x) = —oc0, D™ f(x) = 400, or



2.3 The Denjoy—Young—Saks Theorem 13

e D f(z)=D,f(x) €R and DT f(z) = +oo0, D_f(x) = —o0, or
e D f(z)=D"f(z) =400 and D_f(x) = D, f(x) = —o0.

Remark 2.3.2. Symbolically, for € I \ E we have the following four possibilities:

—+00 “+00 —+00|400

*|* * * * *

—0Q —00

—Oo0[—00

If f is continuous, the result was first proved by A. Denjoy in [Denl5]. The case in which

f is measurable was solved by G.C. Young in [Youl6b]. Finally, the general case was proved
by S. Saks in [Sak24]. Our elementary proof is due to E.H. Hanson [Han34].

Corollary 2.3.3. Let f: I — R, f € ND(I). Then at almost all points of I, the function
f has no one-sided (finite or infinite) derivatives.

The following two classical results from measure theory will be important for the proof.

Theorem 2.3.4 (Vitali Covering Theorem; Cf. [KK96], Theorem 0.3.2). Let S C R be
bounded and let F be a family of bounded closed intervals, none consisting of a single point,
such that for every x € S and € > 0, there exists a P € F such that x € P and diam(P) < e.
Then there exists an at most countable subfamily F° C F, consisting of pairwise disjoint

intervals, such that
c(s\ U p)=o.
PeFo

where L denotes the Lebesgue measure on R.

Theorem 2.3.5 (Lebesgue Density Theorem; Cf. [KK96], Theorem 2.2.1). Let A C R. Then
for almost all © € A and for every sequence (Ps)22, of bounded intervals with x € Py and
0 < diam(Ps) — 0, we have

L*(AN Ps)

m L(P,) L

where L* stands for the outer Lebesgue measure on R.

Proof of Theorem 2.3.1. Using Remark 2.2.1, we may assume that I = R.

Step 1°. It suffices to prove that there exists a zero-measure set Ey = Eo(f) such that for
every © € R\ Ey, either

e Dtf(x)=D_f(z) €R,or

e Dt f(x) =400 and D_f(x) = —cc.

Indeed, then we put E := Eo(f) U Eo(—f).

Step 2°. The main idea of the proof is to show that:

(a) the set By :={z € R: DT f(z) = 400, D_f(x) # —oo} is of measure zero,

(b) the set By :={z € R: D_f(z) = —co, DT f(x) # +o0} is of measure zero,

(c) the set B3 :={x € R: DT f(z) < D_f(z) or D~ f(z) < D4 f(x)} is at most countable,
(d) the set By :={z € R: D" f(z), D_f(z) € R, D f(x) # D_f(x)} is of measure zero.

Observe that (b) follows from (a) applied to the function —f.

Suppose for a moment that the above properties are already proven. Put Ey := E1 U Ey U
E3 U E4 and fix an @ € R\ Ey. By (d), we need to check only that if DY f(z) or D_ f(x) is
infinite, then D% f(z) = +o0o and D_ f(x) = —oo. The configurations from (a) and (b) are
excluded. Thus, their remains the case DT f(z) = —oo (resp. D_ f(x) = +00), but then, in
view of (¢), D_f(x) = —oo (resp. D f(x) = +00), which contradicts (b) (resp. (a)).
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Step 3°. Proof of (a).
We have
El = U Ar,rm

reQ, neN
where
Appi={z €R: DT f(z) = 00, Vore(e—2t o) " Af(z,2') > r}.

We need to prove only that each set A, ,, is of measure zero. Fix r, n € N, and b € A, ,,. Let
a € R be such that 0 <b—a < L. Put S := A, , N (a,b). Take an arbitrary t € R and let

Fe:={lp.qd:q>p, [p,g C(a,b), peS, Af(p,q) >t}

It is clear that (S, F;) satisfies the assumptions of the Vitali covering theorem. Thus there
exists an at most countable subfamily 77 C F, consisting of pairwise disjoint intervals, such
that £(S \ Upero P) = 0. Take Pi,...,Py € FP, P = [pi,qi]. Then (a,b) \ UL, P, =

Ujlvil(aj,ﬁj), where the intervals (a1, 81),. .., (awm, fu) are pairwise disjoint and §; € Ay p,

j=1,...,M. In particular, Af(a;, ;) > r. Consequently,

M N
F0) — £(@) = S U5~ flo) + (7 ai) — S o)
M " N - N
> rZ(ﬁj — o)+ tZ(qi —pi)=(t—-r) ZE(R) +7r(b—a).

Thus
fO) = fla)>(t=7) Y L(P)+r(b—a).

PeF?

Observe that

SLPy=c( | P)=Lr(s).

PeFp PeFp

Consequently, for t > r, we get
f®) = fla) = (t =)L (S) +r(b - a).

Letting ¢ — 400, we conclude that L*(S) = L(A,, N (a,b)) = 0. Hence, L(A, ) = 0.

Step 4°. Proof of (c).
It suffices to prove that the set A :={z € R: DT f(x) < D_f(z)} is of measure zero (and
then apply this result to —f). Observe that

A= U Ar,n;

reQ, neN

where
Ar,n = {12 eR: VIIG(I_%’I)’ o e(za+L) : Af(x7;[;/) <r<< Af(il),xll)}'

It is clear that if 2,y € A, p, then |z —y| > % Consequently, A, , is at most countable.
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Step 5°. Proof of (d).

We have
E4 \ Es = U AT1,T27T3,T47H7
r1,72,73,74€Q
r1>ro>r3>ry, n€N
where

Ary iy rgiam =i ER 11y < D_f(z) <713 <719 < DT f(2) <719,
Va:’e(a:—%,w) : Af(x“x/) > Ty, V$//E(I7$+%) : Af($7$//> < 7,.1}'

Fix 1 > ry >r3 > rg,n €N, and a,b € Ay pyryn such that 0 < b—a < 1. Put

S = Ay, ryrgran N (a,b). In view of the proof of Step 3° with (r,t) = (r4,r2), we get
f(b) = fa) > (ra = 74)L7(S) +74(b — a).
Let
-F = {[I%CI] °q > b, [pvq] C (CLJ)), q € Sv Af(pacI) < T3}'

It is clear that (S,F) satisfies the assumptions of the Vitali covering theorem. Thus there
exists an at most countable subfamily F° C F, consisting of pairwise disjoint intervals, such

that £°(S\ Upero P) =0.

Take Pi,...,Py € F?, P, = [pi,q]. Then (a,b) \ Uf\; P, = Ujlvil(aj,ﬁj), where the
intervals (a1, 1), ..., (an, Bar) are pairwise disjoint and o € Ay, vy rgrym, j=1,..., M. In
particular, Af(a;, ;) < r1. Consequently,

f(®) = fla) < (r3 —m) Z L(P)+711(b—a) < (rs —r1)L*(S) +r1(b— a).

PeF?
Hence
L* (S) L* (Arl ro,ra,ra,n [ [CL, b]) Ty
— 212,735,745 <: 1. 2. .1
—a £([a, b)) T 20

Suppose that L*(Ay, ry.r4.ran) > 0. Then by the Lebesgue density theorem, there exists a
point b € Ay, r, rq.ryn Such that

. E* (A'r T2,73,74,1 N [aa b])
1 1,72,73,7'4,
b L([a, b))

=1 (2.3.2)

In particular, in view of (2.3.1), there are no sequences (as)2; C Ay, ryr5,r4n Such that
0<b—as < % and as — b. Thus Ay ryrgrsn N (b0 — %) = @ for s > 1, which contradicts
(2.3.2). O

2.4 Series of Continuous Functions

Many of the functions discussed in this book will be of the form

p(t) ==Y enlt), tel,
n=0
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where ¢,, : I — C is continuous, n € Ny, and the series is normally convergent, i.e.,

A= Z(sup lon (8)]) < 4o0.
= el

In particular, such a series is uniformly convergent, and therefore, the function ¢ is continuous.
Obviously, ¢ is bounded and |p(z)| < A, z € I.

Remark 2.4.1. It is well known that if, moreover, each function ¢,, : I — C is differentiable
and the series Y ° !, is uniformly convergent (e.g., normally convergent) in I, then ¢ is
differentiable and ¢'(¢t) = Y07 ¢l (t), t € I.

2.5 Holder Continuity

Definition 2.5.1. Let o € (0,1]. We say that a continuous function ¢ : I — C is:
e «-Holder continuous at a point t € I (p € HY(I;t)) if

3e, 650 Vhe(=s,0)n—t) : ot +h) —@(t)] < c|h|*;

e Lipschitz at a point t € I if p € H(I;1);
o «a-Hélder continuous (¢ € H(I)) if

o0 Viuer : p(u) — ()] < Clu —#%;

Lipschitz continuous if ¢ is 1-Ho6lder continuous;
M -Lipschitz at a point t € I (where M > 0) if

Vuer : |p(u) — ()] < Mlu —t|.

Remark 2.5.2. (a) Observe that if ¢ : I — C is a bounded continuous function, then ¢ is
a-Holder continuous at t iff

Feso Vuer ¢ |e(u) — o(t)] < clu — t|* (EXERCISE);

in particular, ¢ is 1-H6lder continuous at t iff ¢ is M-Lipschitz at ¢ for some M > 0.

(b) If a finite derivative ¢’ (t) exists, then ¢ is Lipschitz at ¢.

(¢) Tt is known (cf. [KK96], Theorems 1.2.8, 6.1.5, 6.1.15) that if ¢ : I — C is Lipschitz
continuous, then there exists a zero-measure set S C I such that ¢'(t) exists for all
tel\S.

(d) Assume that I is a bounded closed interval and let Ths denote the set of all ¢ € C(I,C)
such that for every t € I, the function ¢ is not M-Lipschitz at t. Consider C(I,C) as a
metric space endowed with the distance d(p,v) := max; |¢ — ¢|. Then Ty, is open in
C(I,C)! (EXERCISE). Consequently, the set T := Me-, I of all functions that are
nowhere Lipschitz on I is a Borel set. Observe that T C ND(I).

I Recall that a pair (X,d) is a metric space if d: X x X — Ry, (d(z,y) = 0 <= = = y), d(z,y) = d(y, z),
and d(z,y) < d(z,2) + d(z,y). A set A C X is called open if for each a € A, there exists an r > 0 such that
{r e X :d(z,a) <r} C A
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Definition 2.5.3. For a > 0, we say that a continuous function ¢ : I — C is:
e nowhere a-Holder continuous (¢ € NH*(I)) if Vier : ¢ ¢ H*(I;t);
o «-anti-Holder continuous if

3e>0 Vier, 5e(0,1) hae0,6) * |t £ he) —@(t)] > €6
t+hy€el

we skip hy (resp. h_) if ¢ is the right (resp. left) endpoint of the interval;
o weakly a-anti-Holder continuous if
Je>0 Vier, 5e0,1) She(—s.0)n—t) : lo(t 4+ h) — p(t)] > €6“.
Remark 2.5.4. Let a € (0,1).

(a) If ¢ is a-anti-Holder continuous, then ¢ € M(I) C ND(I).
(b) If ¢ is weakly a-anti-Holder continuous, then ¢ is nowhere 1-Holder continuous, and hence
p € ND(I).



Chapter 3
Weierstrass-Type Functions I

Summary. The aim of this chapter is to present various classical methods of testing the nowhere differen-
tiability of the Weierstrass-type function z — Y >°  a”™ cos? (2rb™x + 6,,). More developed results will be
discussed in Chap. 8.

3.1 Introduction

We will discuss the nowhere differentiability of the following Weierstrass-type function

Wp.ane(z) = Z a"™ cos? 2mb"x +6,), x€R, (3.1.1)
n=0
where
peN, O<a<l, ab>1, 6:=(0,);>,CR. (3.1.2)

Throughout the chapter, we always assume that p,a,b,0 satisfy (3.1.2) (cf. Figs. 3.1, 3.2,
and 3.3).

Notice that the function Wj 440 with p=1,0€ 2N+ 1, and ab > 1+ %m coincides with
the original nowhere differentiable Weierstrass function presented by him to the Konigliche
Akademie der Wissenschaften on 18 July 1872; cf. [Wei86].

We will be mainly interested in a characterization of the parameters p,a,b, 0 for which
the function W, .5 ¢ belongs to one of the following three classes of nowhere differentiable
functions: ND>*(R), ND(R), and M(R) N ND>(R). Recall that M(R) € ND4(R). We
would like to point out that in general, most of the cases are not completely understood (even
for p=1and 8 =0).

To simplify notation, we will use the following conventions:

e Ifh, =0 for all n € Ny, then we simply write 8 = 6.

e If the parameters p,a,b are fixed, then Wy := W, , 1 6.

A special role is played by the cases in which p = 1 or/and (8 = 0 or 8 = —%). In
particular,

Cop(x) : =Wiapo(x) = Z a" cos(2mb"x),
n=0

(© Springer International Publishing Switzerland 2015 19
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Fig. 3.1 Weierstrass-type function I 5  — W] g.9,1.2,0()
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Fig. 3.2 Weierstrass-type function I 5  — WA 0.5,3,0(2)
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3.3 Weierstrass-type functions Wi ,0.5,1,0, Wi,0.5,2,0, W1,0.5,3,0, WA,0.5,4,0

Sap(®):=Wiap-z( z R,

x) = Z a" sin(2wb"x),
n=0

are the classical Weierstrass functions (cf. [BR74, Wei86]).

Remark 3.1.1. To give the reader an idea of the content of the chapter, we give below a
list of results that will be presented. The list is organized in chronological order. We do not
pretend that the list is complete. Most of the results will be presented in a somewhat more
general form than in the original papers. Nowadays, most of these results have only historical
significance. They will be essentially generalized and strengthened in Chap. 8. Nevertheless,
they might give some insight into how over 120 years (1872-1992), the methods of studying
nowhere differentiability have evolved.

1872: If b,p € 2Ng + 1 and ab > 1+ 3pr, then W, 4,0 € M(R)NND>(R) C ND, (R)N
ND>(R) (Theorem 3.5.1).

1890: If b € 2N and b > 14, then Wi /5.9 € ND(R) (Theorem 3.6.1).

1892: If (a < a1(p) and b > ¥i(a)) or (a < az(p) and b > ¥s(a)) (the functions a;, ¥;,
i=1,2 are given by effective formulas), then W}, 50 € ND4(R). In particular, if (a < l
andab> 1+ 7r11 —~-) or (a < % and ab® > 1—|—21 21 —5=), then Wi 59 € NDi(R )
(Theorem 3.7. 1)
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(4) 1908: If b€ 2N+ 1,0 =@ with 6 € (—%,%), and ab > 1+ 3_Z5(1 —a), then Wy 49 €
ND>*(R) (Theorem 3.8.1).

(5) 1916: If ab > 1, then Cyp, Sap € ND(R) (Theorems 8.2.1, 8.2.12). This crucial result,
due to G.H. Hardy [Har16], will be presented in Chap. 8. It will also follow from a more
general theorem, Theorem 8.6.7.

(6) 1949: We will present the following two groups of results obtained by F.A. Behrend in
[Beh49] (which are typical of the “post Hardy” period).

e Extensions of the classical Weierstrass result:

— If b€ 2N\ (3N) and ab > 1+ 13%(1 — a), then Cyp € ND>®(R) (Theorem 3.9.5).

-~ Ifb>3and ab>1+ 2(‘?;2(‘;)5(1 — a), where £ := 715, then Cyp € ND>*(R) (Theo-
rem 3.9.9).

Elementary proofs of some special cases of Hardy’s results:

— If b€ Ny and ab > 1, then C,;, € ND(R) (Theorem 3.9.14).
Ifb>3,ab>1,ab>>1+ %ﬂ(l — a), where € := 35, then C,;, € ND(R)
(Theorem 3.9.15).

(7) 1969: S/55 € ND(R) (an elementary proof; Theorem 3.10.1).
(8) 1992: If b € 2N+ 1 and ab > 1, then W} 4 0 € ND(R) (Theorem 3.11.1).

At the beginning of § 8.1, the reader will find a list of the best results obtained so far (up
to 2015).

3.2 General Properties of W, ;4.0

We begin with a remark collecting elementary properties of W, 4.5.0-

Remark 3.2.1. (a) Each term of the series (3.1.1),
R 3 2+ o™ cosP (2mb"z + 6,,), n € Ny,

is a real-analytic function.
(b) Wyane € C(R) and [W, 4 p0(7)| < A= 2, z € R (cf. §2.4).

1—a’

(c) The function W, ;¢ may be formally defined for all b > 0. However, the case ab < 1
is from our point of view irrelevant, because if ab < 1, then W, .9 € C}(R) (cf. Re-
mark 2.4.1; see Fig. 3.3).

(d) We(z + x0) = Wianbnat0,),(7), Wo(—z) = W_g(x), 7,70 € R.

(e) For every p,a,b, and § € (0, 1], the following conditions are equivalent:

(1)Wp is B-Holder continuous uniformly with respect to 0, i.e.
3es0 Vo : [Wa(z +h) = Wa(x)| < c[hl”, w,heR;
(1)Wp is right-sided B-Holder continuous at O uniformly with respect to 0, i.e.,

307 00>0 VB : |%(h) - %(0)| < Ch/B7 he (0750>
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Indeed, if (1) is satisfied, then, using (d), for h € (0,dy) we get

=0

|VVb(CC + h>_%(x>| = |VV(27rb”m+9n);’° (ih> - VV(27rb”m+9n);’°:o (0>|
=Wt @mbraro,))2, (h) = Wit @mbrasa,)), (0)] < ch’.

If |h| > 8o, then |Wy(z £ h) — Wy(z)| < 24 < %wﬁ.

(f) Let
m—1
Wi (z) == Z a" cos?(2nb"xr +0,), meN, zeR.
n=0
Assume that ab > 1. Then
b m
sup  |AW,,(xo,z0 + h)| < 2pm (ab) .
z0€R, heR, ab—1
Indeed, by the mean value theorem, we get
| AW, (20, xo + h)]
m—1
= ‘ Z a™2ph™ cos? 1 (2mb™E + 0,,) sin(27wb"E + 6,,)
n=0
m—1
(ab)™ —1 (ab)™
<2 b)" = 2pn—t—— < 2pm——o.
- pw;(a) pr ab—1 < pﬂab—l
g) Ifab>1and a:= —128% then Wp is a-Holder continuous uniformly with respect to 6.
logb

Indeed, fix an h € (0,1) and let N = N(h) € Ny be such that b¥h < 1 < b¥*1h. Then
(using (f)) we get

(Wa(h) — Wa(0)] < [Wi () — W (0)] +2 3 a”
n=N

N N
(ab) 2a <2( pr

1 N
- < eph®
7rab—l l1—a — + )a =

ab—1 1—a
where ¢ depends only on a and b. Now by (e), we get the result.
(h) For every p,a,b, and 8 € (0,1], the following conditions are equivalent:

(1YW is B-anti-Hélder continuous uniformly with respect to x € R and 0, ie.,
Je>0 Yo, 2er, 5e(0,1) Fhie(0,6) : | Walz £ hy) — Wo(x)| > e6? (cf. Definition 2.5.3);
(1)3e, 5050 Yo, 5€(0,60) Ty e(0.6) : [Walhy) — Wa(0)| > ed”.

Indeed, suppose that (1) is satisfied. If 9 < 1, then fix 0 < ¢’ < §p and let hy € (0,0")
be associated to (0,4") via (). Then for § € [y, 1), we have |Wp(hy) — We(0)| > 8’7 >
(£0’%)8°. Hence we may assume that 6o > 1.

Take 0, z € R, and 6 € (0,1). Let hy € (0,0) be associated to ((£(27b"x + 0,,))52,0)
via (). Then

|Wo(z + hy) — We(z)
= Wit 2rbro+00))2 o (he) = Wit @rbnato,y)=, (0)] > 67
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(i) For every p,a,b, and § € (0, 1], the following conditions are equivalent (EXERCISE):

(1)Wp is weakly -anti-Holder continuous uniformly with respect to x € R and 0, i.e.,

Je>0 Yo, 2er, 5€(0,1) Sne(—s,6) : | Wal(z + h) — Wa(z)| > 6P (cf. Definition 2.5.3);
(1)3c, 5650 Yo, se(0.50) Ine(—s.0) 1 [Wa(h) — Wa(0)| > £6”.
(j) The following conditions are equivalent (EXERCISE):

(1) Wao € ND(R) (resp. Wy € ND>(R)) for every 6;
(1)for every 0, a finite (resp. finite or infinite) derivative Wy (0) does not exist.

(k) The following conditions are equivalent (EXERCISE):
(1YWo € ND_L(R) (resp. Wy € NDP(R)) for every 0;

(I)for every 6, a finite (resp. finite or infinite) right-sided derivative (Wp)’, (0) does not

exist.

3.3 Differentiability of W), , ¢ (in the Infinite Sense)

It seems that G.H. Hardy was the first to notice that in general, W, ;1.9 ¢ ND>(R).
Theorem 3.3.1 (Cf. [Harl6]). If ab>1 and a(b+1) <2, then S|, ,(0) = +oc.
Notice that a(b+ 1) < 2, provided that ab = 1.

Proof . Put f := S,4. It suffices to show that f/ (0) = +00. Take an h € R, 0 < h < le' Let
N = N(h) € N be such that ¥ ~*h < 1 < bVh. Then
N-1 [e%S)
1 1
# =5 nz% a" sin(2wb"h) E ; sin(27b"h) =: fi(h) + f2(h).
We have
if ab=1 1 aV¥
) >4 (ab)™ , h)| < — .
Z {L IO
First observe that in the case ab = 1, we have
Lav 1 1 4
hl—a hN1—-a 1-—a’
and therefore,
> 4N — .
Fulh) + o) 2 AN(R) = - — oo
Now assume that ab > 1. Then —1+ — -1~ > 0, and consequently,
(ab)N — 1 aV (ab)N —1 N a¥
h h)>4 > — 4" ——
fi(h) + fo(h) = ab—l hl-a ab—1 1—a
1 — (ab)=N™ 1
= 4(ab)N — . O
()™ ( ab—1 1—a) oo 0
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Theorem 3.3.2 (Cf. [Hat88b]). Ifab > 1 and

. T - ab
in —
ab—1 267 1—a’

1+ (3.3.1)

then S, ;,(0) = +oo.

Remark 3.3.3. (a) If ab > 1 and a(b+ 1) < 2, then (3.3.1) is satisfied. In particular, in the
case ab > 1, Theorem 3.3.2 generalizes the Hardy’s original criterion (a(b + 1) < 2) from
Theorem 3.3.1 (see also [Beh49] (the footnote on page 467)).

(b) The function (3,1) 2 a — 1+ = sin I — 2&
exists exactly one a = ¢(b) € (3,1) such that 1 + = sin
Note that ¢(b) >

b is strictly decreasing In particular there

o5 > = 3 <a<pb).

1 a
2

b+1"

Proof of Theorem 3.3.2. Put f := 8,. It suffices to show that f) (0) = +-00. Take an h € R,
0<h <X Let N=N(h)€N be such that 46Vh <1 < 46" +1h. Then

( Z a” sin(27b"h) ) + o Sln(27rbNh)

+ (ﬁ Z a” sin(2ﬂ'b”h)) =: fi(h) + fa(h) + f3(h).
n=N+1
We have L N4 " b)N“
a a
B < 35— < =—,

For 1 <n < N —1, we have 27b"h < 5. Hence

fa(h) > %aNéleh = 4(ab)™

N-—
1 E n n+1 4b((ab)N B 1) —
fl(h) EHZOG (Sln b)4b h—ab—_1S1n2—b.
Finally,
b(1 — (ab)= Ny ¢ ab N(R)
> A M A— - _
Af(o’h)*‘l(H ab—1 "% 1—a)(ab) o 0%

provided that (3.3.1) is satisfied. O

Proposition 3.3.4. Assume that a,b are such that S, ;(0) = +oco. Then:
(a) (cf. [Har16]) if b€ AN+ 1, then C', () = +oo;
(b) (cf. [Hob26], p. 407) if b €N, then S, ,(3=) = +oc for all k € Z and m € N.

Remark 3.3.5. We will prove that S, € ND(R) (Theorem 8.6.7). Moreover, in view of
Theorem 2.3.1, the set

A:={z € R : an infinite derivative S, ,(z) exists}

is of measure zero. On the other hand, (b) states that if b € N and S, ;(0) = 400, then the
set A is dense in R.
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Proof of Proposition 3.3.4.
(a) Za cos(2mb" (z Za sin(2mb"x) = Sq ().

(b) Fix an zg := 2% and let g(z) := Sqp(x + x0). We have to prove that ¢’(0) = +o0. Let

m—1

p(z) = Z a” sin(2wd" (x + xg)), x € R.
n=0

Then
m—1 o0
= Z a”sin(2wd" (x + x0)) + Z a" sin(2wb"x + 2wb" " "k)
n=0 n=m
x) + Z a”sin(2wb"x) = p(x) + a™ Z a™ sin(2wb" b x)
n=0
=p(x) +a"S.p(b"z), zeR.

Since ¢ is a differentiable function and S;7b(0) = 400, the proof is complete. O

3.4 An Open Problem

In view of the results presented in the previous section, one may formulate the following
natural problem. Given b > 1, estimate the numbers

ac(b) :=inf{a € [1/b,1): Cqp € ND*®(R)},
ags(b) :=inf{a € [1/b,1): Sup € ND*(R)}.

Remark 3.4.1. (a) We have seen that ag(b) > b_%l (Theorem 3.3.1) and ae(b) >
b € 4N + 1 (Proposition 3.3.4(a)).

(b) A better lower estimate was given in Theorem 3.3.2: as(b) > (b) > 2=, where a =
¢(b) € (%,1) is a uniquely determined root of the equation 1 + —*~ sin % =

(¢) Theorem 3.8.1 (cf. Remark 3.1.1(4)) will show that ac(b) < ﬁ—, provided b € 2N + 1.

(d) Theorem 3.9.9 (cf. Remark 3.1.1(6)) will give ac(b) < 11)1—%212) for b > 3, where 3(b) :=

B2 o 725. Note that if b € 2Ny + 1, then (d) is not better than (c).

2 cos(me)?

(e) The best known (as of 2015) estimate will be proved in Theorem 8.7.6: a5 (b), cc:(b) < 2,
where H : =1+ ﬁ7 ¢* € (0, %) is such that tan+* = 7 + ¢*; note that ¢)* ~ 1.3518,
H =~ 5.6034.

(f) Observe that (EXERCISE)

for b > by =~ 212.9669.

Thus for b > 213, the estimate (e) is better than (d).
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(g) Moreover (EXERCISE),

1+37 _H smH
T s Db > 27~ 2421373,
b—|—§7'r b st+1-—H

In particular, for b € 2N + 1, b > 243, the estimate (e) is better than (c).
Exact values of ac(b) and ag(b) are not known

3.5 Welerstrass’s Method

The following sections will present different attempts to get the nowhere differentiability
of W, a6 for certain configurations of the parameters p,a,b, 8. We will see that the case
ab = 1 is the most difficult one. We point out that in general, these results are not optimal.
Nevertheless, they perfectly illustrate various ways of attacking the problem.

Theorem 3.5.1 (Cf. [BR74, Her79, Wei86, Muk34]; see also [Mal09]). Assume that b,p €
2Ng + 1 and ab > 1+ 3pr. Put f := W, 4 4,0. Then for every x € R,

either (DT f(z) = +oo0 and D_ f(x) = —0),
or (D™ f(x) = 400 and D4 f(z) = —oc0).
In particular, f € M(R) NND>*(R) C NDL(R) N ND>(R).
[

Remark 3.5.2. (a) According to P. Bois-Reymond (cf. [BR74], p. 31), Weierstrass himself
conjectured that Cop € ND(R) for all 0 < a < 1 and ab > 1.

(b) Note that for p =1, b € 2N + 1, the inequality ab > 1+ %ﬂ' implies that b > 7.
(c) The case p > 1 was first considered by K. Hertz in [Her79]. His proof is a direct modifi-
cation of the original Weierstrass proof for p = 1.

Proof of Theorem 3.5.1. Fix x € R and m € N. Let a,,, € Z be such that
A = 2b"% — oy, € (=3, 4]

Put 2% := (@, £1)b~™ and observe that 25, —x = 1(£1—h,,)b~"™. In particular, z,,, — 2—
and z}} — x+. Then

m—1

., cosP (2mb"zE ) — cosP(2mb"x
Afwag) =Y xﬁ_x S
n=0 m

o0
cosP (2mb™x ) — cosP(2mb™x)
+Ya" T = Qs + Q-
n=m Tm — &

By Remark 3.2.1(f), we obtain |Q}, .| < 2p7 (;bblT. For n > m, we have

cosP (2mb"xE ) = cosP (mb" ™ (o £ 1)) = —(—1)%,

cos? (2mb"x) = cosP (""" (hm + ) = (—=1)%™ cos? (wb" ™ ™ hay).
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Hence
1)@ (1 + cos? (b hy,))
L =2
Z a (£1 — h)b—m
n 1+ cosP(mb"hy,)
= ) (ab)™2 = F(=1)*" (ab)™ 2T} =,
(1) (ab) Z D) (1) (ab) "2
where ) Pih) 2
+ cos®(m
T o — >
S 1F hy -3
Thus
+y\ _1\%m m b 2
Af(a.at) = F(-1) " 2(ab)" (Vi e + SUns ) (3.5.1)

where Uy, + > 1, |V, +| < 1. The condition ab > 1 + %W implies that

sen Af(w,37) = —sgn Af(,2,), |Af(wak) — +oo.

Hence, either (DT f(z) = 400 and D_f(z) = —o0) or (D™ f(z) = +oco and Dy f(z) =

—00). O
The above idea of the proof may be used to obtain other results concerning nowhere

differentiability of the function Wi 4.0 (see below).

Theorem 3.5.3. Ifb € 2N+ 1 and ab > 1+, then f := Wi 40 € ND(R).

Proof. (Some ideas are taken from [Wie81].) We keep the notation from the proof of Theo-

-1, ith,<0
1, ifhy,>0

rem 3.5.1. Fix an & € R. For m € N, define z,, := 0‘"21;;?’"7 where gq,,, 1= {

Note that x,,, — x. Then we get

Af (2, 2m) = (~1)H gu2n(ab)” (=2 + Un),
where |V,,,| <1 and
= 1+ cos(mb™|hpm|) _ 14 cos(m|hm]|) _ 2
Up =) (ab)” > > —
nz:% 7" (1 — |hm|) (1 = |hm]) ™

(because cost > 1 — 2t for t € [0,Z]). Consequently, if ab > 1+ I, then |Af(z,z)] —
+00. O

In order to continue, we need the following auxiliary function ¢ : Ryg — Ry:

1—coszx

=27 0.
o() . T

Observe that:
e  is increasing on (0, 5],
e lim, 04 p(z) =0.
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Lemma 3.5.4.

<p(1 ))‘be)z (2_7;) bz?”we{zlb’z_ﬂ’

= o
20
(b) {bezN3+1 (2—”) 33} (7,9}

Proof. EXERCISE—use a computer. a

(a) el@)+(1+

Theorem 3.5.5 (Cf. [Youl6a]). Assume that

be2N+1 andab>max{1—|—37r 1+ 17r }
2 o(55)

2b
1+37r if b€ {7,9}
. ) (3.5.2)
1+ T, ifb>11
e(55)

Let A= {1k €Z, L € N}. Put f:= Wi qpp0.
(a) Ifx ¢ A, then

either (DT f(z) = +oo, Dy f(x) = —o0,
and max{|D~ f(x)|,|D—f(z)[} = +o0)

or (D f(x) = 400, D_f(x) = —oo,
and max{|D" f(z)|,|D4 f(2)[} = +00).

(b) If x € A, then either f) (x) = oo or fi(x) = Foo.

Remark 3.5.6. (i) Notice that the points z € R with property (b) are called cusps.
(ii) Observe that in view of the Denjoy—Young—Saks theorem, Theorem 2.3.1, almost every
x & Ais a knot point for f ie., DY f(z) = D™ f(z) = 400 and D, f(x) = D_f(x) =

—0Q.

Proof of Theorem 8.5.5. (Some ideas are taken from [Wie81].) We keep the notation from the
proof of Theorem 3.5.1.

(a) In view of Theorem 3.5.1 (with p = 1), we need to prove only that

either (DT f(x) = 400, Dy f(x) = —00),
or (D™ f(z) = +o0, D_f(z) = —00).

Assume that (DT f(z) = +oo and D_f(z) = —o0). The case (D~ f(z) = +oo and
D, f(z) = —c0) is left to the reader as an EXERCISE.

If the set {m € N : a,, is even} is infinite, then equality (3.5.1) implies that D4 f(z) = —o0,
which finishes the proof. Thus, we may assume that a,, is odd for m > mg.

Now observe that the set M := {m € Ny, : |hp| > } is infinite. Indeed, suppose that
[ | <z for some m > myg. Let r € Ny be the mlmmal number such that br|hm| > 5. We
have 2bm+r:1c0 — b = b"hyy = b(0"hy,) < bgr = 1. Thus m+r € M, and therefore M is
infinite.
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Let @y, == gp&, m € M. Then, using the same method as in the proof of Theorem 3.5.1,
we get

AF (2, 20) = sgn ()27 (ab)™ (a;/ "4 Un), (3.5.3)

where |V,,,| <1 and

U Z(ab)"l cos(mb" | ) Z(ab) (b o)

n=0 ﬂ—bn|hm| n=0
> p(m|hm|) + abp(mb|hin|) =
The main problem is to show that

3

T > o (2

2b), me M. (3.5.4)

Indeed, if (3.5.4) is satisfied, then (3.5.3) implies that either D~ f(z) = +oo or D4 f(z) = —o0,
which finishes the proof.

We move to the proof of (3.5.4). Recall that 55 < |k | < § for m € M. If 3 < |hy| < 3
then we have T > @(nlhim]) > ¢(3F), and we are done. Thus we may assume that & <

|hm| < 2, and then we can use Lemma 3.5.4(a).

(b) Fix an = = i@ Take an h such that 5= < 2b™[h| < L1 for some m € N, and write

Tr =

Af(x,x+h) = (—1)k! :sgn(h)27r(ab)m(&;/ﬂ_I : m),

where |V,,| <1 and

= 1 — cos(2wb™T™|h|)
Uy = b)" .
2
In view of the proof of (a), we have U, > ¢(3%). Consequently,

e if kis odd, then f/ () = +o00 and f’ (z) = —o0;
e if k is even, then f) (z) = —o0 and f (z) = +o0.

O

Theorem 3.5.1 (with p = 1) allowed Weierstrass to answer his question on the existence
of a holomorphic function on D, continuous on D, and holomorphically uncontinuable across
OD (cf. [Wei86], p. 90).1

Proposition 3.5.7 (Cf. [Wei86], p. 90; see also Remark 8.5.3(g)). Assume that b € 2N 41,
ab>1+ %7'(', and define

1 “Ich habe in meinen Vorlesungen iiber die Elemente der Functionenlehre von Anfang an zwei mit den
gewohnlichen Ansichten nicht {ibereinstimmende Sétze hervorgehoben, nadmlich: (...) (2) dass eine Function
eines complexen Arguments, welche fiir einen beschriankten Bereich des letzteren definirt ist, sich nicht immer
iiber die Grenzen dieses Bereichs hinaus fortsetzen lasse; mit andern Worten, dass monogene Functionen
einer Veranderlichen existiren, welche die Eigenthiimlichkeit besitzen, dass in der Ebene der Veranderlichen
diejenigen Stellen, fiir welche die Function nicht definirbar ist, nicht bloss einzelne Punkte sind, sondern auch
Linien und Flachen bilden.”
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F(z):= Z a2, zeD.
n=0

Then F € O(D)NC(D,C), and D is the domain of existence of F.

Proof . Since |a™z%"| < a™, z € D, n € Ny, the function F is well defined, F € O(D), and F €
C(ID, C). Suppose that there exist zy = €27% € T, r > 0, and F' € O(D(zo, r)) such that F = F
in D N D(z0,7). Then Wi q5.0(z) = Re F(e27¥) = Re F(e2*) for z in a neighborhood of .
Consequently, W) 45,0 is a real-analytic function near zp, which contradicts Theorem 3.5.1.

O

The above proposition may be easily generalized as follows.

Proposition 3.5.8. Assume that b € Ny and Wi 59 € ND(R). Define

o0
F(z):= Z aten b 2 eD.
n=0

Then F € O(D)NC(D,C), and D is the domain of existence of F.

3.5.1 Lerch’s Results

The class of the Weierstrass-type functions W, , 5 ¢ may be extended in the following natural
way. We define

Wy.abe(z) = Z an cos’ (2mbpx 4+ 6,), x €R,

n=0

where p € N, a := (a,)52 C C, with 7 |a,| < +o0, b := (b,)02, C Rso, and 6 :=
(0r)22y C R. Functions of the above type will be studied in § 8.5. Now we mention only two
results due to M. Lerch in [Ler88] that extend Theorem 3.5.1 (with p =1 and 6 = 0).

Theorem 3.5.9 (Cf. [Ler88]). Let f := Wi g0, where:

o a=(ay)5% C R, is such that Y, |an| < +oo,

o b= (by)52y C N is such that there exists a sequence (gm)5o_o C N for which ;’—; =:
Pnm €N forn >m.
Let xg = Qqu for some £ € 7Z and m € Ny. Assume that there is a p > m such that
sgn(—1)Pnm = ¢ € {—1,1} forn > p. Then f'(xo) exists iff f'(0) exists. Moreover, if f'(zo)
exists, then

f(xo) = =27 Z ap by sin(27by, o)
n=0
(i.e., we can formally differentiate under the summation sign).
Remark 3.5.10. (a) Since f is an even function, if f'(0) exists, then f/(0) = 0.

(b) Consider, for example, b, := nl, ¢y, := (m+1)l. Then ppm = (Mm+2) - n (Pmy1m = 1)
and (—1)Pnm =1 for n > m + 3.
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Proof of Theorem 3.5.9. We have

flzo+h) = Z ap, cos(2mby (xo + h)) + Z an(—1)Pmm cos(2mby,h).
n=0 n=m-+1
Hence,
Af(wo,m0 + 1) — Z a cos(2mby, (2o + h)) — cos(2mwb,x0)
n=0 h
= Y an(-1)ren —COS(%Z”M —L _cafon)
n=m-+1
cos( 27Tb h)—1 L cos(2mh,h) — 1
- 62 TN L L3 an((yonm ) TN L
n=m-+1
Consequently, f/(zg) exists iff f/(0) exists, and then
f(wo) = —2m Z anby, sin(2wbyz0) = —2m Z apby, sin(2mby,z0). O

n=0 n=0

Theorem 3.5.11 (Cf. [Ler88]). Let f := Wi g.b,0, where:
o a=(ay)i2 C Ry is such that Y, ;an < 400,
o b= (bn)%, bn :=po - Pn, where (pm)5_y C 2Ng+ 1, b, 400, and
o there exists an M > 0 such that a,,b,, — % an:()l anbn >M,meN.
Then f € ND(R).

Remark 3.5.12. In the original Weierstrass case (a, = a”, b, = b" with 0 < a < 1 and
b € 2N + 1), the third condition states that

Qm

—b—z (ab®>)* > M, meN.

In the case ab? = 1, we get (ab)™ — bmm > M, ie., (1 —7*m) > M, m € N, which gives
a contradiction. Thus ab? # 1 and

? (ab?*)" —1 m o1 — (ab®)™™
b e =1 = (ab) (1—7r—ab2_1 )7 m € N,

which is equivalent to ab > 1, ab® > 1 + 72. Note that this condition is better than the
Weierstrass one (cf. Theorem 3.5.1), i.e., ab > 1+ %m but the result is weaker.

M < (ab)™ —

Proof of Theorem 3.5.11. (Cf. the proof of Theorem 3.5.1.) Fix x € Rand m € N. Let o, € Z
be such that
B = 2bm® — o € (—3, 1],

Put it := 22EL and observe that £ —z = %. In particular, z,, — x— and =, — z+.

2b,r,
Then
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mz cos(2mb,xE) — cos(27h,x)
Th—x

Y "
+ = Qm7i + Qm7i

ITm — X

i cos(2mb, ) — cos(2mb,x)

By the mean value theorem, we get

m—1
Qe — Qs = — Z an (27rbn sin(27b, &, ) — 2mby, sin(27b, & ))
n=0
m—1
= —47‘(‘2 Z anb COS(27Tbn7’]n)(§ €n)
n=0

Thus,
4 m—
|Qm - m + b_ Z
For n > m, we have

cos(2mby ) = cos(n é’m (m £1)) = (—1)%(ami1) =—(=1)"m,

cos(2mby,x) = cos(m ll)’—(hm +apy)) = (-1 cos(wé’—"hm).

Hence
2b =
" - (—1)¥m m (1 bn m
Qm,j: ( ) +1— hm T;la‘ ( +COS(7Tbmh ))7
and therefore
oAby
Q _Qm+_(_1)m 5,2 Zan1+cos( Ty h ).

Observe that

> an(l+ cos(mhm)) > am(1+ cos(mhm)) > am.

Thus

m—1

7.{.2

Af(x,x,) — Af(z,25)] > 4(ambm — — Y anb?) >4M >0,
b
m:()

which immediately implies that a finite derivative f’(x) does not exist.

3.5.2 Porter’s Results

In the context of Lerch’s results (cf. §3.5.1), another approach was proposed

M.B. Porter in [Por19].

33

by
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Theorem 3.5.13 (Cf. [Porl9]). Let f := W 4,0, where:

e a=(ay)p2y CC is such that Y " |an| < +o0,

e b= (bn>zo:0: by :=po - pn with (pm)ﬁzo CN,

o theset A:={neN: Prt € 4N} is infinite,

o My = |am|bm — 23 |an|b o +o0.

m—+oo
Then f € ND(R).

The result remains true for the function Wi q b _z/2-
Remark 3.5.14 (Cf. [Por19]). Theorem 3.5.13 implies that the following functions are
nowhere differentiable (EXERCISE):

(a) f(z) =207 ga"cos(2mb™x), la| <1, b€ 4N, |alb>1+ 3.
(b) f(z) =300 1 cos(2mnlz), |a| > 1+ 2.
(c) fz) =307 m cos(2mnlb™x), b € Ny.

Moreover, in the above examples, one can replace cos by sin.

= pmt1 = 4¢m (gm € N)

SLIN §3 Smceb |b, for n > m + 1, we get

and let h = hy, 1 = ﬁ with k € Z, |k|b:11 = g,

2 _ cos(2mb,
Af(xo, 70+ ) (Z ancos( 7y (20 + h}i) cos(2mb :ro))
n=0
o cos(2mbp, (xo + h}z) — cos(2mbmTo) _ o 4O,

Then |Q7, 4| <27 Z?:—()l |an|bn (cf. Remark 3.2.1(f)). On the other hand, since |k|% <3
we have

|Q// = la bm bm+1
ml m k

b1

2sm(“kb ) sin(mhy,xg + Thbm) ’

1 7k
> 27| | by ——= ’Sln (wbmx + — ) ‘
| | %7‘(’\/_ 0 4qm,

Observe (EXERCISE) that there exists an ¢ € {—1,1} such that

sin (ﬂ'bml‘o + ﬂ-é)’ D

Consequently, for h = hy, 1= hp ¢, (n0te that 0 # h,, — 0), we get

|Af (0,20 + ham)| > 27|y | by — —2WZ|an|b M — 400,

A>m—+oo

which implies that a finite derivative f’(z¢) does not exist.
The case of the function Wi 45 /2 is left to the reader as an EXERCISE. a
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3.6 Cellérier’s Method

Theorem 3.6.1 (Cf. [Cel90]). Ifb € 2N and b > 14, then Wi 1,59 € ND+(R) for every 6.

Remark 3.6.2. (a) In fact, C. Cellérier in [Cel90] considered only the case in which b € 2N,
b > 1000, and 8 = 0.

(b) We will see (cf. Remark 3.7.2(d)) that in fact, the result is true for all b > 1.

(c) Notice that in the case 6 = 6, the result is true for all b € Ny (Theorem 8.4.1).
It is an open question whether W 1,49 € NDL(R) for all b > 1 and 6

Proof of Theorem 3.6.1. Put

o0

1
f@) =W ppe-z(2) = Z o sin(2wb"x + 6,), x €R.

n=0

We know that it suffices to prove that f/ (0) does not exist for every @ (cf. Remark 3.2.1(k)).
Define
A = Af0,67), Al :=Af(0,56""), meN.

Observe that for n > m and n € {1,1}, we have
sin(2wb™nb™"™ + 60,,) = sin(2mnd™ """ 4+ 0,,) = sin b,,.
Moreover,

— 1 0m7 .f =
sin(2wb™ b~ + 0,,) = sin(27n + 6,,) = s?n 1 g
sinf,,, ifn=

Thus for m > 2, we get

—

m—

sin(27b" ™™ + 0,,) — sin 6,

bn—m

Ay,

3 3
|l
)

cos(2wb" ™) — 1 4 cos 0nsm(27rb - ))

bn—m bn—m

( sin 6,

3
Il
=)

Observe that

‘cos(%b”‘m) — 1‘ _ ‘2sin2(7rb”_m)‘ < op2pnm,
pn—m pn—m
sin(27wb™ ™) 1 a2
1— —’ < —(2wb" ™)<,
’ 2mbn—m - 6( m )
Let

m—1
Cm = 2T E cosf,,.
n=0
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Thus
s 2 1 2, 1
_ 21n—m “_232(n—m) 2 £, 2
| A, cm|<nz_0(27rb —|—37Tb )<27T—b_1+37rb2_1
272 2
= —_— b 1 - ) = B.
b2 — 1( HlhgT
Analogously,

1 1 1 2 1
|A;n —cm—|—4sin9m| < 7T2b__1 +27T67T2b2 1 = b;r—_l(b—f—l-i- gﬂ') = B/.

Suppose f’, (0) exists and is finite. Then A1 — Ay — 0 and A, — A), — 0 when
m — +00. On the other hand,

|Apy1 — Ay — 2w cosb,,| < 2B, |A, — AL, —4sinf,,| < B+ B'.

Since cos? 0,, + sin® 0, = 1, to get a contradiction we have only to show that

o(b) == (E)Q + (3231)2 <1

™

We have

2
o(b) = M4(b7;——1)2 ((576 +8172)b2 + (1152 + 7687 + 1627 + 907°)b
4576 + 7687 + 33772 + 907° + 257r4).

Then ¢'(b) < 0 for all b > 1 and ¢(13) < 1 (EXERCISE—use a computer). O

3.7 Dini’s Method

The following general method proposed by U. Dini in [Din92] made it possible to solve many
new cases. For p € N, define

s

where ©,, € (0, 1] is such that cos?(70,) = 1 (p € 2N). Consider the following two conditions:
8

[N

(1-0,), ifpec2N L ifpe2N

if pe 2Ny + 1 __{1, if pe 2N + 1
2

pT a d
1 - 7.1
ab > andab—1+1—a<2’ (3.7.1)
(pm)?6(6 + d) 0\ a d
e +(1+d)1_a<2. (3.7.2)

Direct calculations give:
o (a,b) satisfies (3.7.1) iff 0 < a < a1(p) and b > ¥y (a),
o (a,b) satisfies (3.7.2) iff 0 < a < az(p) and b > Wa(a),
where
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U (x): = £<1+2pm5d—1(d_——f2):r)7 0<z< #‘ZQ =:a1(p),
1 2d(1 —x
o) = \/E(l + (pm)*0(0 + d) 5 (d2(+ 2(5>+ d))x)
2
0<z< m =:az(p) < a1(p).

Theorem 3.7.1 (Cf. [Din92], Chap. 10). If (a < a1(p) and b > ¥1(a)) or (a < az(p) and
b>Ws(a)), then Wy, 410 € NDL(R).

Remark 3.7.2. (a) One can easily check (EXERCISE) that ¥;(z) > Wa(x) when © — 0+,
and ¥ (z) < Ya(x) when x — a2(p)—. Thus for small a, the estimate b > W (a) is better,
and for a near as(p), the estimate b > Wy (a) is better.

(b) In fact, U. Dini in [Din92] considered only the case that p =1 and 6 = 0.

(¢) In the case p =1, the theorem states the following:

If(a< andab>1—|— 7r1 3“a)or(a< andab2>1—|—24 21“) then Wi a0 €
ND (R).
(d) In the case ab = 1, condition (3.7.2) states that

b Zpr)? + 2, if pe 2Ny +1
(2—6,)(1—6,)(pr)> +9—46,, ifpe?2N )

In particular,

e if p =1, then b > 272 + § ~ 30.4077; note that if b € 2N and 6 = 0, then
Theorem 3.6.1 gives a better estlmate (b > 14);

e if p=2, then b> 2l7? + 8 ~ 59.8154.

Proof of Theorem 8.7.1. Put f := W, 4p9. By Remark 3.2.1(k), we have only to prove that
a finite f/ (0) does not exist. Let ¢, (x) := cos?(27b"x + 0,,), € R. For h > 0, we have
[on(h) = ©a(0) = L, (0)h] = |5on (M| < 2(pmb™h)?, (3.7.3)

where n = n(n,h) € (0,h). Fix m € N, h > 0, and write

m—1
) = 10) = (3 () = 9a(0) + (0" (m(R) = 9m(0)))
n=0
+( D @ @nld) = @) =5 Am(B) + Bu(h) + Con(h).
n=m-+1

By Remark 3.2.1(f), we obtain |A,,(h)] < %@f)m, provided that ab > 1. Using (3.7.3), we
get

‘ Z a” h) < HZ:O a™2(pmb™h)? :2(p7rh)2(2bb;—m_zl
2(pmh)?(ab®)™

ab? —1 ’
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2am+1

|<2Za

n=m-+1

Observe that there exists an hy, € (0, ;%) such that @, (hm) — @m(0) = dep,, where €, €
{—1,+1}. Consequently, if ab > 1, then we get

AF(O. 1) = (0 20 14,

2a
hm ab—1) d(l—a))7

where oy, vm € [—1,1]. Note that "ff: > d(ab)™ i +o00. Thus, if £2= 1 + 12 < ¢ then
|Af(0, hp)| =7 ~+00, and therefore a finite f+( ) does not exist.
m—r—+00

Now let us consider the general case (with ab > 1). Let h, := ;%. Then ¢y, (h],) = ¢ (0).
Thus

Af(0, hn) — AF(0, hyy)

~epda™ ¢, 2(pm)?hl b2 » 2(pm)2h., by b*™
= (“m da? 1) T @ —1 !
, 2a s hm  2a
TImagn—a) T aa —a))
emda™ 2(pm)26(8 + d) ) 2a
= m I+vm(l+5)—),
o (o daz—1) 7 ( +d)d(1—a)>

where o, a;;wam,’y;w'y;,’l,’ym € [-1,1]. Observe that ”ﬁ:f > 4(ab)™ > 4 > 0. Thus, if

5
M + (14 %)% < ¢, then a finite f/ (0) does not exist. O

3.8 Bromwich’s Method

Theorem 3.8.1 (Cf. [Bro08]). Assume that b € 2N +1, 8 = 0 with 0 € (=5,5), and
ab>1+ g’coze(l —a). Let f := Wi qp0. Then

min{ Dy f(x), D_ f(x)} = —00, max{D* f(x), D~ f(x)} = +oc.
In particular, f € ND*(R).
Remark 3.8.2. In fact, T.J.I’A. Bromwich considered only the case § = 0.

Proof of Theorem 3.8.1. Take m € N, p € Z, ¢ € {p+ 1,p+ 3}, and let ¢ := %pb‘m, U =
%qb‘m. Observe that

Z a” cos(2wb"t + 0) = Z a” cos(mb" " "p+6) = Z a™(—1)P cosé

m

= (—1)Pcosf 1a
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Hence, in view of Remark 3.2.1(f), we obtain

2(ab)™ ((_1)q2C089

Aft) == o

+ M(m, p, Q)),
where | M (m, p, q)| < -2Z-. The condition ab > 1+ 52Z(1 — a) implies that sgn Af(t,u) =
sgn(—1)7.

Now fix x € R and § > 0. Let m € N be such that 2b™ < § and let r := |22b™].

If r < [220™ |, then we put t; , = %pi,mb_m, Dim =7+1—10 ujm= %qi,mb_m, 1=1,2,
q1,m ‘= Di,m + 1, q2,m ‘= D2,m + 3.

If r = |22b™ |, then we take p; m :=7 — 4, Giym = Dijm + 3,1 =1,2.

Then t; ., € (x — 0, 2), wim € (z,2+9), i = 1,2, and by the first part of the proof, we get

Afltimtm) = — D ((Cqn

4i,m — Piom

2cosf
mﬂ + Mi,m)v

1—a

where |M; | < =%, i = 1,2. Note that sgngim = —sgnga,m, m € N. Thus, there exist
sequences (t5)% ) (uF)2, with t¥ < 2 < uf, t¥ — x, uf — =z, such that Af(tF,ut) —

s /s=1 s s s %s

+o00. By Remark 2.1.2, we have

min{Af(z,u;), Af(,7)} < Af(t5,uy) < max{Af(z,uy), Af(z,t5)}.

s S

Hence —oo = min{D f(z), D_ f(x)} < max{D* f(z), D™ f(x)} = +oc. 0

3.9 Behrend’s Method

This whole section is based on [Beh49]. Let f := Cyp.
Theorem 3.9.1. Assume that K > 0 is such that ab > 1 + 2% and
Veer Jner, : Af(z,x+h) > K (3.9.1)
(¢f. Remark 3.9.3). Then f € ND>(R).
It is clear that the result gets better as we increase the constant K.

Proof . Let A:= . Note that |Af(z,z + h)| < %. We will prove that

VajeR, C>0 Eh:hm,cw h'=h, €R. : Af(x,x + h) > 07 Af(x,x + h/) < —C. (3.9.2)

Observe that |h. c|, |h), o] < 22, In particular, h(z,C),h'(z,C) — 0 when C —» +o0.
Consequently, (3.9.2) implies that f € ND>(R).
Put

m—1
W (x) := Z a” cos(2mb"x), Rp(x):=a™f(b"x), xz€R, meN.
n=0
Then f = W,, + Ry,. Indeed,

Z a" cos(2mb"x) = Z a™ " cos(2b™ T x) = a™ f(b™ ).

n=0
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We know that |[AW,,(x,z + h)| < % (cf. Remark 3.2.1(f)). Since f(—z) = f(z), z € R,
condition (3.9.1) implies that

VaeRr, meN Ih=hy m, h'=h!,  €R.
ARy (z,x 4+ h) > K(ab)™, AR (x,z+h') < —K(ab)™.

Hence
Af(z,z+ hgm) > (ab)™ (K — ab2i 1),
A+ ) < ()™ (K - =270,
which immediately gives (3.9.2). O

The same proof gives the following general theorem (EXERCISE).

Theorem 3.9.2. Let g: R — [—1,1] be a function such that
l9(z) — g(z")| < M|z —2'| and g(—=z) = g(z), =z,2" €R.

For0<a<1andb>1, define G(z) :==> > ja"g(b"z), x € R. Assume that K > 0 is such
that ab > 1+ 4% and

Veer Jner, : AG(x,x + h) > K.

Then G € ND>(R).

Remark 3.9.3. Let ¢ : R — R. Fix z € R, K > 0. Observe that the following two
conditions are equivalent:

(i) Jner. : Ap(z,z+h) > K;
(11) 3I1§I§I27 T <zp - A@(xhx?) > K.
Indeed, the implication (i) = (ii) is obvious. To prove the opposite implication, observe that
using Remark 2.1.2(b), we get
K < Ap(x1,22) < max{Ap(z, 1), Ap(x,x2)}.

Thus either Ap(z,29) > K or Ap(z,21) > K.

To apply Theorem 3.9.1, one should find a constant K > 0 such that (3.9.1) is satisfied.
We get the following corollaries.

Theorem 3.9.4. Ifb € Ny and

)

1+278, if b € 2N
ab > 3 ;
1+5(1—-a), ifbe2N+1

then f € ND>®(R) (c¢f. Theorems 3.5.1, 3.8.1).

Proof. Since f(x) = f(z+1), z € R, it suffices to check (3.9.1) only for z € [0,1). As before,
let A := ZZO:() a” = ﬁ In view of Remark 3.9.3, we have only to find ;1 <0 < 1 < x5 such

that Af(z1,22) = K > 0. Take 2y := —%, 25 := 1. Then
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" —1+> 2, a"=-24A, ifbe2N
Za cos(mb"™) = s . )
— >0t =—A, itbe2N+1

Za cos(2mb"™) = A.

Hence
if b € 2N

ifbe2N+1"

)

K= Af(xl,xg) = { A

ol Lol

)

It remains to apply Theorem 3.9.1. a
Theorem 3.9.5. Ifb € 2N\ (3N) and ab > 1+ 13%(1 — a), then f € ND>(R).

Remark 3.9.6. Observe that 187(1 —a) < 3% for & < a < 1. Thus for & < a < 1,
Theorem 3.9.5 improves Theorem 3.9.4.

Proof of Theorem 8.9.5. We take z; := —%, x9 := 1. Then f(z;) = —%A and K = %A. O

37

Theorem 3.9.7. Assume that b € 2N. Let i € (0, 3) be such that

(g B M) tan(1 )

(n =~ 0.0697) and let k = k(b) € 2Ng be such that |bu — k| < 1. If ab > 1+ Cés(ﬂ
then f € ND>(R).

Remark 3.9.8. Observe that limy_, 4o, C(b) =1+ %?ﬁ =1+ bm(w) < 1+ 2% (because

37” - m ~ 0.1088). Thus for b > 1, Theorem 3.9.7 improves Theorem 3.9.4.

Proof of Theorem 3.9.7. Let 1 = z1(b) := —% + £, 25 = 25(b) := 1 — £. Then f(z,) =
—cos(m¥) + aA and f(z2) = cos(m¥) + aA. Hence Af(zy,25) = CO;(”%) The above points
2

1,z suffice to prove the nowhere differentiability in [0, 3]. Since f(z+3) = f(z) (b is even),
we get the nowhere differentiability on R. O

Theorem 3.9.9. For an arbitrary b > 3, if ab > 1 + 2(3;;—2(22)(1 —a), where € := ﬁ, then
f € ND>(R).

Remark 3.9.10. One can prove (EXERCISE) that the above estimate is better than Dini’s

(Remark 3.7.2(c)), i.e., if a < 3 and ab > 14 37{=% then b > 3 and ab > 1+ 2(3;82(?; (1—a)
1

with € := —1-

Proof of Theorem 8.9.9. We have cos(nz) > cos(me) =: 6 > 0, z € I, := [2p — ,2p + €],
p € Z. Take an m € Z and let Jy := I,,. Observe that every interval of length > 2 + 2¢
contains an interval I, for some p. Suppose that J,, := ;= 1I,, (for some p,,). The length of J,
equals

2e 2 S 2e (1 1)_24—25

pn pntlo = patl c)  pntl

Thus there exists a pp41 Such that J,4+1 = anIpn+1 cJ,C---CJy CJy. Let ﬂff:o Jp =
{x2m} Then f( $2m) Z 17— and |2m - $2m| <e.

—a
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Analogously, one gets a pomt Tom1 such that f( Tom+1) < —lf—a and [2m+1—zom41] <

e. Wehave rp, <k+e<k+ 2 < k+1—¢e < xkr1. Hence for every z € R, there exists an
m € Z such that 2z € (z2m41, am+4). Thus

46 46
Af(iaomit, taom > > : =
f(3T2mt1, 52m44) > (1 —a)(T2msa — Tome1) (1 —a)(3 + 2¢)

To get better characterizations of the case f € ND(R), F.A. Behrend proposed the follow-
ing method.

Theorem 3.9.11. Assume that E,D,L > 0 are such that ab > 1, ab®> > 1 + 2“ , and for
every x € R, there exist ', 2" € R for which:

o lz—d|+|r—2"|<E,
o Af(x,a’) - Af(x,2") 2 D,
o Af(x, ') — Af(z,2") = L(|z — 2| + |z — 2”]).

Then f € ND(R).
It is clear that the result gets better as we increase the constant L.

Proof. Fix an x € R and suppose that a finite f’(x) exists. We use notation from the proof
of Theorem 3.9.1. Observe that for the function ¢(t) := cos(27t), we have

[Ap(t, 1) — Ap(t,t")] < N(Jt =t + |t = t"]),

where N := 272, Thus we get

| AW, (2, 2") — AW, ZabQ”N |z — 2| + |z — 2"])
n=0
( )(|x—x|+|x—x”|) m €N
ab2 ’ '

Recall that R, (z) = x). Hence for every m € N, there exist points 27, z/, such that:

G
o |z —a, |+Iw— | bi

< (1n particular, z/, — z and ], — x as m — +00),
o ARp(x,x7,) — R (,
R (2,

xl) > D(ab)™
o) 2 L(ab?)™ (lo — a7, | + |z — a7, ).

o AR, (z,2,) —
Finally,
Af(z,x) — Af(z x”)>D(ab)m(1—ﬂ;) m e N
T ms = Lab?2—-1/" '
Letting m — 400, we get a contradiction. O

The same proof gives the following general theorem (EXERCISE).

Theorem 3.9.12. Let g : R — [—1, 1] be such that there exists an N > 0 with
|Ag(z,2") — Ag(z,2")| < N(|lz — 2'| + |z — 2"|), z,2',2" €R.

For 0 <a<1andb>1, define G(z) :=> " a"g(b"x), x € R. Assume that E,D,L > 0
are such that ab> 1, ab®> > 1+ %, and for every v € R, there exist o', 2" € R for which:
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o lz—d|+|r—2"|<E,
o AG(z,2') — AG(z,2") > D,
o AG(z,2') — AG(z, 2"

Then G € ND(R).

) = Lz — &' + |& — 2"]).

Remark 3.9.13. (a) Let ¢ : R — R. Fix € R, D > 0. Observe that the following two

conditions are equivalent:

(i) Fu aeRr : Ap(z, ') —
D Ap(ah, a5) —

Ap(z,2") > D;
( ) 3 ’<z<z2 z/ <z2 A(p(x/]./7wl2/) > D.
331 <a:<a:27 wl <w2

Indeed, the implication (i) = (ii) is obvious. The opposite implication follows from
Remark 2.1.2(b). We have

D < Ap(x,2') — Ap(z,2")
S maX{Atp(l‘, x/l)v A@(xv 13/2)} - mln{A(p(x, xg_/)v A@(xv 13/2/)},

which gives (i) with 2’ € {2}, 25}, 2’ € {«f,25}.

Let af, zf, i = 1,2, be as in (ii) above. Assume that 2} < = < a5 and 2} < z < 7.
Let of, = max{a}a!}, af = min{ah,a§}, R = [ah,a) x B, v = p(al), o/ = ola?)
i =1,2, and define
! —
L;(xvy) = ij _i: L”(l‘ y) yl y, (x,y) S R, 7= 1,2
K2 [

Consider four sets

Si1={(z,y) € R: Li(2,y) < Ly(z,y), L{(z,y) < Ly(z,y)},
Si2={(z,y) € R: Li(z,y) < Ly(z,y), L{(z,y) = Ly(z,y)},
S21 = {(z,y) € R: Li(2,y) > Ly(z,y), L{(z,y) < Ly(z,y)},
Sa0 = {(z,y) € R: L (z,y) > Ly(z,y), Ly (z,y) > L5(x,y)}.

Assume that there exists a point (o, 7) € R such that:

o Li(o,7) = Li(o,71),

o L{(o,7)=LY(o,7),

o (z,y) €S12=1>0,
o (z,y) € S31=uz<o.

ix an x € [z, z]. Put {(z) = |z — =z xz—z"|. in
Fix an @ € [zg, zg]. Put ¢ |+ "|. We obta
(2, p(x) in| 2 [ ()
/ 1 / 11
Si1 x| o xh —
Si2 xh |xh | xh + xf — 2z < zh + x5 — 20
Sa1 oy |af |20 — o) — a2 <20 —2a) —af
/ 1
52,2 Ty [Ty 1'2 — 5[31
Thus for = € [z, 2], we can take
F o= / "o 2.9 non / I = D
= max{zh — 27,25 + x5 — 20,20 — 2] — 2], x5 — 27}, ==
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Theorem 3.9.14. Ifb € Ny and ab > 1, then f € ND(R).

Proof. Since f(z+1) = f(x) and f(—xz) = f(x), x € R, to apply Theorem 3.9.11 it suffices
to perform the construction from Remark 3.9.13(b) for z € [0, 1]. Take 2} := —%, 2} =1,
2} :=0, 24 := 1. Then

—A, ifbe2N+1 ,

f(:r’l)=f(x’2’)={A_2 o Jah) = 1) = A,

where A = 1. Moreover, (o, 7) = (%,0). Hence

LA, ifbe2N+1
L if b € 2N

D= Af(wy,25) — Af(af,25) = { ,
b1 L_{%A, ifbe 2N+ 1

3L if b € 2N

Thus, if

ab>1, ab’*>1+4+"— = ,
- 1+ 3n2, if b € 2N

272 {1+ 872(1—a), ifbe2N+1
L

then f € ND(R). Observe that if ab > 1 and b > 5, then the above condition is automatically
satisfied. Indeed, ab* > 5 > 1+ 272 > 272(1 — a).

For b € {2,3,4}, F.A. Behrend had to use more subtle systems of points z}, =/, i = 1,2
(the reader is asked to check the details).

e b =4. Then a > 411 and A > %. It suffices to consider only z € [0, %] We use the
following configuration:

zin || @y |zp|2f (23| Yi Yo (i y; |o|D|E| L
0, 4]-5|5|0|s|1—-3A1-14 A —ZA|l:] 6] 1] 12
g1 5 |1]a|5[1-34[A-1[1-34] —34 |[5|6] 5|
1 1 1 3 1 1 1 1 7 144
sl 2 | 5]a|s|A-L|A-1[A-1] 34 |1|12|55|F
1 1 1 1 1 1 1 1 5 48
33l 3 ]2|7|2] 34 |A-2|A-1|A-2|z3]4||F

Consequently, we get the condition @ > 1 and ab® > 1+ 272, which is always satisfied,

because ab®> >4 > 1+ %5—47r2 ~ 3.0561.
e b=3.Thena> 3, A>2 and f(;+2) = —f(5 — ). Thus it suffices to consider only
z € [0, %]. We use the following configuration:

win || @y oy | |2y | v | v || i |o|D|E|L
1 1 1 1 3 3 1(45] 5| 27
0,51-2]5|0]5| =4 |5-445-A|s|7|s|%
1 1 1 1 113 1 1
Goalll s |2|0)alz—-4 0 |A] 0 |1/6]5]|18

Consequently, we get the condition a > % and ab® > 1+ 2;4771'27 which is always satisfied,
because ab®> >3 > 1+ %7‘(2 ~ 2.4621.
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e b=2Thena>1 A>2 34>2(1+4a), and A—1—2a > 0. We use the following
configuration:

win || @ |wp|ef || Y Yo y1 v, ||o|D|E|L
0,3 |-3|5]0]5]1-34|1-34 A |1-3A|5[12| 5|24
11 O O I 1 1 1 1 1
Al sl 5l5l4A-1-2a] A—2 |A-1-2a| —3A | 1|12]|35(36
(53] 1 2| _1lyg —14 8|il24
fa)>—1| 3 | *¥|T]3 2 f(@) f(z) 2 x 3

11
f(LS);lé z|3|1lz| fl2 A-2 |A-1-2a| f(z) ||z|2|3|%

Consequently, we get the condition a > % and ab® > 1+ 3%71'27 which is always satisfied,
because ab® > 2 > 1+ 3%7'(2 ~ 1.9252. O

Theorem 3.9.15. IfbeR, b >3, ab>1, and

3+ 2¢)(1 + 2¢)
2 >1 (— 2(1 —
=1 8 cos(me) m(1-a),

where € := 1, then f € ND(R).

Remark 3.9.16. (a) One can prove (EXERCISE) that the above estimate is better than
Dini’s (Remark 3.7.2(c)), i.e., if a < 2 and ab® > 1+ Zl7?=% then b > 3 and ab? >

2—9a’
L4 CEAE (1 - a) with & := 5Ly

(b) The conditions ab > 1 and ab? > 1 + »(1 — a) are always satisfied if ab > 1 and b > »
(EXERCISE). Hence we conclude that if ab > 1 and b > %79 with e := ﬁ7 then

f € ND(R). One can check (EXERCISE) that the above condition is satisfied if ab > 1
and b > 2 (b > 6.6208).

Proof of Theorem 3.9.15. We keep the notation from the proof of Theorem 3.9.9. Recall that
|k — x| <e, f(aam) > 6A, f(3x2m+1) < —0A, where § := cos(we). Fix an m € Z. Suppose
that 2 € [Tom, Tam+1]- The case 2z € [Tomt1, Tamy2] is left to the reader as an EXERCI-
SE. Put P := (z, f(z)). Consider two segments S’ := [Q2m, Q2m+1], S” = [Qam—1, Qam+2],
where

Q?m—l = (m - % - %7 _(SA)? QQm = (m - %7514)7
Qam+1 = (m+ 3 +5,—-64), Qamiz:=(m+1+5,64).
One can easily check that S’ N S” = {R}, where R := (m + %,0). Consider the following

configurations:
e The point P is below S’ and below S”. Then

Af(x, 372ms2) — Af (2, 572m) > slope[Qam+2, R] — slope[Qam, R]

_ 0A N JA  160A(1+¢) _.D
%+% i+9 (3 +2e)(1+ 2¢)

and
1 1 1 1 .
5T2m+2 _$| + |§1‘2m —ZC| = 5T2m+2 —xr+x— 5%2m < l+e=FL.
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e The point P is above S’ and below S”. Then

Af($7 %x2m+2) - Af(CC, %x2m+1> > SlOpe[Q2m+2, R] - SlOpe[ng_H, R] = D,
|522mt2 — o] + |322mi1 — 2|
<m+l+s—(m+H+m+i+5)-(m+i)=1+e=FE.

e The same estimates may be obtained in the remaining two cases—EXERCISE.

Now we apply Theorem 3.9.11 with L := %. O

3.10 Emde Boas’s Method

The aim of this section is to present an elementary proof of the following result.
Theorem 3.10.1 (Cf. [Boa69]). S1/22 € ND(R).
Recall that the result was already proved by a different method in Theorem 3.9.14.

Proof. Step 1°. Let
g(x) := (2 — V2)sin(nz/2) + sin(rz) + sin(27z), z € R.

Then for every zy € R, there exists a y € R such that

2 1

xo € ly,y + 1] and |g(y)| > 6 + 20"

Indeed, since g(x) = g(x +4), € R, it suffices to find points 0 < yp < -+ < yny < 4 such

that |g(y:)| > % + % and y; —yi—1 < 1,i=0,..., N, with y_; := yny — 4. Using a computer

(EXERCISE), we check that we may take (yo,...,ys) = (%, %, %, §7 %, %7 %).

Step 2°. Let f : R — R be continuous and let

1 h
Az, h) = E(f(x) + f(h) — 2f(x—|— 5))
Suppose that
M0 Vaoer, 50 erR, he(0,8) © To € [ZC,ZC + h], |A(l‘, h)| > M. (3101)

Then f € ND(R).
Indeed, take zo € R and 6 > 0. Let x, h be as in (3.10.1). Then we have

A(z,h) = Af(x,x +h) — Af(x,x+ h/2)
=Af(x+h/2,x+h)— Af(x,z+h). (3.10.2)

If © + h/2 > x, then we take a1 = a9 :=x, by =x + h, bo :=x + h/2. If  + h/2 < x¢, then
we take a1 :=x + h/2, ag :=x, by = by := x + h. Using (3.10.2), we get
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|Af(a1,b1) — Af(az,bo)| = |A(z, h)| > M.

It remains to apply Remark 2.1.4(d).

Step 3°. Now let f := S;,55. We will check that f satisfies (3.10.1) with M := % We have
A(z,h) =>77 ) Ap(z, h), where

Ap(z,h) = %2% ( sin(m2"+e) + sin(w2"* (z + b)) — 2sin(72" (2 + h/2)))
= %2% (2 sin(72" (@ + h/2)) cos(n2" 1 h/2) — 2sin(72" ) (z + h/2)))

= %2%2 sin(m2"+ (a + h/2))(cos(7r2"+1h/2) - 1)

= %2:_1 sin(72" "z + 72"h)(cos(72"h) — 1).

Taking h = hy, := 1/2™+1 m € Ny, we get
Ap(x, hpy) = 2™ "2 sin(72" e + 7277 D (cos(m2" ™) — 1).
In particular, if n > m + 2, then A, (z, h,,) = 0. Thus
Az, ham) = R () + S (),

where

m—2

R, (x):= Z Ap (2, hm),

n=0

Sm(2) 1 = Am—1(x, han) + A (@, b)) + A1 (2, ).

If n < m — 2, then we get
1
D s o )

Hence

m—2 m—2 2
Rin(2)] < 37 An(2, hin)| < Y w22nmm1 < %
n=0 n=0

Let £ = &, := 2™T12 + 1/2. Then we have

Sm(z) = 8sin(m2™x + m/4)(cos(n/4) — 1)
+ 4sin(m2™ e + 7/2)(cos(m/2) — 1) + 2sin(72™ 2z + 7)(cos T — 1)

- _4((2 — V2) sin(n€/2) + sin(r€) + sin(27r§)> — —44(¢),

where g is as in Step 1°.
Take g € R, § > 0. Let m € Ng be such that h,, < §. By Step 1°, there exists a y € R
2
such that 2™+ !z + 1/2 € [y,y + 1] and |g(y)| > T5 + 55. Define z := (y — 1/2)/2™*1. Note
that £, = y. Then zg € [z, z + hy] and |A(z, hm)| > 4l9(y)| — |Rim(x)| > 4(% + 21—0) — % =
1 _

L— M. 0
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3.11 The Method of Baouche—Dubuc

In 1992, A. Baouche and S. Dubuc, using elementary means, proved the following strong

result.

Theorem 3.11.1 (Cf. [BD92]). If b € 2N+ 1, ab > 1, and a := —llzi‘g € (0,1), then
Wi ab,0 s weakly a-anti-Hélder continuous uniformly with respect to x € R. In particular,
Wi ap0 € NDR) (¢f. Remark 2.5.4(b)).

The result will be generalized in Theorem 8.3.1.

Proof. Put f := VVlabO Fix x € R and m € N. Let k € Z be such that |b™x — k| <
Define ¢ := bim,h'—

1
5.
T Then for n > m, we get

cos(2mb™ (t £ h)) = cos (2b"‘m (k + i)) = cos (bn;m> =0,
cos(2mb"t) = cos(2mb" " ™k) =

Hence,
m—1 am
fEth) Z a™ cos(2wb" (t + h)) Z a™ cos(2mwb"t)
n=0
Note that for 0 < n <m — 1, we have
2 cos(2mb"t) — cos(2wb" (t — h)) — cos(2wb" (t + h))
= 2cos(2mb™t)(1 — cos(mb™h))
> —2(1 — cos(mb™h)) = —4sin? (”b h) > —(mb"™h)?.

Thus

2f(t) = f(t=h) = f(t+h)

Y

1_a—Za (wb"™h)

~2a™ (ab*)™ -1 9
T 1-a  ab®—1 (wh)” >

2a™ (ab?)™
T—a ab?—1""

where

2 b2m 2 72 32ab? + 72a — 32 — 72
c:= - (mh)? = =
1—a 16(ab®—1) 16(1 — a)(ab? — 1)

l1—a ab?2-1
32b 4 T — 32 — 72 §(320° — (32 + )b+ 72) _ 20— 1)(b— =)

~ 16(1 —a)(ab?® —1) B 16(1 —a)(ab? — 1) b(l —a)(ab?® —1)
> 0.

On the other hand,

2f(t) = f(t=h) — f(t+h)
=2(f(t) = f(x) + (f(2) = f(t = h)) + (f(x) = f(E+ R)),
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which implies that at least one of the above four summands is greater than C‘Zm, i.e., there

m

exists an o, € {t,t — h,t + h}, |zn — 2| < 2=, such that |f(zn) — f(z)] > <

mNOW put € := Zf(%)o‘ ?:cmd let § € (0,2). Take an m € N such that ;2 <6 < go—. Then
ca™ __ c _ c4”
“r = o = T (geer) > 80 O

3.12 Summary

In a concentrated tabular form, the best results presented so far (related to nowhere differ-
entiability of the function W}, ;.6) can be summarized as follows:

ND> | ND. | MAND>
p=1, 6=0, b odd p=1, 6 arbitrary, b even, b>14 p odd, 6=0, b odd
ab>1+3n(1—a) a=1/b ab>1+3pm

Theorem 3.8.1 Theorem 3.6.1 Theorem 3.5.1

p=1, 6=0, b € 2N\ (3N) p arbitrary, @ arbitrary

ab>1+1GT’“(l—a) (a<ai(p), b>V¥1i(a)) or (a<az2(p), b>W¥a(a))

Theorem 3.9.5 Theorem 3.7.1

p=1, 6=0, b>3

(3b—1)x _
ab>1+72(b_1) CDS(bIl)(l a)
Theorem 3.9.9




Chapter 4
Takagi—van der Waerden-Type Functions I

Summary. The purpose of this chapter is to present basic results related to the nowhere differentiability of
the Takagi-van der Waerden function & — Y2, a™ dist(b™x + 0y, 7Z). The discussion will be continued in
Chap. 9.

4.1 Introduction

Let ¥ : R — [0, %], P (x) := dist(x, Z). Observe that
o Yz +1)=1(z),
o P(—z)=1(z), v €R,
b |’l'b($)—’l'b(y)| < |x—y|7x,y€R7 and
o [¥@)=1,0eR\IZ
ForO0<a<1,ab>1,0= (0,2, CR, define

Topo(z):= Z a"Pp(b"r +6,), zeR.

n=0

The function T, ; ¢ is called the generalized Takagi—van der Waerden function. The function
T :=T, /2., is called the Takagi function; it is sometimes also called the blancmange function.
The name “blancmange” comes from the resemblance of the graph of T' to a pudding of the
same name (cf. Fig.4.1).

The aim of this section is to present basic properties of the Takagi—van der Waerden
function. More developed results (such as Theorem 9.2.1) will be given in Chap. 9.

Remark 4.1.1 (Takagi (blancmange) Function).
(a) T. Takagi in [Tak03] proved that T' € ND(R) (see also [KV02]).
(b) Independently, T.H. Hildebrandt in [Hil33] proved that T € ND(R).
(c) A. Shidfar and K. Sabetfakhri in [SS86] proved that T' € H?(R) for every 3 € (0, 1).
(d) M. Hata in [Hat91] proved the optimal estimate

|T(x + h) — T(z)| < const|h|log|h|, =, heR.

(e) W.F. Darsow, M.J. Frank, and H.-H. Kairies proved in [KDF88, DFKS89] that
T € ND_(I) (Theorem 4.2.1).

(© Springer International Publishing Switzerland 2015 51
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Fig. 4.1 Takagi function I 5 z — T'(z)

(f) T has several applications in physics (cf. references in [AKO06b]). Moreover, T' =
%Tl, where T, := %%b:l s2, and L, stands for the Lebesgue singular function
(cf. [AKOG6D]). One can prove that T,, € ND(R) (cf. [AK06b], Theorem 5.1).

(g) T has applications in number theory, e.g., we have the following generalized Trollope’s

formula (cf. [AFS09]):

n

S(n) = %nm - 2m_1T<2m

), 1 <n <2™, where
n—1 00
S(n) = s(k), s(k):=_ep(k),
k=0 p=0
k= iep(kﬂp with e, (k) € {0,1}.
p=0

(h) The Riemann hypothesis can be formulated in terms of the Takagi function [KY00,
BKYO06]. More precisely, the Riemann hypothesis is equivalent to

1
Z T(o) — (#Fn)/ T(t)dt = O(n%ﬁ) when n — 400,
0EFn 0

where F,, is the set of all Farey fractions of order n (cf. § A.8).
(i) The function T has been studied in many other papers; see, e.g.,[All13, AK06b, AK10,
AK12, Kén87, Krii07, Krii08, Kriil0, Lagl2, Vas13].



4.1 Introduction 53
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Fig. 4.2 Takagi—van der Waerden type function I 3 & — T.9,1.2,0()

Remark 4.1.2 (Takagi—van der Waerden-Type Function; cf. Fig.4.2).

(a) B.L. van der Waerden in [Wae30] proved that T',19,10,0 € ND(R); see also [Hai76].

(b) F.S. Cater in [Cat94] and [Cat03] proved two general results that imply that:
o Ti50 € NDi(R) provided that b > 10 (Theorem 4.3.1) and
o T,p0 € NDL(R) provided that ab > 1 and b € Ny (Theorem 4.3.2); in particular,
Tl/b7b,0 € ND_ (R), provided that b € Ny.

(c) The function T 50 with b € Ny has been discussed in many other papers, e.g.,[Rha57b,
Babg4, Spu04].

(d) K. Knopp in [Knol8] proved that Ty, 50 € ND(R) for 0 < a < 1, ab > 4, and b € 2N.

(e) D.P. Minassian and J.W. Gaisser presented in [MG84] an elementary proof showing that
T1/2’5,0 S NDi(R).

(f) A. Baouche and S. Dubuc in [BD94] proved that T, 40 € M(R) C ND,(R) for ab > 1
(Theorem 9.2.1).

(g) The reader may find in [AK12] more historical information on the nowhere differentiability
of the generalized Takagi—van der Waerden function.

The Takagi function has the following elementary properties.

Remark 4.1.3 (cf. [Lagl2)).
(a) T(l—2)=T(x), z €L
(b) T(z) =0iff x € Z.
(c) 0<T <2
Indeed, since 9 (z) + 39 (2z) < 5, we have T(z) < § + g + o5 + -+ =
@) T(}) = 2.

(e) T(Q) C Q.

Wl
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Indeed, fix an zg = £ € QNI Then ry, := 9(2"x) = P ({2"x0}) € Q, n € N, where {t} :=
t — |t] denotes the fractional part of t. Since {2"z(} is one of the numbers 0, %, ce %,
there exist u < v such that {2#z0} = {2"x¢}. Put w := v — . Then {2" ¥z} = {2720}
for n > p (observe that {2" Tz} = {2{2"x0}} and use induction). Finally,

pn—1 w—1 00
T(a) = (20’2"_1;) +20 Pl
n= 5= k=0

Notice that in fact, the original definition of the Takagi function T" has been formulated in
the language of binary representations of numbers.

Proposition 4.1.4. Let x =Y 7, 22 € T with (a,)52; C {0,1} be a binary representation

n=1 2n
of x.
(a) (Cf. [Tak03]) Put
> (07 ’ 1 Tk ifa’k =0
TR = — TR = o — Tk, = ; ,
k ] on k 9k—1 k Tk 7_];7 zfak -1
Ap=a1+ - +ay,
Ak, ifak:O
by, = =(1—ap)Ax +ar(k—Ag), keN. 4.1.1

Then
T(x)= Z“Yk = Z 9k
k=1 k=1

(b) (Cf. [Lyc40, AFS09]) Let

oh = {Z_ 1) ZZZZ - (1)} — ok —2(Ap— 1), keN. (4.1.2)

Then T(x) = Y07 $k.

Proof. (a) To get the equality T'(z) = Y o, Y&, it suffices to prove that ¥ (2*z) = 2y, 44,
k € Ny. Fix a k € Ng. Then

(2¥x) = w@’“i 5) =¢(§31 =3

YO ) = v ).
n=k+1

It now remains to observe that:

o 2Fmy €1,

e ap1=0= 2, €10,1/2],

o app1 =1= 2"y €[1/2,1] = 2*7, , €[0,1/2].

Note that Ay counts the number of 1’s in the sequence (ay, .. ., ax) and k— Ay, the number
of 0’s. To get the equality > oo T = D pey 2k, we proceed as follows:
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o0

2%22( i% —1)

k=1 n==k n

Dﬁg

an)
2n

Il
3 =

n

i%( ak—|—anZ(—1)“"‘> = 3 S—Z

n=1 k=1 k=1 n=1

(b) ibk—ck :i (l—ak)Ak—Fak(k—Ak)—ak(k—2(Ak—1))

2k 2k
k=1 k=1
> Ak — 2ak Ak
Sy (N ) e
k=1 k=1
Remark 4.1.5.
(a) Note that
bn, if n = Qn
b1:07 bn-‘rl: ‘Ta"!‘l ¢ ) n € N.
n—by, ifapy1 #an

(b) If x = 2m, then x has two binary representations:

m m—1
mrae () X e
n=1 n=1 n=m-+1

55

with a,,, = 1. Let (b, )n 1 (€)oo, (0)5,, (¢,)52 4, be associated to x, ', respectively
(4.1

(using (4.1.1) and .2)). Proposition 4.1.4 implies that

s>~

ro-Si-Sh-5i-

i.e., the results are independent of the representation.

ml3
12|
:\.

00
n=1

The Takagi function may be also defined in an axiomatic way.

Proposition 4.1.6 (cf. [Rhab7al]). The function f = T is the only bounded function on I

satisfying the following equations:

(1) fla) —2f(3) = —a, 2 €,
(2) F(E) - f(5) = —a+ L cel

Proof. One can easily check that T satisfies (1) and (2).

Let € be the Banach space of all bounded functions on I with the supremum norm || F|| :=

sup,er |[F(z)|- Let L : € — € be given by the formula

x4+ $F(2x), if0<z
l—z+iF@2z—1), ifj<uz

L(F)(x) := {

Observe that
1
IL(F) = L&) = IF -G, FGeE.
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One can easily prove that if F' € & satisfies (1) and (2) (in particular, if FF = T'), then
L(F) = F (EXERCISE), i.e., F is a fixed point of L. Since L is a contraction, the Banach
fixed-point theorem implies that T' is the only fixed point of L. O

4.2 Kairies’s Method

Theorem 4.2.1 (cf. [KDF88, DFKS89]). If a continuous function f:1— R satisfies condi-
tions (1), (2) from Proposition 4.1.6, and moreover,

@) fl—=z)=f(z), z €],
then f € NDL(I). In particular, T € NDL(I) (c¢f. Remark 4.1.3(a)).

Proof. In view of (3), we have only to prove that for every z; € (0,1], a finite left-sided
derivative f’ (x1) does not exist. Fix an 1 € (0, 1] and suppose that a finite f’ (1) exists.
Tteration of (1) gives

f@2mz) =27 f(z) —m2™z, 2z €0, 5], (4.2.1)
flem) = %(f(x)‘f'mx), zel, meN. (4.2.2)
We have
flx+ 7)) = f(z7=2" 2 + 3))
2 A (fem T+ b+ (m- DR e+ )
@ 2m%1(f(2m_1x) — 2"y + %) +(m—-1)(z+ %)

U2D ey —2m 2 wefo, L. (4.2.3)

Let z1 = Zzil %}15 , where 1 < nj < ns < ..., be the infinite binary representation of .
Put xj, := Y02, 5z We have 2 = @p11 + zup and 0 < 241 < 5. By (4.2.3), we have
f(zr) = f(wr41) — 2Tk 41 + 5, which gives

n n
f(x1) = f(org1) — 2(w2 + -+ + Tpg1) + 2711 +o+ 2nk,€ ) (4.2.4)

Fix a k € Ny and let

B 11 1 1 1
PET T g Tam T T o T T

Let (y5)S2, be defined for y; in the same way as ()22, for z1. We have ys = 541 for s > k
and ys = z, — 5 for s < k— 1. If we apply (4.2.4) to (y1,k — 1) (instead of (z1,k)), then we
get

ni Nk—1

1 1
f(yl):f($k+1>—2($2—%‘F"'"ka_l—%'i‘xk—i-l)+2Tl+"'+2nk_1.
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Hence

-2
Af(er) = 2% (@) — F)) =2 (22 o4 T
=ng — 2k +2(1 — 2" xp41) = ng — 2k + 2(1 — ug), where ug := 2" xp4 1.
When z; is dyadic rational, ie., x; = 5 with 1 < m < 29 we have (ni,ng,...) =
(n1,...,np,np +1,np +2,...) for some p € N. Thus for k > p, we get

Af(z,y1) =ne —2k+2(1 —ug) =k —p+np — 2k + 2(1 — uy)
=—k+n,—p+2(1—ux) < —k+n,—p — —o0;

k—+oo

a contradiction.
When z; is not a dyadic rational, the set

S:={seN:ng —ns>2}

is infinite. Assume that k € S and let

. 1 _ 1 1 1 1 1
Al =21 W - QT1 i oNk—1 + ong+1 + Nkt + Nkt

We have z; = x5 for s > k+ 1 and 2z, = zs — 2%;“ for s < k. If we apply (4.2.4) to (z1,k)
(instead of (x1,k)), then we get

1 1
F(21) = Flons) =2(22 = g+ o0 — 5oy + T )

n Nj— ne+1
1+“‘+k1 k

+ 2"1 2nk_1 2nk+1 :

Consequently,

2nk+1 2nk 27’Lk+1

= —2k+1 ! .
"k + SB/C——%>FOO f_ (1‘1)

Af(xl’zl):2nk+1(f(x1)_f(zl)):2nk+1<_2k:_1 Nk nk+1)

Thus there exist m,so € N such that ng —2s+ 1 = m for s € S N Ng,. In particular,
ng —ns = 2(s" —s) for s, € SNNg,, s < . For k > sg, we get

Af(xy,y1) =nk —2k+2(1 —up) =m —1+2(1 —up) — m,
which implies that u; — %

There are two possibilities:
e The set S3:={s € S :ns11 —ns > 3} is infinite. Then for k € S3, we get

gy (] 1 1 1
L (2nk+3 T ot T g +) s

a contradiction.
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e The set S3 is finite, i.e., ng41 —ns = 2 for s € SN N, with an s; > s9. Suppose that
there exist s, s’ € SN Ny, such that s’ > s+2and (s,s)NS =g, ie,ny —ns =5 —s. On
the other hand, we know that ny —ns = 2(s’ — s); a contradiction. Thus ns11 — ns = 2 for
s € Ng, with an s3 > s;. Then

" " 1 1 1 1
up = 2" Tpq1 =2 k(2nk+2 + ony+4 + ony+6 +> 3 k > s2;

a contradiction. O

4.3 Cater’s Method

We will present two general theorems due to F.S. Cater that give a partial characterization
of nowhere differentiability of the function T /3 4.6-

Theorem 4.3.1 (cf. [Cat94]). Let b = (b,)22, C R, @ = (a)52 C Ry, |an| = 1/by,
n € Ng, 0 = (6,)22, CR,

Tab@ Zanw nl‘+0> xr € R.

If =% LIES S 10, n € Ny, then Tape € NDL(R). In particular, if b > 10, then Ty/pp9 €
Ngﬂ:( )-

Functions of the class Ty 2,0 have also been studied in [HY84].

Proof of Theorem 4.3.1. Since Tapo(z + 20) = Tap (byroto,)=, (@) and Tape(—z) =
Tap,—6(z), x,20 € R, we have only to prove that for every 6, a finite derivative (Tqb,0)’, (0)
does not exist (cf. Remark 3.2.1(k)). Suppose that for some 8, a finite derivative (Tqb,0)’, (0)
exists. Put f := Tap 9. Write f(x) = f(0) + f1(0)x + a(x)x, x > 0, where lim, o4 a( )=0.
Let € > 0 be such that |a(z)| < 1/100 for 0 < z < e.

Step 1°. Let N € N be such that 5/by < €. Then, using Remark 2.1.4(a), for n > N and
i €4{2,3,4}, we get

|AF(GE ) = fe(0)] = (@ + Da(Er) —ialgh)] < 155 < 10-
For some n € Ny, consider five intervals I, ; := [%7 %)7 i=0,...,4.

Step 2°. Suppose that the function x »ﬂ 1 (bjz+0;) is nonlinear on two of the four intervals
I,oUI,1, L2, Ins, Ina. Then 5/b, > 1/(2b;), which is impossible for j € {0,...,n — 1}.
Thus, for every j € {0,...,n—1}, the function ; is nonlinear on at most one of the intervals
InoUlnn, Ing, Ing, Ina. In particular, if ¢; is nonlinear on one of the intervals Ino, In 3,
I, 4, then v; is linear on the interval I, o U I, 1. Observe that since 2n > 52—, we get

2 5 b
O; _) — in,0 U In 12 [ _) - In+s,2 U In+s,3 U In+s,4~
[ bn L:J n+s bn—i—s SL:Jl

Consequently, if ¢; (j € {0,...,n — 1}) is nonlinear on one of the intervals I, 2, I, 3, In 4,
then 1); is linear on each of the intervals Iy, ys2, Ints,3, Intsa with s € N.
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Step 3°. There are infinitely many even (resp. odd) n € N such that there exists i,, €
{2, 3,4} for which all the functions ¢;, j =0,...,n — 1, are linear on I,, ;.

Suppose that there exists a constant M € N such that for every ¢ € {2,3,4} and even
(resp. odd) number n > M there exists a j; , € {0,...,n— 1} such that ¢, , is not linear on
I,,;. In view of Step 2°, we know that j; s # jin for n’ > n. Thus for every ¢ > 3M + 8, we
get an injective mapping A — B, where

A:={(i,n) 11 €{2,3,4}, M <n < g, n even (resp. odd)},
B:={0,...,q—1}.

It follows that ¢ = #B > #A > 3(3(q¢ — M) — 1); a contradiction.
Step 4°. Let N be as in Step 1" and let n > N be even (resp. odd) and such that all
functions #;, j =0,...,n — 1, are linear on I,, ;, (as in Step 3°). Then

P, ::bnrilaj(¢j(%)—¢j(z—z))_b meb ZEJT]J’
=0

where €;,m; € {—1,+1}, j
Obviously, ¢, (%) = ¢ (4

<.

,n — 1. Consequently, P, is even (resp. odd); EXERCISE.
) Moreover

°‘|3 ||

G in+1 in 1 — 1 1
bn Z a;(wg( b )—%(E))kb Z |%§ 5 WZE'
j=n+1 j=n+1
Hence |Af(1" 1":1) P,| < &, and consequently, by Step 1°, |P, — f,(0)| < +. Taking n
even and m odd as in Step 3°, we get 1 < |P,, — P,,| < %; a contradiction. O

Theorem 4.3.2 (cf. [Cat03]). Let
) = Z anfn(bn$)7 z €R,

where a = (an)iy C Rso, Dooogan < 400, b = (by)02, C N, bg“ € Ny,
1ilnsupn—w—ooanbn > 07 (fn)%ozo - C(R,H), fﬂ(_x) = fn( )7 NS R fﬂZ2k = 07
fn(2k+1) =1, fuljok,2642) s concave, k € Z, n € No.

Then T € NDL(R). In particular, taking fn(x) := 24(5), we conclude that if b € Ny, then
Tl/b,b,O S NDi(R)

Remark 4.3.3. An independent proof showing that T' € N D (R) may be found in [Cat84].
Similar problems have been studied in [Mik56].

Notice that Theorem 4.3.2 is a general tool that may be applied to many other series.
For example, one can take f,(r) := ©,(2(5)), where ¢, : I — I is an increasing concave
function with ¢, (0) =0, v, (1) = 1.

(a) In particular, we may take
1

see [Cat03] for more examples.
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(b) Taking ¢, := id, we easily conclude that the Faber functions

o0

ZW¢ (2™2) Z ¢2"’ z e R,

n=0

are of the class ND L (R) (cf. [Fab07, Fab08, Fab10]).
(¢) Similarly, the Lebesgue function

i% r €R,

is of the class ND(R) (cf. [Leb40]).
(d) In an analogous way, one can easily prove (EXERCISE) that the McCarthy function

i% (2%z), z€eR,

where g(z) 1= 49(%(2+2))—1, is of the class ND4 (R) (cf. [McC53]). Note that g(z+4) =
g(z) and

1+, ifxzel[-2,0]
g(x) = . :
1—z, ifzel0,2]

Proof of Theorem 4.3.2. Obviously, T' € C(R).
Since T'(—x) = T(x), € R, we have only to show that T (x) does not exist for every
x € R. Suppose that 7" (x¢) exists for some zy € R. Write

T(z) =T(x0) + T' (z0)(z — o) + a(z)(z — z0), z > w0,

where limg g+ a(z) = 0. Let 0 < e < &L, where L := limsup,,_,, anb .Takea § >0
such that |a(z)| < € for z9 < x < w9+ 26. Fix an N € N such that by > 5 4 and ayby > 10e.
Take a k € Z with 2k —2 < by < 2k and define z; := 25H=1 4 — 1,2,3. Then, by
Remark 2.1.4(a), we get

|AT (21, x2) — AT (21, x3)| = |bn (a(z2) (22 — x0) — a(x1) (21 — X0))

b
— - (as) (w3 — x0) + afa1) (21 — 20))
3 2\ by, 4 2
<byle=—4e)+ (e 4e2) =8e.
N(EbN—i—sbN)—i- (EbN—i-abN) 8¢
Ifn>Nandm:=g—;€N,then
0, if i € {1,3}

Fu(buti) = fu((2k +i—1)m) = {fn((%—i—l) ), #i=2

Thus
fn(bnxQ) — fn(bnxl) _ fn(bnx?)) - fn(bnxl) _ fn(bnxQ) -0 _ 0—-0

T2 — T1 T3 — 1 T2 — T1 T3 — I1

> 0.
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If n = N, then we get

fn(bnzs) = fy(bnzy)  fn(byas) — fi(bya)

To — 1 xr3 — T1

_IN@E+1) - fN(@2k)  fn(RE+2) - fN(R2k) b

To — I Tr3 — I N

If n < N and m := 6Nk—€m+r(€62r6{0 m —1}), then 2¢ < 20+ 2 =
bpr1 < bpxs = 20+ 2 < 2¢ + 2. Thus the function [xl,xg] > x> fn(byx) is concave.
Consequently,

fn( nx2> fn( nx1> _ fn(bn$3) - fn(bn$1> >0

To — T1 xr3 — T1 =
Finally,
AT (xy,12) — AT (21, 73) > anby > 10¢;

a contradiction. O

Remark 4.3.4. In [Lan08], G. Landsberg showed that if (an)nen, C R, Yo" ]an| < +00,
and if the series (S) = Y. 7 ,2"a, is divergent, then the function F : R — R, F(z) :=
S g an®(2"x), belongs to ND(R). If the series (S) is absolutely convergent, then F} and
F’ exist as finite values everywhere.

4.4 Differentiability of a Class of Takagi Functions

It is clear that the Takagi function
Fa(l‘) = a20 Za”'&b 2” l‘ER,

may be formally defined for all a € R with 0 < |a| < 3. Obviously, F, € C(R). We are not
interested in the nowhere differentiability of F,, but in its differentiability. The aim of this
section is to prove the following Theorem 4.4.2 due to A.L. Thomson and J.N. Hagler.

Remark 4.4.1. Put f,(z) := ¢(2"x), x € R, n € Ny (fo = v). Then for every n € Ny, we
have:

(a) fn is periodic with period 3.

(b) (£ (@) = { 2% HOLo < oo }:zw;m).

9, if sl <w< L
2n if0<z< s
/ — ’ — 2n+l1 — 9n / M)
(© (fn)-(@) {—2”, if i <o < %} ¥-(2%)
d) (fn).. and (f,)" are periodic with period in
( f p p

Theorem 4.4.2 (cf. [TH]). Let 0 < |a| < §, and for z € I, let x = >, £2 be a binary
representation of x. Then:

(a) F1/4(1‘) = 21}(1 — ZC)
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(b) If = < 1, then (F,) () = Y. ,a"(fa) (x) € R. Moreover, if
sup{n € N : z,, = 0} = o0, then (fn) () = 2"(1 — 2xy41), and consequently,
(Fa)/-o-(x) = 1_aga - 2Zn20(2a) Tn+1-

(¢) If = > 0, then (F,) () = > ,a"(fn)_(x) € R. Moreover, if
sup{n eN:x, =1} = +oo, then (fn)_(x) = 2"(1—2x,,41), and consequently,(F,)_(z) =
T=%a 2Zn 0(20)" Tn 1.

(d) Ifa # 1, then a finite F,(z) ezists iff x is not a dyadic rational.

Proof. (a) Let € := {F € C(R) : Vyer : F(z + 1) = F(x)}. Counsider € as a Banach
space with the supremum norm || F|| := sup,cg |F(z)|. Define an operator L : € — E,
L(F)(z) == () + 1F(2z), x € R. Let H € & be such that H(z) = 2z(1 — z) for z € L.
Observe that for x € I, we get

} = H(x).

One may easily check (EXERCISE) that || L™(¢) — F} 4] o 0, where L™ stands for the

nth iterate of L.

For every F,G € &, we have ||L(F) — L(G)|| = %||F — G||. Consequently, by the Banach
fixed-point theorem, there exists exactly one F* € € such that L(F*) = F*, and moreover,
for every F € €, we get L"(F) — F™.

Thus Fy)y =F*=H.

x+z(1 — 2z), if x <

L(H)(r) = () + {H(21) = {1 et lH@r 1), ifz>
! T

NI N~

(b) Let ¢ > 0, and let k € N be such that % < €. Observe that there exists a 0 <

d < 1 —a such that fp,(x +h) = fu(x) + (o) (x)h for n = 0,...,k and 0 < h < §.
Consequently, for 0 < h < §, we get

‘AFa(x,x +h)— i an(fn);(if)‘

n=0
"(x+h P(2
< ) Z @) S (), o)
n=k+1 n=k+1
Remark 4.4.1 (2|a|)k+1
< 2 Z (2]al)™ T <°
n=k+1

which proves the formula for (Fy)’, ().
Let 2/ =507 with sup{n € N: 2/, = 0} = +00. Then

n=1 2"
1, ifzf =0
/ ’ ) 1 /
") = =1- 2.
+(@) {—1, if a) ——1} “

Take a k € Ny. Then

k
2k:r:(z2k_”xn>+ Z 2 =y+a —y+zxk+"
n=1

n=k+1

||
<
+
NE
2R

3
I
=
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where y € Ny. Hence
(fr) (2") = 29! (2Fz) = 284, () = 2%(1 — 22) = 2" (1 — 224 41).

(¢) EXERCISE.

(d) If z is not a dyadic rational, then sup{n € N: z, = 0} =sup{n € N: z,, = 1} = o0,
and therefore, the result follows from (b) and (c).
If # = ¢ is a dyadic rational (m,k € Nog, m < 2*, and (m, 2") = 1), then

(fo) (@) = (fu)"(2) = 2" (4, (2"2) — b’ (2"x))
0, itn=0,... k-2

S () () = ek
ot =k k+1,...

with obvious modifications for k& € {0,1}. Hence, using (b) and (c), we get

2(2a)k—1

(P (@) = (Fo). () = —at128 4 30 ot = 220

n=~k

(4a—1) #£0. O



Chapter 5
Bolzano-Type Functions I

Summary. The goal of this chapter is to prove basic results related to the nowhere differentiability of

Bolzano-type functions. Some more advanced properties will be presented in Chap. 10.

5.1 The Bolzano-Type Function

Bolzano-type functions f : I — R will be of the form f(z) = lim,— o0 Ln(z), = € I, where
each function L, : I — R, n € Ny, is continuous, piecewise linear, and the convergence is
uniform (which guarantees that f is continuous). Moreover, Lo(z) = z, x € I, and L4 is
obtained from L,, via the following geometric procedure (Fig.5.1).

Fix numbers N € Ny, 0 = pp < 1 < - < oy =1, Py,...,Pny_1 € R. Let &y := 0,
¢N =1.

For two points P = (a, A),Q = (b, B) € R2, a < b, consider the segment S := [P, Q] C R?
identified with the graph of the affine function

Jo>z+— LéD’Q(x) = A+ x(x — a),
where J = J(S) := [a,b], A= A(S) := B— A, § = §(J) :=b—a, s = 3(S) := 2. Consider
N + 1 points

R; = (a;, A;) = (a+ pi0, A+ D;A4), ¢=0,...,N.
Note that Ro = P and RN = Q Let Sl = Sl(P,Q) = [Ri_l,Ri], Jl = Jl(P,Q) = [ai_l,ai],
i=1,...,N, and let Lf '@ . J — R be the piecewise affine function corresponding to the
union of segments S; U --- U Sy. We say that the interval J; is of type i (type(J;) =1i). We
have
D, —D;_q
=

A(Si) = (Pi — Pi—1)A, (i) = (0 — wi1)d,  2(S;) P

i=1,...,N.
Observe that

max |A(S;)| = Ma - |A|, where M := max |P; — Pi_1],

1<i<N 1<i<
max 6(J;) = Ms - 6§, where Ms := max (v; —pi—1) <1
1SN (Ji) 50, 5 1Si§N(<pl Pi-1) )
(© Springer International Publishing Switzerland 2015 65
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D, —D;_
max_|»(S;)| = M,, - |»|, where M,, := max M7
1<i<N 1<i<N @ — Pi—1

IL79() = L") < Modlsla’ — 2|, 2’2" € J,

PQ( o\ TPQ N _ . — o
rfea}dLl (x) — Ly ™(x)| = My, - |4A|, where My, : 1;2%\}](_1@% ©il-

0.8
0.6
0.4

0.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 5.1 The function Lj for N = 4, ¢1 = %, p2 = %, p3 =
Q=(1,1)

Assume additionally that Ma < 1.
We are ready to define the Bolzano-type function using the following recursive procedure.
We begin with P = (a, A) := (0,0) and @ = (b, B) := (1,1) and continue using the general
construction given previously. We get:
e N intervals Jl,i = [al,i_l,al’i], 1= 1, ey N,
o N segments Sl,i = [(al,i_l, Al,i—l), (al,i, Al,i)]; 1= 1, ey N, and
e a continuous piecewise affine function L; : T — R.
We have type(Ji;) = 4, i = 1,...,N. We repeat the above construction for each of the
segments S7;, 1 =1,..., N. We get:
e N?intervals Jo,; = [ag;—1,a2,],i=1,...,N?
[ ] .N'2 Segments Sg,i = [(a27i_17 A27i_1>, (ag,i, AQJ)L 1= 17 ey JVQ7 and
e a continuous piecewise affine function Lo : I — R.

We have type(Jo snti) =4, s=0,...,N—1,i=1,...,N. After n steps, we arrive at:

o N™intervals Jy,; = [an,i—1,0nq], i =1,...,N™,
o N"™ segments Sy, ; = [(an,i=1, Ani=1), (@n,i, Ani)], i =1,...,N™, and
e a continuous piecewise affine function L, : I — R.
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We have type(Jy sn+i) =4, s=0,...,N*"1 —1i=1,...,N. Set

371 L= {[an,i—laan,i] 1= 17 .. -7Nn}7
Gp:= {[(an,i—la An,i—1)7 (ami? An,l)] =1, 7Nn}

If J = [ani-1,ani] € In, then S(J) := [(ani—1,Ani-1),(ani, Ani)]. Conversely, if S =
[(am_l, An,i—l)a (an,i, An,z)] S 6,,, then J(S) = [an,i_ham]. We have
NTL

* )

|A(Sn )| < MK, 6(Jni) < Mg, [5(Sn)| < M3, i=1,..
|Lp(2') — Lp(2")| < MZJ2" —2"|, 2',2" €1,

max |Lyny1(x) — Ly(z)| < M M3Z.
zE

In particular, the series >~ | (Ln41 — Ly,) is convergent uniformly on I. Consequently, the
Bolzano-type function

f(z) = Jim Ln(z) = Li(z) + Z:l(Lm-l —Ln(z), wze€l,
is well defined and is continuous on 1.
Let Ny, :={a,,; :i=0,...,N"}, and let N := |J)—; N,, denote the set of nodes.

Remark 5.1.1.

(a) The classical Bolzano function B (cf. § 10.1) is the case in which N =4, ¢y = 2, 5 = 3,
p3 =15, &1 =3, Py=1, &3=23 (Ma =2) (cf. Fig.5.2).

(b) N is countable and dense in I.

(¢) If xg € Ny, then f(zo) = Ln(xo) for n > p.

(d) Let zp € T and let S,, € &,, be such that zg € J, := J(Sp) = [an,bs]. If zg ¢ Ny,
then S, is uniquely determined, and a,, < g < by,. If p is the minimal number such that
xo € Np \ {1}, then we choose S,, such that a,, = z¢ for all n > p (then we say for short
that the sequence (S,)52; is of type (L)). Notice that if p is the minimal number such
that o € N, \ {0}, then we may also choose S,, such that b, = ¢ for all n > p (then
the sequence (Sp)2%; is of type (R)). In any case, we have J,,+1 C J,, for all n € N and
{zo} = N,—; Jn- We say that (S,)22, is a determining sequence for x.

n=1

(e) Conversely, if (S,)22, is a sequence such that S, € &,, and J,1 C Jp (Jn := J(Sn)),

n=1
then (5,)52, is a determining sequence for zg, where {zo} =2, Ju.

(f) If M,, <1, then f is Lipschitz continuous; in particular, f’(x) exists for a.a. z € I. Thus,
from our “nowhere differentiable” point of view, we have to assume that M,, > 1.

Define
¢i — @i_

E::{ie{l,...,N}:
Pi — Pi—1

} S = {1,...,N}\ X

Theorem 5.1.2. Assume that Ma <1, X # &, and

D — Py

=-1, ieX. (5.1.1)
Y — Pi—1

Then f € ND(T).
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Fig. 5.2 The first six steps of the construction of the classical Bolzano function B
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Remark 5.1.3.

(a) The above assumptions imply that |»(S, ;)| > 1, n €N, i= 1 ,N™.

(b) In the Bolzano case (cf. Remark 5.1.1(a)), we have My = and 2 = {1, 3}. Moreover,
in this case, condition (5.1.1) is also satisfied.

Proof of Theorem 5.1.2. Let

Suppose that f'(zg) € R exists. Let (S,)52; be a determining sequence for zo (cf. Re-
mark 5.1.1(d)) and let J,, = J(Sp) = [an, bp]. Then

%(Sn) = ALn(ana bn) = Af(an;bn) n—>—+>oo fl(xO)

(cf. Remark 2.1.2). There are the following two possibilities:

(A) There exists an ng € N such that type(J,,) € X for n > no.
Then [5(S,)| > M}, "[5(Sn,)| for n > ng, and consequently [s(S,)| — +o0; a con-
tradiction.

(B) There exists a subsequence (n4)2,, n1 > 2, such that type(J,,) € X’ for all s € N.
Then (S,,) = —»(Sn,—1), s € N. Thus, a finite or infinite limit lim,_, 4 (S, ) does
not exist; a contradiction.

Notice that in the case (B), a finite or infinite derivative f'(xo) does not exist.

Exercise 5.1.4. Consider the case N =4, @y = % =@,.

(a) Prove that My <1 <= &; € (—1,1) and @3 € (0, 3).
(b) Prove that each of the following sets X may be realized by a configuration of parameters
0<p1<i<p3<1,P1€(—1,1),P3€(0,2):

{1,2,3,4}, {2,3,4}, {1,3,4}, {1,2,4}, {1,2,3}, {2,4}, {1,3}.

5.2 Q-Representation of Numbers

We will describe an alternative tool to define Bolzano-type functions, not via the recursive
procedure given above, but via a certain arithmetic representation of real numbers, called
Q-representation (cf. [PV13]).

We fix N € Ny and g, ...,0n—1 > 0such that dg+---+dn_1 = 1. Put Q := (do,...,0n-1)-
Define ¢y = 0, @i+1 == @; +0;, @ = 0,...,N — 1 (note that oy = 1). Put M5 =
max{do,...,0n_1} (note that Ms < 1). For a sequence o = (a,)52; C {0,..., 1},
define

k
= Z Pandn—1(a), keN,
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where do(a) := 1 and dy(a) := 0q, * - * 6a,, £ € N. Since d¢(a) < M§, the number

z(a) = Z Ya,dn-1(a) = lim xg(a)
n=1

k—+oo

is well defined.
If (o) = zk() for some k € N (ie., ap, = 0 for n > k + 1), then we say that z(«) is
Q-rational.
Observe that when §; := %, 1=0,...,N—1, we get ¢; = %7 i =0,...,N, and therefore
z(a) =Y 07 #% is an N-adic representation.
The following remark collects basic properties of @-representations.
Remark 5.2.1 (Details Are Left to the Reader as an EXERCISE).
(a) For every «, we have x(a) < zp(a)+di(a) < 1, k € N. In particular, z(«) < 1. Moreover,
Tpr1(a) + dgy1(a) < zp(a) + di(a), k € N.
(b) If z(a) = zp(a) is Q-rational with aj > 1, then z(a) = z(8), where § =
(a1y... a1, —1L,N =1, N—1,...).
(c) Every number z € I may be written in the form (Q-representation) x = x(«) for some a. If
2 is not Q-rational, then the Q-representation is uniquely determined. If z = z(«) = z ()
is Q-rational with oy > 1, then x has exactly two different Q-representations (as in (b)).

5.2.1 Continuity of Functions Given via QQ-Representation

Let N, 6,1 =0,....,N—1, ¢;,i =0,...,N, dp(a), zx(a), () be as before. Put =, :=
{0,...,N -1}t e N.

Fix a sequence (0,)52; C N with n < o, < opy1. Let g, @ E54) — C, M, :=
maxz, . |gnl, 7 € N, and assume that >3 7 | M,, < +oo. We assign to each = z(a) € T
the value f(z) := Y07 gn(@1,..., X)), and we assume that f(z) is independent of the
different Q-representations of z. More precisely, we assume that

o0

gr(an, ., gy + gn(a1,...,ag, 0,...,0)
77,:;0—1
(o(n)—k)x
= gr(a1, . -1, — L agpt1, .o, Qo))

+ Z gn(a1,...,ap_1,ar —1,N—1,...,N —1),
n=k+1

(o(n)—Fk)x
keN, (al,. .. ,Oég(k)) S Eg(k), ag > 0.
Lemma 5.2.2. Under the above assumptions, we have f € C(I).

Proof . Step 1°. Right continuity of f. Fix an = z(a) € [0,1) with the @Q-representation
chosen such that sup{n € N : a,, < N — 2} = +o0. For an arbitrary ¢ > 0, let p € N be
such that fo:pﬂ M, < 5. Let k > o(p) be such that agy1 < N — 2. Take an arbitrary
' =xz(B) € (z,z(a) + dp(a)). Then ap = B, n=1,...,k.

Indeed, suppose that oy < 81. Then z(8) < k(@) + di(@) < @a, + 00y < 08, < 2(B);
a contradiction. If f1 < a1, then z(8) < ¢, + 03, < @a, < z(a); a contradiction. Thus

ap = f3.
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-~

Consequently, we get z(@) < () < xk—1(Q) + dk—1 (&), where @ := (a2, as,...). A finite
induction finishes the proof.

Finally,
1F@) = F@I < Y gn(Brs- s Bam) = gnlan, .. aem)| <2 Y M, <e.
n=p+1 n=p+1
Step 2°. Left continuity of f—EXERCISE. O

5.2.2 Bolzano-Type Functions Defined via QQ-Representation

Let N € No, ¢;, ;,i=0,...,N, be as in § 5.1. Define
0i = @iy1 — i, Qi =®iy1—P;, i=0,...,N—1.

Assume that Ma := max{|Ao|,...,|An-1]} < 1.

We are going to define the Bolzano-type function f from § 5.1 via @Q-representation (with
Q := (00,...,0n—1)) in the sense of § 5.2.1. The definition from § 5.1 immediately implies
that

F@(@) = £ Pandn-1(0)) = Pay + D Pa Ay -+ Ay
n=1

n=2
o = (@n)3y C {0, N —1};

notice that since M < 1, the series is convergent. On the other hand, we have

flz(a) = Zgn(al, ce ),

where
gl(al) = ¢a17 gn(alv"'van) = ¢O¢TLAO¢1"'AO£TL_17 neNQ

Thus we are in the situation of § 5.2.1 with o(n) := n and M,, < M3 ~".
Notice that if 0 = ®g < 1 < --- < Py_1 < Py = 1, then the above series

¢a1 + Z qv)anAm o 'Aan_1
n=2
may be considered a (Ao, ..., Ay_1)-representation of f(z(a)).

Example 5.2.3. Let us illustrate the above procedure with the example of the classical
Bolzano function B. We have
1

3 7 5
N=4, o=—, po=—, p3=—, P =—, Py=
) 1 87 2 27 3 87 1 87 2
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We get

1 ) 1 ) 1
L Ag=2 A= —m A= 2 Ag— =
87 0 87 1 87 2 87 3 S

Recall that Ma = 3 < 1. Let & = ¢;, & := &;, i = 0,1,2,3. Then for o = ()32, C

{0,1,2,3}, the representation of the point ac = ac( ) € I may be written in the form

o0

@a1+z(¢0an ay " aanZS—nk 3Bn()

n=1

where f81(a) := 0, Bu(a) = #{i € {1,...,n — 1} : oy € {0,2}}, n > 2. Consequently, the
value B(z) may be written in the form

B(z) = B(x(a) = $a, + Y _ P, Ay ++Aa,_,
n=2

_ Ka 5On(@) (_{yn=1=Pn(a)

n=1

The above formula may easily be used to show that B € ND(I
Indeed, let p: {0,1,2,3} — {0,1,2,3} be given as u(0) := 2, u(1) :

(cf. Theorem 5.1.
As,and Ko =Ry 520,1,2,3.

) 3).
3, 1(2) := 0, u(3) := 1.

Observe that 0,,(s) = ds, Ays) = Bopu(s)—Fs
Take a point = 2(«) € I. For m € Ny, define o™ = (o) ;:
ay =ap, nF#m, ar = p(ag,).

Obviously, 8,(a™) = B,(a), n € N. Put 2™ := z(a™). Then

1
2™ —x = 8_m(kﬂ(am) - kam)?)Bm(a).

In particular, 2™ — x when m — 4-o00. Moreover,

1
B(a") = B(s) = g (Kya,) ~ Ko, )57 (-1)7 1),
Thus
Koy — Kg, )5Pm(@)(—1)ym=1=fm(e)
AB(z,2™) = Epem) n) 1)

(ku(am) - kam )3ﬁm(a)

Q)

There are the following two possibilities:

o Bn(a) /+oc. Then |AB(z,2™)| — +00, and consequently, a finite derivative B’(x)
does not exist.

e The sequence (S (@))2_; is bounded, i.e., B,,(a) = Sy = const for m > mg. Then

5\ Bo i m
AB(z,z™) = (5) (—1)m=1=ho = (—1)™¢y, m > myg

(co # 0), which easily implies that a finite or infinite derivative B'(x) does not exist.
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Notice that the above example may be generalized to other Bolzano-type functions (cf.,
e.g., [Sin28]).

5.3 Examples of Bolzano-Type Functions

5.3.1 The Hahn Function

In 1899, E. Steinitz (cf. [Ste99]) con81dered the case ¢; = &, 7 =1,...,N, Ma < 1, and
Y ={1,...,N} (e, | — ®;_1| > %, i =1,...,N). Based on this construction, H. Hahn
studied the case N = 6, &1 = 1/2,P5 = 0, @g =1/2,&4 = 1,$5 = 1/2 (see also [Hahl7];
cf. Fig.5.3). In virtue of Theorem 5.1.2 it follows that f € ND(I), where f is the Bolzano
type function associated to the above data.

In his book [Pas14], M. Pasch asked the following question: is there a function g € ND(I)
such that for every x € (0,1), the finite limit limp_,o |Ag(z, z + h)| exists? A first positive
answer was found by W. Sierpiriski (see [Siel4b]), but his construction was very sophisticated.
H. Hahn used his example from above to give a short proof.

Theorem 5.3.1. If f denotes the Hahn function, then f € ND(I), and for every z € (0,1),
the finite limit limy, o | Ag(x,x 4+ h)| exists.

Proof. Fix an z € (0,1) and write z = Z(;O 157

from 5. Fix an n € N and put z,, := Z?fl gj and x], = X, + = 6“' Then z, < x < a],. We may
assume that f(z,) # f(z),), and we discuss only the case f(x,) < f(z),) (the inverse case is

done is the same way). Then by construction of f, we have

flzn) = flzn + (ygﬁ)? f(a,) = fzn + 67;%)7
f(xn + 6"1+1) = f(xn + 6"%) = f(xn + 6n5ﬁ) = %(f@n) + f($21))

where mﬁmtely many of the c; are different

Moreover,

flzn) < flz) < 5(f(za) + fa7)),  zn S r < an+ GH%
3(f(@n) + f(ap)) < f(2) < f(ah), an+ e Sz <1y
Hence, if y € (f(zn), f(x},)), then f~(y) has at least two elements in [2,,2, + gorr] or

in [z, + 527, n] In partlcular there exists a point &, € [zn,2)] with f(&,) = f(x) and
0<|6 —o < g 0

Corollary 5.3.2. Let f be as above. Then there is no x € (0,1) such that both one-sided
derivatives f! (x) and f’(x) exist and satisfy |f) (x)| = |f(x)| = +o0.

Remark 5.3.3. Note that for the classical Bolzano function B, there are points = € (0, 1)
such that B’ (z) = =B/, (z) = +oo (cf. Theorem 10.1.1).

5.3.2 The Kiesswetter Function

In 1966, K. Kiesswetter introduced the following function (see [Kie66]), which belongs to the
class ND(I). Let M :={0,1,2,3} and let X : M — R be given by



74 5 Bolzano-Type Functions I

0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0.1 02 03 04 05 06 07 08 0.9 1 0.1 02 03 04 05 06 07 08 09 1
1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
I ll“ﬂ I ||“||
0.1 02 03 04 05 06 07 08 0.9 1 0.1 02 03 04 05 06 07 08 09 1

Fig. 5.3 The first four steps of the construction of the Hahn function

) j—2, ifj#0
X(j) =17 WA
0, ifj=0

Ifxelisgivenasz =), - with o; € M, then put

Zj
jEN 47

K(x) =3 (-1 A )
n=1

)

where s, := #{k € N: k < n, x, = 0}. Note that K is well defined (EXERCISE), i.e., is
independent of the representation of x.

Looking at its graph, we see that K is a Bolzano-type function with the following data:
N =4, ¢; = j/4, &1 = —1/2, 3 = 0, and P35 = 1/2 (cf. Fig.5.4). Then Ma < 1 and
¥ ={1,2,3,4}. Hence applying Theorem 5.1.2, we get

Proposition 5.3.4. The Kiesswetter function belongs to N'D(T).
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Fig. 5.4 The first six steps of the construction of the Kiesswetter function K
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Exercise 5.3.5. Prove the proposition using the arithmetic definition of K (this is the proof
usually presented in the literature).

Remark 5.3.6. Note that K is not a-Hoélder continuous if o > 1/2.
Indeed, take 2 = 1/4* and yj, = 2/4, k € Ny. Then

K(z) — K(ye) = 1/28 = 2C07Dk|g — y |

k

where the constant 22o=D¥ ig unbounded if k — co.

One may try to generalize the Kiesswetter function in a straightforward way substituting
the base 4 (resp. 2) by a base a € Ny (resp. b € No) and defining

o0

I[Bx—z »LZ (E)Xxj),
j=1 j=1

where s1(z) = 0, sj(z) == #{ke{1,...,j—1} : 2, =0}, j € Ny, and X : M, — R
is a bounded function (M, := {0,1...,a — 1}). Note that because of the nonuniqueness of
the a-adic representation, the first thing to do is to prove under what conditions on X the
function f is well defined.

Lemma 5.3.7. Let a, b, and f be as above. Then the following statements are equivalent:

(i) f is well defined;
(ii) X fulfills the following conditions:

X(a—1) bX(0)
b—1 b+1’
Xa-1) X(0)
b—1  b+1 T

X(1) = -

X =X@G—-1)+ a—1. (5.3.1)

Proof. Recall that the only case in which the a-adic representation is not unique is that in
which z is a-rational, i.e., in which z has the following two representations:

n n—1
xj xj a— 1
=)= Loy
a’l aJ
Jj=1 Jj=1 j=n+1

where n € N and z,, > 1. The fact that f is well defined is equivalent to

— SJX (z) ( )S”X Tn) JX (=1)% X (x5)
+

_ <—1>S?X<xj> (1) X(zn—1) | o= (-1)%X(a—1)

—

n—

where the s;’s (resp. s}’s) correspond to the first (resp. second) representation of z, j € N.
Note that s; = 5; if j <n.

Case 1°. Let ¢, = 1. Then s; = s, +j—n—1 and s} = s, + 1, j > n. Therefore, the fact
that f(z) is well defined is equivalent to
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(-1)™X(1) S
o +X(O)j:,;1 5
_ () X(0) = (e

Jj=n+1
Exploiting the sums in the last equality leads to X (1) = — Xl()(i_ll) + bii(?).
Case 2°. Let x, > 1. Then s; = s, +j—n —1 and 5;- = Sy, j > n. As before, we obtain
that f(x) is well defined if and only if

X(a—1) X(0)
b—1  b+1

X(xn)=X(x,— 1)+

It follows that for all a-rational x with z,, > 1, the value f(x) is well defined if and only if all
the second equations in (5.3.1) are satisfied. O

Corollary 5.3.8. If the two equations in (5.3.1) are satisfied, then

b—a+2 b—a+2
—X(a—1) = ——X(0).

b—1 (a—1) b+1 ©)

Since we are interested in the functions f € N'D(I), the constant functions f have to be
excluded.

Lemma 5.3.9. Let a, b, and [ be as above and let X satisfy the equations (5.3.1) from
X(a 1

Lemma 5.8.7, i.e., f is well defined. Then f is identically constant on I if and only if

X(0)
b+1 -

Proof. Step 1°. Let f be a constant function. Then f(0) = f(1). Using the definition of f
gives

> X = X(a—1) X(a—1)
YT = £(0) = £(1) = :
b+1 g £(0) = £(1) g = —
Step 2°. Assume that the equality of Lemma 5.3.9 is true. Then (5.3.1) implies that
X1)=X2) =--=X(a—1) = b_lX(O)
N TooT A Cb+1 )

j=1 a] b7 b+1 \ b1 bi
Finally, the definition of f leads to

Take an z € I with z = >~ | 2. Put ¢; := EDYX@) Then cj = w((_-l_)Sj - ﬁ)

- ) 58

Since x was arbitrarily chosen from I, we see that f is identically constant on I. O

Remark 5.3.10. Let a, b, f, and X be as in Lemma 5.3.7.

e If b# a — 2, then f is identically constant.
e If b = a — 2, then a > 4. Moreover, the condition for j = a — 1 in the second equation
in (5.3.1) is an automatic consequence of the equations for j =2,...,a — 2.



78 5 Bolzano-Type Functions I

Theorem 5.3.11 ([LM14]). Let a > 4, b= a — 2. Assume that X satisfies all the equations

from (5.3.1) together with X(a 1 ;é )lf_(fl . If f is the associated well-defined function from
above, then:

(a) |f(z)— fy)] < Clx — y|%, in particular f is continuous;

(b) f € ND(I).

Proof. (a) Take two distinct pomts x y in I with x < y. Then there ex1sts an n € N such
that n+1<y x<—Lett - and put J; := [tj_1,t;], 5 =1,. " where tg = 0.
Then both points x and y lie elther in the same interval J,, or in adjacent intervals.
Suppose first that x,y. € Jp, for some m, 1 <m < a”. Then z =t,,_1 + Zj il aj and
Y=1tm_1+ Z?im-l 4. Hence

’

JXxj — (—=1)% X (y;
10 - sl =| 3 LX) L §h G179

j=n+1 j=n-+1
< 2M < 2Mb| |1logb
Sb_1) Sb-1"

where M denotes the maximum of the function |X|.
The remaining case is a simple consequence of the triangle inequality and the former

reasoning.
(b) Fix a non-a-rational point z = Zjo 1 2% € I. Define
n
' T a— 1
J } : Zj
Ay = J’ bn =
Jj=1 j=1 j=n+1

Note that a, < z < b, and b, — a, = ain Therefore, a,, — = and b,, — x. Then

1
bn

X(a-1) ’__
b—-1 b+11 b»

|f(bn) = fan)| =

with C' > 0. Hence, |Af(an,bn)| = C(§)™ — oo. Applying Remark 2.1.2(a) gives that f
is not differentiable at x. The case in which z is an a-rational point is left as an EXERCISE.
O

Summarizing, the above theorem describes all Kiesswetter functions in ND(I) that are
built using the bases a,b € Ny and the functions s; : M, — R from above.

Recently, other types of functions in ND(I) similar to the Kiesswetter function have been
studied in [YGO04] and [Yon10]. We give only the main definitions and results; details are left
to the reader.

Remark 5.3.12. (a) A Kiesswetter-type function defined via the quinary representation (see
[YGO04]).
Let M :={0,1,2,3,4}, U,a: M —>R be such that |U(j)| < 2 and a(j) € {0,1}, 7 € M.

Then if 2 € I is written as x = 7 | %2, then f(z) is defined as

Z a(ml)—i- (T — 1)U(xﬂ)
37’L

n=1



5.3 Examples of Bolzano-Type Functions 79

Obviously, this series is absolutely convergent. It is easily seen that under each of the following
conditions, the definition of f is independent of the quinary representation:

"o, if j =4 ’ Colo, ifj#£4
o Uy):= j—2, ifjeM\{0} a(j) = 1, ifj=0
" ]o, if j=0 ’ " lo, ifj#£0
"~ ]o, if j =0 ' ©]o, ifj#£0
. j—2, ifjeM\{4 , 1, ifj=4
: U(J)::{o if j =4 ', O‘(J)::{o ifj£4

Let f be the function defined via a pair U, « from above. Then f € ND(I), and if z,y € I,
z <y, then

log 3
—lz —y[Pes < max [f(§) — f(n)| < cfx —y|=3,
< <y
where ¢ > 1.

(b) Another Kiesswetter-type function can be defined via the septenary representation of x
(see [Yonl10]).

Let M :={0,1,...,6}, U,a: M — R be functions satisfying a(M) C {0,1} and |U| < 2.
flsz=%", Zn, put

f(z) = g(_l)a(le---w(wnl) Uéin)'

If the functions U and « satisfy certain conditions (we skip details here), then f is well defined
and a continuous function on I. Here we give only one example, namely

{2—]', if j € M\ {5,6} a(j)::{l’ if j =5

U(j) = .
UV=93i %6 ij=56 0, ifj#5

In this case, we have f € N'D(I); moreover, if 0 < z < y < 1, then

1 log 3 log 3

— — Tog7 < — < — Tog 7
Clx y|Tos _mglgg%ylf(é) f(n)| < clo —y|tes

for a suitable constant ¢ > 1.

5.3.3 The Okamoto Function

Fix an o € (0,1) and define a Bolzano-type function F, with respect to the data N = 3,
@; =j/3,and @1 := «, P := 1 — «; cf. Fig. 5.5. The function F,, is studied by H. Okamoto
in [Oka05] (see also [Kob09, OWO07]). We call it the Okamoto function.
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Remark 5.3.13. Note that:

e Fy/3 is the function studied in N. Bourbaki (see [Bou04], page 35, Problem 1-2) and in
[Kat91];

e Fj6 is studied by F.W. Perkins in [Per27];

e Fy/3 =1id 1 (in particular, it is everywhere differentiable).

Observe that M a = max{«, |1—2a|} < 1. Thus, F, is a continuous function on I. Moreover,
we have:

e iface (%,1), then Ma = a and ¥ ={1,2,3};
e if o =2, then Ma = and ¥ = {1,3}.

Note that condition (5.1.1) is also satisfied. Therefore, applying Theorem 5.1.2, we have the
following result.

Proposition 5.3.14. If2/3 < a < 1, then F, € ND(I).
Moreover, we have the following behavior of F,, (Fig.5.6).

Lemma 5.3.15. If a € (0,1/2], then F, is nondecreasing; in particular, it is almost every-
where differentiable.

Proof. The proof of being nondecreasing is left as an EXERCISE (use induction). O

Let p(t) := 54t3—27t>—1 and denote by ag the uniquely defined real zero of this polynomial.
Note that ap &~ 0.5592 < 2/3. Then we have the following result.

Proposition 5.3.16. Let a € [ag,2/3). Then F, has no finite derivative at almost all
x € (0,1).

Note that this result was proved in [Oka05] if @ € (ap,2/3). The case « = ag is due to
K. Kobayashi (see [Kob09]). The proof is based on § 5.2.2 and on a refinement of the Borel
result on normal numbers (cf. Definition A.9.1), the law of iterated logarithms. Let = € (0, 1)
with the following triadic representation:

r=3 ol

, where &, (z) € {0,1,2}.
If

)

o(t) = 1, ifte{0,2}
T )-2, ift=1

then put for n € N

Su(2) = Y elE ().

j=1

Lemma 5.3.17 (Law of iterated logarithms). For almost all x € (0,1) the following is true:
Sn ()

Sn
lim sup S CON 1, liminf —————ee = —1.
n—oo 1/4nlog(logn) n—oo  /4nlog(logn)
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1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09 1
1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09 1
1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09 1

Fig. 5.5 The first six steps of the construction of the Okamoto function with o = 2/3
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0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
01 02 03 04 05 06 07 08 09 1 01 02 03 04 05 06 07 08 09 1

0.8

0.6

0.4

0.2

01 02 03 04 05 06 07 08 09 1 01 02 03 04 05 06 07 08 09 1

Fig. 5.6 Okamoto functions with o = ag ~ 0.5592,7/12,2/3,5/6, respectively

Proof . Since the proof is based on probabilistic methods, it is skipped. For a proof, see, for
example, [HW41].1 O

Proof of Proposition 5.3.16. Step 1°. Fix a point x for which the former lemma holds. Then it
follows that there are infinitely many n’s (resp. m’s) such that S"T(nx) > 1 (resp. S’"TT(? < -1).

Therefore, we obtain a strictly increasing sequence (7, )neny C N such that

Srn(2) > \/ra and  &,11(z) =1, neN.

Step 2°. Put
o &5(x)
Yn = Z 3J
j=1
Then
ST —yYn <

3rn+l — 3rn :

I In fact, a weaker result is sufficient to prove Proposition 5.3.16, namely, that the set {x € (0,1) :
there are infinitely many n such that S, (z)//n > 1 and &,+1(z) = 1} has full measure 1. This result can
be proved also via probabilistic methods. Nevertheless, it would be interesting to have a direct proof.
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Applying now Sect. 5.2.2, we get

Tn

Fo(a) =®p, + Y Pu Ay Dgy_, Falyn) =y + > Da Ay, - Ay,

j=2 j=2
where z; 1= §;(z),
0, ifs=0 Q, ifs=0
D= a, ifs=1, Ay:=¢1-2a, ifs=1.
l—a, ifs=2 Q, if s=2

Hence,

AP (@,yn)| = 37| i By gy A,

j=rao+1

23 (qv)mrn-kl PAPHERS Amrn | — Z |2y Ay - - - Amj—l |>

Jj=rn+2
*) o
> 37‘n|A$1...Azrn|(a—(2a_1) OéJ)

j=1
a2—3a),,, a(2 - 3a) T

= 1—« 3 |Aac1"'Aacrn|:ﬁeXp(‘glogBAIjD7

where in (x), the fact that x,., 11 = 1 has been used.
Evaluating now the A’s leads to

log |34| = log |34s| = log(3a),
log [341| = log(3(2a — 1)) = log 322270 > _910g(30);

use that « lies on the right side of the zero of the polynomial p. Hence,

2-3
AR ) = B2 o (10g(30)s,, ()
9 _
> A2=39) g v e,
11—« n—00
giving that F,, has no finite derivative at the point x. a

Remark 5.3.18.

(a) Using again § 5.2.2, it is easy to see that if a € [1/2,ap), then F,, is differentiable at
every point z = (2k +1)/3Y, k=0,...,3Y — 1, with F,(z) = 0 (EXERCISE; use that in
the triadic representation of  we have &;(z) = 1, j € Ny). This example shows that the
assumptions on X' in Theorem 5.1.2 cannot be dropped.

(b) Even more is true, namely, if @ < «ap, then F, is differentiable almost everywhere on I
(see [Oka05]).

(c) In [OWO07], one finds the following result. Suppose that o € (0,1/2), & # 1/3. Then F, is a
continuous, strictly increasing, and singular function (i.e., F), is zero almost everywhere).



84 5 Bolzano-Type Functions I

Remark 5.3.19. Using ideas underlying the nowhere differentiability of functions of Bolzano
type, F.W. Perkins proved in [Per29] the following result.
Let f € C(I) be such that
f(@) = flze)

35>0 Yo<wo<ws<1:f(20)#f (23) Jwo<wi<wa<zs Fla) = F(z0) > 0.

Then there exists a continuous increasing function @ : 1 — I such that f o @ € N'D(I).

5.4 Continuity of Functions Given by Arithmetic Formulas

Parallel to the @Q-representation, we have another tool to define Bolzano-type functions,
namely the Cantor representation of real numbers; cf. § A.1.
Fix a sequence (q,)5>; C N and put

= {(al,...7ag):aj€{07...,qj—1}, j=1,...,€}, f € N.

For a sequence (0,,)p2 C N withn < o, <011, let o, Z5) — C, My, := maxs, lonl,

n € N. Assume that > °7 | M,, < +oo. We assign to each z = > 7, o= € I (with

an €{0,...,q, — 1}) the value f(z) := 37" @n(a1,...,a0()), and we assume that f(z) is
independent of the different representations of x, i.e., that

or(as, ... am)) + on(at,...,ag, 0,...,0)
n:%—l
(o(n)—k)x
= cpk(al, ey Qp—1,0K — 1,ak+1, .. .,ag(k))

oo
+ Z (pn(al;”wak—laak - 17‘1k+1 - 17"'7q0(n) - 1)7
n=k+1

keN, (al,...,ag(k)) S Eg(k), ag > 0.

Lemma 5.4.1. Under the above assumptions, we have f € C(I).

Proof . Step 1°. Right continuity of f. Fixanz =Y | € [0,1) with the representation
chosen such that sup{n € N : a,, < ¢, — 2} = +o00. Take an € > 0, and let p € N be such
that fo:pﬂ M, < 5. Let k> o(p) be such that ary1 < qry1 — 2. We will use notation from
Proposition A.1.1. Put

> -1 1

* q’"«
¥ = Sk(x) + — = Si(x) + ———— > x.
(> n:;,’_lql"'qn () ql...qk
Take an arbitrary 2/ =~ ﬁ € (z,z*). Then a,, = a, forn=1,...,k

Indeed, it suffices to prove that Si(z) = Sk(z’). Suppose that Si(z’) < Sk(x). Then
2 < Sp(2') + —— < Si(x) < z; a contradiction. If Sy(z') > Sk(z), then 2/ > Si(a') >

qioqe =
Sk(x) + qlqu = x*; a contradiction.
Consequently,
|f($l> - f($)| < Z |90n(a/17 s 70’:7(77,)) - ‘pn(alv - '7ao(n)>| <2 Z M, <e.
n=p+1 n=p+1

Step 2°. Left continuity of f—EXERCISE. O
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5.5 Sierpinski Function

For z =3 " ¢ €I, where a, € {0,...,4}, define the Sierpiriski function S :1 — R,

S(r) =Y
n=1
where
b, = a, 2{%}

P 1, if#{je{l,....,n—1}:a; =2} €2Ny
PERETT L it #e{l, . n—1}ia; =2} €2Ng+ 1

Remark 5.5.1. The Sierpinski function is well defined, i.e., S(z) is independent of the
representation of x.

Indeed, for
Fa Ml ap — 1 =4
o n n o
=Y =Y gt gt ) =i
n=1 n=1 n=k+1
with a; > 0, we have
k—1
Enbn Ekbk
s (S35 2
(x) 2 + 55
k—1 0o k—1 ,
no_ Enbn 5kb;€ €;lb;.b o Enbn é‘kb;q €ht1
s') = ( 3n)+—3k+z 3n—(z 3n)+3k+3k,
n=1 n=k+1 n=1
_ €k ifap,—1#£2
where b, = aj — 1 — 2| %=L ¥ = 2, and & = ’ ,m € N. It
k k [“5=15 Vhotm k4+m {—Ek, fap—1=2

remains to verify that 2[4 | = 14 2[%=L| — ge}_,, which is easily seen by discussing the
concrete cases a = 1,2, 3,4.

Theorem 5.5.2 (cf. [Sielda]). S € ND (D).

Proof. Put f:=S.

Step 1°. Continuity of f follows from Lemma 5.4.1 and Remark 5.5.1 with q,, := 5, o, :=n,
on(ai, ... ay) = Eggn (M, = £&).

Step 2°. Nowhere differentiability of f.

Let xo € (0,1] be given as xg = »_;°, 5%, where a; # 0 for infinitely many j’s. Fix an

n € Ny with a,, # 0. Put x, := Z?;ll 4. Then

X b
0<ao—a, <1/5"7 and |f(@a) = flao)| = | Y 2.
j=n
If a, =1or a, =3, then b, =1 and €, = €,,41. Thus

stz (el 5 22107
J=n+2
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If a,, = 2 or a,, = 4, then b,, = 2. Therefore,

At 25 (5= 3 ) =5(5)"

Jj=n+1

Hence f has no finite left-sided derivative at the point xg.

Let 29 € [0,1) be given as xg = Z;’il 5 . Assume that there are infinitely many j’s with
a; € {0,1,3}. Note that this assumption is fulfilled for zy = 0. Fix an n with a,, € {0, 1,3}
and put

e a_;- where o := {4’ ifj=n
Yn ;w’ 77 Nay, ifj#£n
Then 0 < yn, — 20 < 4/5™ and |f(yn) — f(zo)| > 1/3™. Thus |Af(xo,yn)| > (1/4)(5/3)",
implying that f has no finite right-sided derivative at the point x¢. Now assume that there
is a jo such that for all j > jo, we have a; € {2,4}, but there are infinitely many j’s with
a; < 4. Take an n > jo with a,, = 2 and €, = 1 (note that there are infinitely many n’s with
this property). Put

= a; 4, ifj>n
ynZ:Z—j.7 where af; := {aj ifj;n'

Then 0 < yp, — x0 < 4/5™ and bj = b = 2 for j > jo, —€ny1 = €0 = €}, y,, k > 1. Thus,

25n sn —&; 4
f(yn> - f( ) 3n+1 +2 Z — 3n+1
j=n+2

Hence, Af(zo,yn) > (1/3)(5/3)™. Therefore, f has no finite right-sided derivative at xo. O

5.6 The Pratsiovytyi—Vasylenko Functions

Let NeNy, 6;,i=1,...,N—1,Q,and N' € Ny, §/,i=1,...,N' — 1, Q' be two systems
as in § 5.2. We write zg(a) (resp. zg/(a)) for the Q- (resp. Q’-) representation. Suppose
that we are given a function that assigns to each sequence oo = ()22, € {0,...,N — 1} a
sequence fB(a) = (6,)52; C {0,...,N" — 1}. Then we may define the function f : I — I,
flzo(@)) := zg (B(a)). Of course, one must guarantee that f is well defined, i.e., that f(x)
is independent of the particular Q-representation of x.

The following function constructed in [PV13] may be thought of as a generalization of the
Sierpinski function from § 5.5.

Assume that N isodd, N >5, N'=3,and let v:{0...,N — 1} — {0, 1,2},

0, ifi=0
Vi) =41, if1<i<N-2.
9. ifi=N-1
For a = ()22, € {0,...,N — 1}, put

, keN,

Cr, ifap €{0,1,3,...,N -2, N —1
c1(@) =0, cpy1() ;:{ ¥ kel }

1—cp, ifaye{2,4,...,N—3}
/B(CY) = (BH)ZO:1 - {07 172}7
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B1:=7(1), Bi:= {g(ak)a if ¢ ()

=0
—v(ag), ifex(a)#0’
f:I—1 flzgla)) ==zg (B(a)).
Then (see [PV13]):

e f is well defined and continuous;

o if min{dj, 95} > max{do,dn_1}, then f has no finite derivative at @Q-rational points;

e if min{4}, 81,05} > max{dy,...,dn—_1}, then f has no finite derivative at Q-irrational points;
e if N=5 8 =---=0d4 =1/5,and &, = 0 = §5 = 1/3, then f coincides with the Sierpinski

function, and the former conditions are fulfilled.

5.7 Petr Function

For x =37, igw € I, where a,, € {0,...,9}, define the Petr function P :1 — R,

oo

P) =Y 0,

n=1

where
b, € {0,1}, b, = an(mod 2),

—€n_1, ifa,_1€{1,3,5,7
£ = 1’ £, = n—1 n 1' { }, TLZ2
€n_1, Otherwise

Remark 5.7.1.
(a) The Petr function is well defined.

Indeed, for
kL a o ap — 1 =9
_ _n _ n -
n=1 n=1 n=k+1
with a; > 0, we have
k—1
anbn ekbk
P(x):(z 2n )+ 2k
n=1
k—1 00 k—1
N Enbn ex(1 — bi) €k Enbn b
P("E)_(Z 2n)+ 2k +Z2_n_(z 271)+2k'
n=1 n=k+1 n=1

(b) For n € Ny, we have ¢, = p(an—1) - ¢(a1), where ¢ : {0,...,9} — {—1,+1},

-1, ifpe{l,3,57
o(p) = {. s
+1, otherwise

Theorem 5.7.2 (cf. [Pet20]). P € ND>((0,1)).
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Proof. Put f:= P
Step 1°. Continuity of f follows from Lemma 5.4.1 and Remark 5.7.1(a) with q,, := 10,
On =1, Onlay,... a,) = b2 (M, = 2%)

Step 2°. Nowhere differentiability of f.
Fix an . = Y7 | {4 < (0,1) with sup{n € N: a, < 8} = +oo We are going to prove
that for arbitrary ¢ € N, there exist h, A’ € R such that ||, |h'| < 5 z and

l

|Af(z,x+h)| > T Af(z,x+h') =0,
which immediately implies that a finite or infinite derivative f’(z) does not exist.
Fix an £ € N and let k > ¢ be such that aj, < 8. Define h := £ + 42 where g, prt1 €

{=1,0,+1} and the pair (ug, tx+1) is chosen according to the following table:

ak\ak_ﬂ 07...,7 8 9

0,....7( (1,1 | a1,-1) |(0,-1)
8 | (-1,1)|(-1,-1)|@,-1)

Observe that a,, + p, € {0,...,9}, n € {k,k+ 1}, and
olag)p(ars1) = plar + pr)e(ars1 + prs)-

Put 2/ =2 +h=3 " 1 € (0,1). Let f(gc’):zzol 2n . We get

al, =a, forn=1,....,k—1, el =g, forn=1,...,k,
a, =a, forn>k+2, el =¢e, forn>k+2.

Thus, either

o [fw4h) = f(@)] = | & e > gder (i £ 0) or
o [f(x+h)— f(x)| = 5o (if pr = 0).
Now we define h':

e if i <6, then A/ :=

ToF
e if ap € {7,8}, then b/ := — .
Then in both cases, we get f(z + h') = f(x). O

Remark 5.7.3. Using analogous ideas, K. Rychlik constructed in [Ryc23] an example of a
continuous nowhere differentiable function in the field of p-adic numbers.

Exercise 5.7.4. Prove the following version of the Petr theorem (cf. [Pet20]; see also [Sin35],
p. 51).
For x = En 116 € 1, where a,, € {0,...,9}, define

oo

Enbn
Sy

n=1
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where b, is chosen according to the table

ol ]2]s]a]3]o]7]s]s

ba|l0|1]2|1]0[1]2[1]2]3

and

e1:=1, ey ::{

Then f € ND>((0,1)).

—en-1, fan—1€{2,3, 6}

n > 2.
En_1, oOtherwise

5.8 Wunderlich—-Bush—Wen Function

Fix b € Ny, A > 1, and ¢ € R. Define p(u) := (1 —=A)(u —c), u € R. Forx = > 7 & €,

n=1 pn

where a,, € {0,...,b — 1}, define the Wunderlich-Bush-Wen function U : T — R,

where

by =1, bpy1:=

Remark 5.8.1.
(a) The function U is well defined.
Indeed, if

U(zx) — b _
)\n
n=1
k—1
b
U)-Y 2=
@)=Y

Notice that the function ¢(u) :=

function U is well defined.
(b) U(0)=U(1) = 1.
(c¢) Define

RN

n if n — Un
b ey
o(bn), ifap # ant1
(kz_:l n) ak —1 > b — 1 o
n=1 n=k+1
by — o(br) by oby) ¢
=% 2 o BB U
n=k+1
_ b — @) _ b pby) ¢
G +n§+1 PR VIS Is S i U

(1= A)(u—c) is the most natural function for which the

ifn=1

0,
= {#{z’ {2} iai £a}, inelNy
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Then (EXERCISE)

bn:;(FUM@MA_D%@KA—JA—1»+4A—D) neN.

(d) Since s, (z) <n — 1, we have

_1\» 3 >
WAS{M D1+ e]) + |e|, ifA>2 .

1+ 2|c|, if1l<a<?2’

Consequently, there exists a C' = C'(\, ¢) > 0 such that

bn
|)\—n| <Co", neN,
where
1-1 ifaA>2

6= 0(\,c) = X .
) {5 ifl<r<2

Theorem 5.8.2 (cf. [Wen00]). Ifb € N3, A € (525,b), and ¢ # 525, then U € ND(I).

Remark 5.8.3. (a) The case in which b = 3, A = 2, and ¢ = 1 was discussed by W. Wun-
derlich in [Wun52], where he proved that U € N'D(I) (see also [Swi61]).

(b) The case in which b > 3, A =2, and ¢ = 1 was discussed by K.A. Bush in [Bus52], where
he proved that U € ND(I).

(c) Assume that b =3, A =2, and ¢ = 1. Then U, (0) = —oo.
Indeed, take a k € N and let 1/3" <z < 1/3% Then 2 =3 ", | % with ap11 # 0,
and hence

"o b 1 1 1
U(JJ)ZZ2—”+ Z 2_nS1_2_k+2/€T:1_2kT'

Consequently,

Proof of Theorem 5.8.2. Put f:=U.
Step 1°. Continuity of f follows from Lemma 5.4.1 and Remark 5.8.1(a) with q,, := b,

On i =n, pplar,...,a,) = §—2 (M, <Com™).

Step 2°. Nondifferentiability of f.

We are going to prove that for every x, a finite right-sided derivative f, (z) does not exist.
The case of the left-sided derivative is left for the reader as an EXERCISE.

Fix an x € [0,1) and suppose that f/ () € R exists. We may assume that for every £ € N,
there exists a k = k(¢) > £ such that agy1 <b—2and k(£ + 1) > k({). Put

*a,y b1 b1

Thenx<Ak<Bk7Bk—x<b%,andﬁ<B;§—A;€:;’k;+12<ﬁ.HenceBk—Ak>

22 (B — x). Thus (by Remark 2.1.4)
. Y
S Af (A Bue) = f1(2)-
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On the other hand, we have

k
by w(b’ )
J(A) = (Z)\_" +Ak+1 Ak:l
n=1 n= k+2
i bn k+1 / , n
(;)\_ﬂ et "““)()\ Ak+1 a (;1 )\_) Ak+1’

|&

~
~
Mw

)\k+1 Ak+2 n
n=k+3

3
Il
-

b, 1

/
+ AR+ )\k+2 ( k+1)()\ — 1)\k+2

/N
Mw
|&

3
I
=

k+l
)\k+1 Ak+2

)
)
)+ b?@—o—l b?@—o—l i i ‘P(b§<+1)
)
v)

+

(X

Hence, using Remark 5.8.1(c), we get

HM?’T
<|&

bls1 c c
f(By) — f(Ax) = NEHL + Net2 T \k+L
= L (C1) D (- 1R () — (A~ 1)),
Finally,
1 /by k+2 .
|Af(Ay, By)| > E(_) (A — 1)+ (AR |\ — ¢(X — 1)
L/byk2 | (A= DF2 N —c(A—1)|, ifA<2
> (= . — 5
o (S (AN JEE
a contradiction. O

5.9 Wen Function

L. Wen in [Wen01] proposed another type of a nowhere differentiable function based on Cantor
series (see also [Sin27]).

Fix a sequence (4,)2; C No. For z =37 | oo €1, where a, € {0,. — 1}, define
the Wen function W1 : 1T — R,

o0

n(n+1)’

n=1
where by := 1 and
_bﬁn; if (an >0, any1 =0) or (an < gn — 1, any1 =gn+1 — 1)
bn+1 = . .
bp, otherwise
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Remark 5.9.1. (a) The Wen function is well defined.

Indeed, for
k k—1 0o
n -1 n—1
P DTl OV resers) A D Dl reser
— q1 — qi1 -+ qn qi1 - gk Marwi qi1---qn
with a; > 0, we have
k—1 [e'S)
bn bk bk 1
Wi (z) - = - —— =0,
—nn+1) k(k+1) &k Sorn i n(n+1)
=l
Wi(z') — = b =0.
() Zn(n+1) kk+1 g;l n+1

(b) [bn] = 7= 1),7n€N.
Theorem 5.9.2 (cf. [WenO1]). If (4n)p2; C N3 and 2512 — 400, then Wi € ND_(I).

Proof. Put f:= Wj.
Step 1°. Continuity of f follows from Lemma 5.4.1 and Remark 5.9.1(a) with o, := n,

@n(al,...,an) = % (Mn S m)

Step 2°. Nowhere differentiability of f.

We are going to prove that for every x, a finite right-sided derivative f (z) does not exist.
The case of the left-sided derivative is left for the reader as an EXERCISE.

Fix an = € [0,1) and suppose that f’ () € R exists. We may assume that for every £ € N,
there exists a k = k(¢) > £ such that ax < qx — 1. We may assume that k(¢ + 1) > k(¢). Put

x>

-1

n +1
= (Eai) 2 mmae 5 8

n—1 G- Ax a1 11777 An

Then z < A < By,

1
B, — A, < R
g1 qk
g —2 2
By —z < Z 9 < R
g1 -9k n7k+10|1' In q1 Jk
=g -2 1 & 2q,—4
Bi-dp= Y — o 3 S
n=k+1 q1 dn n=k+1 q1 dn
25 Y
2 S-a e 291Gk

Hence By — Ay > $(Bi — ). Thus (by Remark 2.1.4)

Jim Af(Are), Buw) = fi (@)
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On the other hand, we have

k / 00 /
f(Ak)=(;ﬁ)—fn§ n(n+1) (;nn—l—l)_k(kbj—l)’

k 00 /
f(B’“):(;ﬁ)—i_b%n;ln(n-i-l (;nn—i—l) kliilfl'

Hence, |f(By) — f(Ar)| = % > L. Finally,

q1-- -9k
> .
[Af (A, By)| 2 == 2 +09

a contradiction. O

5.10 Singh Functions

We present three interesting examples (Theorems 5.10.2, 5.10.4, 5.10.6) of nowhere differen-
tiable functions due to A.N. Singh [Sin30, Sin35].

Fixpe2N+1,meNy, reN,r<m. Forxzzzola" € I, where a,, € {0,...,p— 1},
define the Singh function S1:1 — R,

9] bn
Si() =3,
n=1 p
where
b, = A(n—1)m+rs if A, € 2Ny
! p—1- A(n—1)ym+r> if A, € 2Ng +1
with

A, = (a1 + -+ ar_l) + (CLT_H + -+ am+r_1)
+ (am+r+1 + -+ a2m+r—1> +--- 4+ (a(n—2)m+r+1 +-- 4+ a(n—l)m—‘—r—l);
if r =1, we put by := ay, define A,, only for n > 2, and skip the first group (a; + -+ + a,—1)
in the definition of A,,.

Remark 5.10.1. The function S; is well defined.
Let

k a ) k- " k—l
w:ZE\mthakZL x (Z_n)

n=1 n=k+1

Let A/, b be the sequences constructed for z’. There are the following two cases:

’I’L”I’L

o Jien, i k=sm+7. Then (—1)4 = (=1)4» for all n € N. If A, is even, then

b= (b1,...,bs,a,0,0,...), b =(b1,...,bs,a—1,p—1,p—1,...).
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If Ag4q is odd, then

b= (b1,...,bs,p—1—ap,p—1,p—1,...), b =(b1,...,bs,p— a,0,0,...).

It is clear that in both cases, we have S1(z) = S1(2').
® Vien, ik # sm+r. ertek—sm—i—r—i—thhs Noandte{l m — 1}. Then
(=D)A» = (=DA% forn=1,...,s+1, and (=1)4» = —(=1)*» foralln>s+2 If A, is even,

then b =b" = (b1,...,bs+1,0,0,...). If A, is odd, the b=b = (b1,...,bs4+1,p—1,p— 1,...).
So in both cases, we have S;(z) = S1(2').

Theorem 5.10.2 (cf. [Sin35]). S1 € ND>((0,1)).

Proof. Put f := S;.
Step 1°. Continuity of f follows from Lemma 5.4.1 and Remark 5.10.1 with q,, := p,
oni=Mn—1m+r, onlar,...,aq,) = Z—z (M, < pp_—nl).

Step 2°. Nowhere differentiability of f. Fix an z = Y~ o with sup{n € N : a, <
p — 2} = +o00. Consider the following cases:

e The set S := {s € Ny : agmir < p— 2} is infinite. For s € S, take 2/ := = + W.
Then b, = b), for n # s+ 1 and

b, _ Asm+r + 1, if AS+1 S 2N0
L) (0= 1) = (agmar +1),  if Ag €2Ng 17
Hence
_1
A N — pstl — s(m—1)—1+r )
Af@a) = F = oo

e The set S:={s € Ny : agmr > 1} is infinite. Then for s € S, we take ' := z —
and argue as above (EXERCISE).

Observe that at least one of the above two possibilities holds. Thus a finite derivative f'(z)
does not exist.

e There exists a t € {1,...,m — 1} such that the set S := {s € Ny : asmir+t < p— 3} is
infinite. For s € S take 2’ := = + W and then f(x) = f(2').

e There exists a t € {1,...,m — 1} such that the set S := {s € Ny : agmirit > 2} is
infinite. For s € S, take 2/ := x — ﬁ and then f(x) = f(2').

Observe that if at least one of the above two possibilities holds (e.g., p > 5), then an
infinite derivative f’(x) does not exist.

. It remains to consider the case p = 3 and a, = 1 for n > 1. Then we take ' :=
T+ Sm+,+1 — —=, s> 1, and we get f(z) = f(2'). O

1
psnz+7‘

p

Let (q")n 1 = (3 5 3 5 ) Observe that qr - q2r = 15T, q1 - q2r+1 = 3 -15". For
r=>", q1 — with a, € {O .+, qn — 1}, define the Singh function So : 1 — R,

oobn
:Zg_n,

n=1
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where
a1, if A,, € 2N,
bl =aq, bn = @2n1 1 < 0 , ne NQ,
2—&2n+1, if A, € 2Ng + 1
with A, ;= as + a4+ -+ + asy,.-
Remark 5.10.3. The function S5 is well defined.
Let
b a
T = n with ay > 1,
= ap —1 = qu—1
D e
n:1ql...qn ql...qk n:k+lq1...qn

Let A’ b. be the sequences constructed for a’. There are the following two cases:

e k=2s+1isodd. Then (=1)n = (=1)"» for all n € Ny.
If A, is even, then

b= (bh...,b5_17ak,0,07...)7 bIZ (bl,...7b5_17ak—1,272,...),

which implies that Sa(z) = Sa(z’).
If A, is odd, then

b= (bl,...,bs_1,2—ak,2,2,...), b’:(bl,...,bs_1,3—ak,O,O,...),

which also implies that Sao(z) = Sa(z’).
e k=2siseven. Then A, = A/ forn=1,...,s—1, and (=1)4» = —(=1)*» for n > s.
If Ay is even, then ¥’ = b= (b1,...,bs—1,0,0,...), which gives Sy(z) = Sa(a’).
If Ag is odd, then b’ = b= (b1,...,bs-1,2,2,...). Thus once again, Sy(z) = Sa(a’).

Theorem 5.10.4 (cf. [Sin35]). S2 € ND>((0,1)).
Proof. Put f := Ss.

Step 1°. Continuity of f follows from Lemma 5.4.1 and Remark 5.10.3 with (q,)52, =

(3,5,3,5,...), 0n:=2n+1, pp(ai,...,a,,) := g—g (M, < ?:in)

Step 2°. Nowhere differentiability of f. Fix an z = Y -, ql‘frfqn with sup{n € N : q,, <
qn — 2} = +00. Consider the following cases:
e The set S := {s € N: ags11 < 1} is infinite. For s € S, take 2’ := x + S E—,

q1--q2s+1
1 o/
T + 39z Then b, = b;, for n # s and

b, =

S

a2s4+1 + 1, if As € 2Ny
1—a2s+1, ifA5€2N0+1'

Hence

1
A N=-2-=3.5 — )
| f(l',l‘ )| 3_1155 S35s—+o00 oo

1

e Theset S:={s € N:agsqr1 > 1} is infinite. Then for s € S, we take 2’ : =z — FTEsTE—

and argue as above (EXERCISE).
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Observe that at least one of the above two possibilities holds. Thus a finite derivative f'(z)
does not exist.
e The set S := {s € N: ays < 1} is infinite. For s € S, take 2’ := x + —2— and then

qi--d2s
fla) = f@@).
o The set S := {s € N: ags > 2} is infinite. For s € 5, take 2/ := z — q1--2-q25 and then
flz) = f(@").
Observe that if at least one of the above two possibilities holds, and therefore, an infinite
derivative f'(z) does not exist. O

Let R:=2r,r € 2Ny +1 (e.g., 7 =5). For x = > | 4= with a,, € {0,..., R — 1}, define
the Singh function S3: 1 — R,

sg@;:}jég;ﬂ

n=1

where

by := 2a2,—1 + P (azn),
0, ifte{0,2,4,...,r—1}
Pt):=<1, ifte{1,3,5...,2r—1} , neN,
, ifte{r+1,7+3,...,2r—2}
e1:=1, e, :=¢cpn_10(a21-2),
1, iftef0,2,4,....r—1,rr+2,r+4,...,2r—1}

t) = , n € Na.
() {—1, ifte{1,3,5,....,r—2r+1,r+3,...,2r — 2} 2

Notice that €,b,, depends on agy,—2, asn—1, and agy, (n € No).

Remark 5.10.5. The function S3 is well defined.
Let

N

k —1 )
n . n _1 R—l
ng %Wlth&kZL x':z( CL>—|—ak——|— .

n k n
1 R R n=k+1 R

n=1 n

Let €/, b/, be the sequences constructed for ’. There are the following two cases:

e k=2s—1.Then
g =e=1(61,...,66_1,E5,E5,-++);
bz(bl,...,bs_l,Qak,0,0,...),
b = (b1,...,bs—1,2(ax — 1)+ 1,2R—1,2R—1,...),

which immediately gives S5(z) = S3(a’).
o k= 2s. Then

E=(E1, e ey EotlsEstls---)s € = (1,0 CorEoi1sEhnty---)s
6/s-~-1 = esp(ar — 1),
b= (b1,...,bs—1,2a25—1 + ¥(ax),0,0,...),
b = (b1,...,bs—1,2a2s—1 + Y(ar — 1),2R—1,2R—1,...).
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Consequently, the equality S3(z) = Ss3(2’) reduces to the identity (¢t + 1) = ¥(¢) + ¢(t),
t € {0,...,R— 2}, which may be easily verified (EXERCISE).

Theorem 5.10.6 (cf. [Sin30, Sin35]). S35 € ND>((0,1)).

Proof. Put f := Sj.
Step 1°. Continuity of f follows from Lemma 5.4.1 and Remark 5.10.5 with q, = R,

on =20, pnas,...,a,) = (Z"b;‘n (M, < Wr)

Step 2°. Nowhere differentiability of f. Fix an z = | %2 with sup{n € N:a, < R —
2} = +o00. We are going to prove that for infinitely many n € N, there exist €/, ¢/ € {—1,+1}
such that for a, := x+¢}, 5=, @), 1= x+e], 75, we have ag, +2¢),, agn+re) € {0,...,R—1}
and

Y(azn + 2¢,,) =t(azn), p(azn + 2e,) = p(azn),
P(azn +rey,) =(azn) + 1, p(azn +ren) = p(azn).
Consequently,

flan) = f(2), |Af(z,ap)|=r""",

which obviously will imply that a finite or infinite f’(z) does not exist.
Consider the four sets

Sy :={n€N:ag, €{0,...,7r—3}},
Sy :={n€N:ag, € {r—2,r—1}},
Ss :={n € N:ag, € {r,...,2r — 3}},
Sy :={n € N:ag, € {2r —2,2r — 1}},

and note that at least one of them is infinite. For n € S;, define the numbers ¢, /! according
to the following table:

n 3

neS|+1[+1

neSy||—1[+1

neSs|+1|-1
n € Sy||l—1|—1

It remains to check (EXERCISE) that e}, € (defined above) fulfill our requirements. O

Remark 5.10.7. Based on the above ideas, the reader may try to create his or her own
nowhere differentiable functions



Chapter 6
Other Examples

Summary. It is not surprising that there are many examples of nowhere differentiable functions that are

outside the above three main types discussed so far. We will present only two of them.

6.1 Schoenberg Functions

During the discussion of so-called space-filling curves, other examples of nowhere differentiable
functions occurred. Here we restrict ourselves to presenting Schoenberg’s curve. A few more
details will be given in the remark at the end.

Theorem 6.1.1. Let

)= % Z 2%]7(327156), U(z) :=P(3z), z€eR,

n=0
where
0, ifx €[0,1/3)U[5/3,2]
)3z -1, ifxel/3,2/3 B
p(z) = 1, if v € [2/3,4/3) , ple+2)=px), xR
[

5—3x, ifxzel4/3,5/3)

Then @,W € ND(R) (cf. Fig.6.1).

The first proof of Theorem 6.1.1 was given in [Als81]. The one presented here can be found
in [Sag92].

Proof of Theorem 6.1.1. We have only to show that & € ND(R). Observe that &(z + 2) =
&(x). Thus, it suffices to prove that @' (x) does not exist for x € [0,2). Suppose that a finite
derivative @' (z¢) exists for some zg € [0, 2).

e If zg =0, then we have

1
AD(0,1/9%) = 9F= gn—F)
(’/9 9 2271

(© Springer International Publishing Switzerland 2015 99
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18 |
16 |
14 4
12 4

11

0.8

0.6

0.4 1

"]

Fig. 6.1 Schoenberg function I 3 z — % >l 2%;0(32"@

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Note that
0, ifn<k
97’L—k — )
P9 {1, 0>k
Hence
11 9\ K
kY _ gkt S _(?
AD(0,1/9%) =9 2;2n (2) s oo;

a contradiction.
o If zg € (0,2), then let Ny € Ny be such that 9%z¢ € [Ny, Ni, + 1). Put ap := %,
b = Yl k€ N. Then Ad(ay,by) — ' (x9) € R (cf. Remark 2.1.2). Let A := {k € N :

9k
Ni € 2Ng}, B:={k € N: Ni € 2Ny + 1}. Of course, at least one of the sets A, B is infinite.

— If A is infinite, then for k € A, we get

_ 1 . n—k n— k 1 G 1 n—=k
@(bk) @(ak) =3 nE:O o (9 N +9 ~ 3 nE: o 9 Nk
k—1 [e's)
1 1 1 1
=z — (p(9" N +9"7F) — p(9"F Ny, ) - —
2n_02"(p( T =0 EN) 45 3

x>

Y
ol
]

—

1. noo1
o9 +2_k: 29kz(> ok
=0

o ((3) ) o

“ﬁ
o
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Hence 3, onk ok 3 4 0uk
avab) > -=((3) 1)+ () =5+7(5) Lt

a contradiction.
— If B is infinite, then for k € B, an analogous argument gives (EXERCISE)

4
A@(ak,bk) < —§ — —(g

k
) —r  —O0Q;
2/ B3k—+4oo

a contradiction.

Notice that the Schoenberg curve
I35t (P(t),¥(t) e Tx1

is a so-called space-filling curve, i.e., v(I) = I x I. More precisely, we have the following result.

Proposition 6.1.2 (cf. [Sch38]). Let € C I stand for the standard Cantor ternary set. Then
v(€) =IxL

Proof. Every t € € has a ternary representation of the form ¢t = > "2 %t—,f, where ¢, € {0,1}.
We have

2n 00
— 2t2n+s
g2 = (3% ha) + —: A () + Ba(t),
kzl k ; 3 (t) (t)

2n+1

32n+ly _ ( Z g3ntl-koy ) +Z 2t2n+1+s —: C(t) + Dan(t),

where A, (t),Cy,(t) € 2Ng. In particular, p(3?"t) = p(B,(t)) and p(32"*t) = p(D,(t)).
Observe that

max { i 2t?37;+s 7 Z 2t2n+1+s } i %

s=2 s=2 s=2

Consequently, p(Bn(t)) = tant1 and p(Dy(t)) = tanto. Thus,

:( ZpBQ”t Zp?)?"“t) (i

L35

This shows that for every point Py = (§o,70) € IxI with binary representations §o = Y o, g—z,
nozzflg;,wehavePo ~(t ),Whereto:—2£1+ +2£2+2—7’43+---E€. O

Remark 6.1.3. (a) The Schoenberg curve v = (@,¥) : I — I x I belongs to a large class of
space-filling curves whose coordinate functions @, ¥ are nowhere differentiable; cf. [Sag94].
(b) Notice the following surprising result.
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Theorem 6.1.4 ([Mor87]). The following statements are equivalent:

(i) there exists a mapping f = (f1, f2) : R — R? such that f(R) = R?, and for each
x € R, at least one of the finite derivatives fi(x), fs(x) exists;
(i) the continuum hypothesis is true.

One can also prove (cf. [Mor87]) that if f is as in (i), then f; and f> are not Lebesgue
measurable.

6.2 Second Wen Function

Parallel to nowhere differentiable functions given by series, there are also functions given by
infinite products. We present an example of such a function due to L. Wen.

Theorem 6.2.1 (cf. [Wen02]). Let

H (1+ apsin(mbyx)), 2z €R,

n

where 0 < a, < 1, >°° a, < 400, pp € 2N, b, = pi--pp, hmn—>+ooazm = 0.
Then Wy € ND(R) (Fig. 6.2).

Proof. Put f := Wy, Since > -~ sup,cp |a, sin(rb,z)| < >0 a, < +oo, we easily
conclude that the product [[°° (1 + ansin(wb,z)) is uniformly convergent to a

2.2 4
1.8 +

1.6 |

1.4

1.2

0.8

0.6

0.4

Y-

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

oo
Fig. 6.2 Wen function I > z —— [] (1 + an sin(nbn,z)) with an =27, by, 1= \/én(n-H)

n=1
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continuous function. Fix an zy € R. We are going to show that a finite f’ (zo) does not
exist. A proof for f’ (zg) is left for the reader as an EXERCISE. Let N,, € Z be such that

bnzo € [Nn, N, + 1), n € N. Define z,, := Ng:17 = M+f/27 n € N. Then

n

1 1
o < Ty <, T —10 < —xy > g(x;—w0)> g(xn—xo).

20, 2b, "
Define

(14 ay, sin(mb,x)),

k
=1

H 1—ay), H(l—i—an) I(z) :=
n=1 n=1 n
reR, keN.
Observe that for n > k, we get

sin(mbypxy) = sin(mpy, - pr41(Nk + 1)) = 0,
sin(wbpxy,) = sin(mpy - pr+1 (N + 3/2)) =

If n = k, then

sin(mbgzy) = sin(r(Ng + 1)) = 0,
sin(mbya),) = sin(m(Ng + 3/2)) = (=1)Ne T,

Consequently,

f@y) = far) = Doa (23) (1 + ap(=1)NEHY) — Iy (2p)
= L1 (w),) = Ti—1(zx) + ar (=)Mo ().

If n < k, then
|sin(mh,x},) — sin(wbyay)| < whp(x), — k) = Ty =— < 2L

Thus a,, sin(rb,x},) = ay sin(wb, k) + 0k,n, where |og n| < ﬁ. Then

[ Tk—1 (%) —Ik 1(wg)]

- k—1
’ H 1+ ap sin(mbpzy) + 0kn) — H(l +an sin(wbnack))'
n=1 n=1
:' Z H(l—i—ansmwb xk) Hakn
Q,Q'c{1,...k—1}=QuUQ’' n€Q neqQ’
QNQ'=2, #Q'>1
k—1
S (2k—1 )B— 7TB2 )
2p Dk
Hence s -
TB2% TB2%
(@) = f(zi)| = larTe—1(2],)] — > apA — :

Pk Pk
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Thus,
7B 2k

|Af(zy, 7)) > 2akbk(,4 =

) — +00.
2 appr/ k—+oo

Finally, since

|f(z) — f(xo)|+ |f(zr) — f(20)|
xh — Tk x — T

< 3(Af($0,w;€) + Af(x07$/€>>7

|Af(zk, )| <

we easily conclude that a finite f/ (x) does not exist. O



Part 11
Topological Methods



Chapter 7
Baire Category Approach

Summary. While in Part I, some concrete functions were discussed, this chapter shows how Baire category
methods lead to a description of typical continuous functions on the interval I = [0, 1]. In Sect. 7.2, we prove
that most (in the categorial sense) of the continuous functions on I belong to N'D (I), while in Sect. 7.5, it
is shown that the set ND (I) of all continuous functions on I having nowhere a unilateral (finite or infinite)
derivative is a thin set (in the categorial sense). Nevertheless, later, in Sect. 11.1, we will see that ND3(I) is

not empty.

7.1 Metric Spaces and First Baire Category

The idea of this section is to collect and recall some information that will be used in this
chapter.

Definition 7.1.1. A metric space is a pair (X,d), where X is a nonempty set and the
function d : X x X — Ry is a metric, i.e., d is symmetric, satisfies the triangle inequality
(i.e., d(z,y) < d(z,z) +d(z,v), z,y,z € X), and is positive definite (i.e., d(z,y) = 0 if and
only if z = y).

The metric space mainly discussed in this section is the set C(I, C) together with its stan-
dard metric d(f,g) = ||f — gl

Let X be a metric space (in case there is no confusion, we will always omit noting the
metric d). Then d induces on X the structure of a topological space specifying the open sets
of X. Recall that a subset M C X is called open if for every x € M, there exists a positive
r € R such that the ball By(x,r) := {y € X : d(z,y) < r} is a subset of M. A set M is said
to be closed if X \ M is open. A point a € M is an interior point of M if some ball By(a,r)
with center a is contained in M.

A subset M C X is called dense in X if M = X, where M is the closure of M, i.e.,
M ={z € X :V,e(0,00) : Ba(w,7) N M # @}. On the other hand, M is called nowhere dense
if int M = @, where int L := {x € L : 3re(0,00) ¢ Ba(w,7) C L} denotes the interior of L,
LcCX.

Recall that the set of (real-valued) polynomials is dense in C(I) (EXERCISE; use Bernstein
polynomials).

(© Springer International Publishing Switzerland 2015 107
M. Jarnicki, P. Pflug, Continuous Nowhere Differentiable Functions, Springer
Monographs in Mathematics, DOI 10.1007/978-3-319-12670-8_7



108 7 Baire Category Approach

Definition 7.1.2. Let X be a metric space. A subset M C X is said to be of the first (Baire)
category (or meagre) if M = J;2, M, where M; are nowhere dense subsets of X. A set M
is said to be of second (Baire) category if it is not of first category. Moreover, M is said to
be residual in X if X \ M is of first category.

Sets of first Baire category may be thought as small sets.

Theorem 7.1.3 (The Baire Theorem). If X = (X, d) is a complete metric space (i.e., every
Cauchy sequence with respect to d converges to a point of X ), then X is of second Baire
category.

Note that C(I, C) is a complete metric space with the metric from above (EXERCISE). In
particular, if M C C(I,C) is a set of first Baire category, then C(I,C) \ M # &.

We say that a function f € C(I,C) is typical (with respect to a certain property (P)) if f
satisfies (P) and if the set {g € C(I,C) : g does not fulfill (P)} is of first Baire category in
C(I,C).

7.2 The Banach—Jarnik—Mazurkiewicz Theorem

The main result in this section is the following: the typical continuous function on I has
everywhere on I an infinite upper or lower right Dini derivative; in particular, it is nowhere
differentiable on I. To be more precise we have the following result.

Theorem 7.2.1 (The Banach-Jarnik-Mazurkiewicz Theorem). There exists a subset S C
C() of first category such that if f € C(I)\ S, then the following properties hold:

(a) f e M(D); in particular, f has nowhere on [0,1) (resp. on (0,1]) a finite right (resp. left)
derivative;
(b) there exists a set E C I with L(E) =1 such that

Dt f(z) = D™ f(x) = +oo, Dyf(x)=D_f(x)=—00, x€E;
(c) for every x € (0,1) and o € R, there exists a sequence (hj)52y C Ry withlimj 400 hy =0

such that N
fim LEFR) =@
j—+oo h]

i.e., every number in R is a derived number of f at x. In particular, nowhere on (0,1)
does the two-sided derivative of f, finite or infinite, exist.

Remark 7.2.2. (i) The first statement is due to [Ban31]; a weaker form may be found in
[Maz31]. The remaining facts are contained in [Jar33].

(ii) Recall that a point 2 € I with the property in (b) is called a knot point of f. Thus (b)
implies that a typical function in C(I) has almost everywhere a knot point.

(iii) While the theorem states that the typical function f € C(I) has nowhere a finite unilat-
eral derivative, nothing is said about infinite one-sided derivatives. We will discuss such
functions later, beginning with Sect. 7.5.

Proof of Theorem 7.2.1. (a) Put

St = {f €CI) : Juco) : max{|D* f(2)]. D4 f(x)]} < +oo}.
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We will prove that S; is of first category in C(I). Define
Elj = {fEC(ID :HaG[O,l—l/k] : |Af(a7a+t)| §k7 0<t§ 1-&}, kENQ

Obviously, E; is closed in C(I), and S = |J;—, E;" (EXERCISE). It remains to verify that
the sets E,j are without interior points.

Indeed, fix a ko and assume that E;” D B(f,2r), where f € E;, r >0, and B(f,2r) :=
{g€C@):|lg — fll1 < 2r}. Since the real-valued polynomials are dense in C(I), we may take
a polynomial p with || f — p|l1 < r. Then B(p,r) C E,;';, where p := P

Let g € C(I) be such that g has finite right-sided derivatives on [0, 1) and

lglle <7 1g\ (@) > [Pl + ko, = €[0,1).

Note that such a g always exists (EXERCISE; use continuous piecewise linear functions).
Then h:=g+p € B(p,r) C E,;Z and

0 ()] = 194 (@) = p"@)] > 1Pl + ko = [[p'll = Ko, = €[0,1).

Hence, h ¢ E,;’;; a contradiction.
A similar argument shows that the set

ST = {f €C1) : Joeouy * max{|D™ f(x)].|D_f(x)]} < +oo}

is also of first category in C(I) (EXERCISE). Thus, S; := S;" U Sy is of first category.
Before starting to prove the remaining two statements let us introduce a special “zigzag”
function z, , on I, where s € (0,1/2) and r > 0. Define

o = (VB SIS
where N := || and 9 (z) = dist(z, Z).
(b) Put
E*(f)={z€[0,1): D" f(2) < oo}, Sy :={f€C(D): LEF(S)) >0}.

We will show that S5 is of first category.
For n € N3, put

B (f)

{we {0,1—%} cAf(z,z+h) <n, O<h§%}.

Then E*(f) = U,en, Exf (f)- Hence, L(E*(f)) > 0 if and only if there exist an n € N3 and
ak € N with £(E;(f)) > 1/k. Put

Vo == {f € C(I) : L(E;(f)) = 1/k}.
Then Sy = Unens Uren Vak- Observe that the sets V,, j are closed in C(I). Indeed, let

(fj)jen C Vi with f; = f € C(I). By assumption, L(E;f(f;)) > 1/k, j e N. If z € E(f;)
for infinitely many j’s, then x € E(f). Therefore,
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oo o0

N UEH#) € B
s=1j=s
Hence we have L(E}(f)) > 1/k, i.e. f € Vi p.
It remains to verify that each of the sets V,, ; has no interior point. Assume the contrary.

Then one V,, ;, contains a ball B(fy, 2r), and therefore (as in (a)) there exists a polynomial p
such that B(p,r) C V,, , where p := p|r. Put

p(x +h) = p(x)

- :xeLheR*,OSx—i—hgl}

q:= sup{
and note that ¢ < +oo. Now fix an s € (0,min{g;, g5 }) with n < g7 Let 2, s be the
corresponding “zigzag” function. Then g :=p+ 2,5 € B(p,r) C V1.

Take a t € [0,1 — 1] such that 2z, s(t) < r(1 — 5%). Then one finds a point h’ € (0, 2s] with

zps(t+h') =r. Note that 0 < b’ < 1. Moreover,

Ag(t,t+h') = Ap(t,t + h') + Az, (t, t + h')

2%(T—T(1—%)—qh')2&>n.

In particular, t ¢ E(g).
By the geometry of the “zigzag” function, it is easily seen that

L(EF(g)) < ,c({t c [0,1— ﬂ L2y (t) > 7‘(1 - %)}) < % < %

Thus g ¢ V,, k; a contradiction.
(c) Put

S3 1= {f €C() : I, erm> Fac(0,1)> Y(hy)3e, R, limjoe hy=0 ©
Af(a,a+ hj)+~ ao}.
We want to verify that Ss is a set of first category in C(I). To this end, define

S3,n,0,8 1= {f € C(ID : 3ae(l/n,l—l/n)7 vaR*,|h\<1/n :
Af(a,a+h)<a or Af(a,a+h)> S},

where n € N3, a, 8 € Q, a < .

Note that S5 .08 C S3. Indeed, let f € S3,, 4,58 and choose a € (1/n,1 —1/n) according
to the above definition. Suppose that f ¢ Ss. Then there exists a sequence (h;)72; C R.,
h; — 0, such that Af(a,a+ h;) — O‘%ﬁ Therefore, for all large j, we have that |h;| < L
and a < Af(a,a+ hj) < B; a contradiction.

Next we observe that the sets S35 are closed in C(I). To see this, take a sequence
(fi)5%1 C S3na,p with f; = f € C(I). Choose points a; € [L.1 — 1] such that for all
h € Ry, |h| < %, one of the following inequalities holds:

Afi(aj,a;+h) <a or Afj(aj,a;+h)>p.
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We may assume that a; — a € [1/n,1 — 1/n] by taking an appropriate subsequence. Fix
an h € Ry, |h] < 1/n. Without loss of generality, we may even assume that the first of the
above inequalities holds for all j. By uniform convergence and continuity, we conclude that
this kind of inequality remains true for the limit function f. Hence, f € S5 ;.4 3, proving that
S3.n,q,8 15 closed.

Finally, we have that

53: U U U SS,ma,B'

n€ENs acQ Q38>

According to the remark above, it suffices to verify only the inclusion C. Indeed, let f € Ss.
Then we find a point a € (0,1) and a value o € R such that if (hj)321 C Ry with h; — 0,
then the sequence (Af(a,a + h;))32; does not converge to a.

Let « be a real number. Suppose that f does not belong to the set on the right-hand side.
Then choose a strictly increasing sequence (n;)52; C N3 with a € [n%? 1-— nl—l] and sequences
of rational numbers (a;)$2,, (8;)72, such that a; o and B; \, a. By assumption, there
are h; € Ry, |hj| < %, such that

O‘ngf(ava—i_hj)Sﬁjv jENa

which immediately implies that Af(a,a+ h;) — «; a contradiction. The cases o = o0 are
left as an EXERCISE.

To complete the proof, we show that the sets S3, .5 have no interior points. Indeed,
suppose that B(f,2r) C S3,.4,8. Then by the Weierstrass approximation theorem, one finds
a polynomial p such that p := p|1 € B(f,r), implying that B(p,r) C S3n,q.3- Let ¢ := ||p||1.
Next, we choose a positive number s such that

(l) s < min{ﬁ, m},
(i) |Ap(t,t+h) —p'(t)] < E52 forall0 <t < 1and 0 < |h| < 2s.
Let 2, s be the “zigzag” function from above. Fix a point t € [1,1—1]. Then p+z,, C B(p,r).
Note that 1 — 1 +2s < 2s(5 — 1) < 2N's. Therefore,
{zrs(t+h)— 2z, s(t) : 0 <h <28} =[—2p5(t),r — 2 s(t)].

I3

Taking into account the special form of our “zigzag” function, we conclude that

[—zm(t) r— zps(t)

5 s ] C {Azr7s(t,t+h):0<h§2s}.

By a similar argument, we obtain

[ = Zrs(t) zps(t)

9 - } - {Azm(t,t—i—h) :0>h> —25}.

Using the inequality max{z, s(t),r — z,s(t)} > r/2, it follows that

ror
-, — Az, (t, : <2}::M.
[ 48,48}c{ Zrs(tt+h): 0 < |h| <25
Finally, the choice of s implies that [—q — ‘O“+B|, q+ ‘%LB'] C M. Therefore, we obtain an //,
0 < |W] <2s < 1/n, such that

a+p

Az, (t,t+ 1) =—p'(t) + 5
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Finally, applying property (ii) yields

a+ <B—a

Ap+ zrs)(t, t + 1) — 5 5

Hence,
a< Alp+zrs)(t, t+ 1) < B,

meaning that p 4+ z, s ¢ S3,,4,3; a contradiction.

O

Remark 7.2.3. Observe that the set S in Theorem 7.2.1 may contain a function, say F,
with F (a) = o0 for some a € [0,1), i.e., functions in S may have infinite right derivatives.
So it remains open, at least for the moment, whether there exists a function f € C(I) that

has nowhere a one-sided derivative, finite or infinite.

Remark 7.2.4. (a) In [Jar33], also a more general differentiation is discussed. Let ¢ : R —
R with he(h) > 0 for h € R, and limg, 5,0 @(h) =0, e.g., ¢(t) = t. For an f € C(I) and

z € (0,1), put

#(z) = limsup LM — F(@) e Timige TE TR — F@)
b ( )._ %{*Bs—}g gp(h) ’ D@( ) Hé*ah—f;) Sp(h) .

For example, it is shown that the set

{fecCl): D?(z) =+oc0o=—Dyf(z), z € (0,1)}
is residual in C(I).
the symmetric differential quotient at x is given by

glz+h)—g(x—h)
2h

Agg(x, h) = ,x€(0,1), x+hel

Then the set
M :={feC): limsup Asf(z,h) = +oo = — liminf A;f(z,h)

R.3h—0 R.«3>h—0
for all z € (0,1)}

In [Kos72], P. Kostyrko studied symmetric derivatives. Let g € C(I) and = € (0,1). Then

is residual in C(I). The proof is based on an example, due to L. Filipczak (see [Fil69)]),
of a function that belongs to M. Later, other concrete functions belonging to M were

constructed by P. Kaldsek (see [Kal73]).

(c) In [Pet58], V. Petruv generalized the symmetric derivatives. Let g € C(I) and ¢ :

(0,00) — (0, 00) with limj_o+ ¢(h) = 0. For an = € (0,1), define

. glx+h)—glx—h
D% g(x) = lim sup ( ()p(h)( ),

e v g+ h)—glz—h)
D g(x) := lim inf o)
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Then the set
M :={feC): DI f(x) =400 = —D;f(x) for all x € (0,1)}

is residual in C(I).

7.3 Typical Functions in the Disk Algebra

In this section, we will discuss recent results for the disk algebra A(D) (see [Eskl4, EM14])
that are in the spirit of the discussions above.
Recall that the disk algebra A(D) is given by

A(D) = {f € C¢(D,C) : f|p is holomorphic},

where D denotes the open unit disk in the complex plane, i.e., D := {z € C: |z| < 1}. For
more details, see Appendix A.2.

Now we can formulate a recent result on typical functions of the disk algebra (see [Esk14,
EM14]).

Theorem 7.3.1. Let E denote the set of all functions f € A(D) such that the functions uy,
up(0) :== Re f(e?), and v¢, v(0) = Im f(e*®) are nowhere differentiable on R. Then E is
residual in the Banach space A(D) equipped with the supremum norm.

Before beginning the proo‘f7 let us introduce a notational convention. If f € C(T,C), then
we set us(f) := Re f(e?) and vs(0) := Im f(e?), § € R. Obviously, these functions are
2m-periodic continuous functions. Conversely, if u is a 27-periodic continuous function (u €
Car(R,R)), then we set h, : D — R, the continuous function on D that coincides on T
with T 5 € — w(6) and is harmonic in D (see Proposition A.2.3). Moreover, let h, be the
conjugate harmonic function to h,, with T (0 (0) =0 (see Proposition A.2.4). When hy, extends
to a continuous function on D, we arrive at the function f, := hy, +ih, € A(D) with u 7=

Proof of Theorem 7.3.1. Step 1°. It suffices to prove that the set
ET:={f e AD):us € ND(R)}

is residual in A(D). Indeed, suppose that ET is residual in A(D), i.e., A(D)\ ET =2, F,,
where the closure of F), has empty interior, n € N. Then £ = E* N (iE™), and since A(D) >
g — ig € A(D) is a homeomorphism, iE7T is also residual, which immediately shows that E
itself is residual.

Step 2°. We say that a function u € Cor(R,R) satisfies the condition (D,,) if for every
0 € R, there exists a y € (6,6 + 1) such that |Au(6,y)| > n, n € N. Moreover, put

E, :={f € AD) : uy satisfies condition (D,)}, n € N.

We claim that the set £, is open in A(D). Indeed, let (f;)32; C A(D)\ E, with f; — f €
A(D). Put u; :=ug; and u := ug. Then (u;)52; is uniformly convergent to u. Moreover, using
the periodicity of the functions u;, we see that there are points 6; € [0, 2] such that

1
luj(y) —ui(0;)] <nly—0;], ye(0;,0;+ E>'
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By a compactness argument, we may assume (extracting a subsequence if necessary) that
0; — 0 €[0,27]. If < y < 6+ 2, then for all sufficiently large j, we have 6; <y < 6;+1/n
and thus |u;(y) —u;(0;)| < nly—0;|. Hence, the uniform convergence leads to |u(y) —u(#)| <
nly — 0|, showing that u does not satisfy condition (D,,) or that f ¢ E,.

Step 3°. Fix an n and let f € A(D). Define fy(z) := S o0 ((3)"2"", 2 € D. Obviously,
fo € A(D) and ug,(z) = Y07 ((3)" cos(99"z) for € R. Then f — fo € A(D), and therefore, if
€ > 0 is given, then one finds a complex polynomial p such that || f — fo —p|lg < € (EXERCISE).
If we fix a 0 € R, then |Auy(6,y)] < M on (6,0 + 1) for a sufficiently large M. Now recall
that max{|DTuy,(z)|,|Diuys, ()|} = +o0, x € R (see Theorem 3.5.1). Thus there exists a

€ (0,0 + L) with Aug,(0,y,) > n + M, which finally gives that fo + p € E,. Hence

A(D) \ E, is nowhere dense in A(D).

Step 4°. To conclude the proof, it remains only to mention that E D () |

nEN

Remark 7.3.2. (a) The use of the existence of the concrete function fy € F in the proof
above led to a simple proof of Theorem 7.3.1. In [Esk14], another proof is given that is
not based on the Weierstrass function but on some kind of “zigzag” functions.

(b) Similar results (with respect to directional derivatives) are also known for the boundary
values of functions in A(D").

The following result may be understood in contrast to Theorem 7.3.1, namely that the
set of 27m-periodic continuous nowhere differentiable functions u with a “good” associated
harmonic conjugate h,, is small in Car(R).

Proposition 7.3.3. The set

L:={u € Cor(R,R) : hy, € C(D,C), u,v5 € ND(R)},

where f = fu = hy + ihy, is dense and of first category in Cor(R,R) (equipped with the
supremum norm).

Proof . Step 1°. To prove that L is dense in Co, (R, R), fix a function u € Ca,(R) and a positive
e. Since h,, is continuous on D, there exists an 7 € (0,1) such that |h,(2) — hy(rz)| < /2,
z € D. Put u,(6) := Reh,(e*?).

Denote by k., the harmonic conjugate to h,. Then the harmonic conjugate to h,, he(z) :==

hy(rz), is given by D > 2 LN ha(rz), which obviously extends to a continuous function on
D. Put f := h, + ih,. Then f € A(D) with u(6) = u,(6), & € R. Applying Theorem 7.3.1,
we obtain a function ¢g € A(D) such that

If —glls<e/2 and wuy v, € ND(R).
Moreover, we have
lu—uglle < llu—urllr+ lur —uglle <e/2+|1f —glly <e

Hence, L is dense in Cor (R).
Step 2°. For n € N put Ly, := {u € Cox(R) : ||hy|lp < n}. Obviously, L C U,~, L. Note
that L, is a closed subset of Cor(R). Indeed, let (u;)52; C L, with u; — wu in Cor(R).

Then (h;)32q, hj := hy,, converges uniformly to h, on T and thus on D (use the maximum
principle for harmonic functions). Moreover, ||hj|lp < n, where hj := hy,, j € N. By virtue of

the Carathéodory inequality (see Proposition A.2.6), we have
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1+ |z]
1— ||

~ s _ o B
|hu(2) — hj(2)| <2 IR huH]D) jjo 0,

implying that ||hy|lp < n, ic., u € Ly,.

Step 3°. It remains to show that L,, has no interior points, or equivalently, that Co (R)\ Ly,
is dense in Car(R), n € N. Indeed, fix an n € N, a function u € Ca-(R), and a positive e.
Then u — u* € Cox(R), where u* is the function from Example A.2.5. By virtue of the
theorem of Fejér (see Proposition A.2.7), we obtain a complex polynomial p € C|[z] such that
lu(8) — u*(0) — Rep(ei?)| < e, # € R. Moreover, |hy« + Imp|lp = co. Thus, the function
R > 0 — u* + Rep(e?) does not belong to L,,. O

7.4 The Jarnik—Marcinkiewicz Theorems

The main result here deals with derived numbers instead of differentiability.

Theorem 7.4.1 (cf. [Mar35]). Let (h;)32; C Ry be a sequence converging to 0. Denote by M
the set of all f € C(I) such that for every measurable almost everywhere finite function g on
I, there exist a subsequence (hj, )3, of (hj)$32, and a full-measure set E, C (0,1) such that

lim Af(z,x+hy;,) =g(x), z€E,.

k—o00

Then M is residual in C(I).

Remark 7.4.2. (a) If we take g to be the constant function A € R, then A is a derived
number of f for almost all a € 1. Hence, one may read this result as follows: the typical
function in C(I), although very wildly behaved, possesses some kind of regularity, i.e., for
each real A, its behavior near every point outside of some null set is similar to its behavior
near every other point relative to the sequence (hx)22 ;.

(b) We may also think of f as a universal primitive for all measurable, almost everywhere
finite functions g on I. Note that according to a result of W. Sierpiriski (see [Sie35]), we
have for every measurable, almost everywhere finite function on I and for every sequence
(hj)32y C R, with lim; o h; = 0, a function f on I such that Af(z,z + hy) jjo g(x),

x € (0,1). Note that this result is true without some exceptional set.
(¢) According to the footnote in [Mar35], Theorem 7.4.1 is due to S. Saks.

The proof of Theorem 7.4.1 requires some preparation.

Lemma 7.4.3. Let By, C I, k € N, be measurable sets with Y po | L(Ey) < 4+00. Then there
exists a subset E C I, L(E) = 0, such that if x € I\ E, then there exists an index j, with

e ¢ Uz, Bj-
Lemma 7.4.3 is a standard result from measure theory; nevertheless, we repeat its simple
proof.

Proof. Put A := {x € I: & € Ej, for infinitely many k}. We have to show that L(E) = 0.
Put g(z) := > =, XE.(2), v € I, where xp, denotes the characteristic function of the set
Ey, ie, xg, = 1 on Ej, while xg, = 0 on I\ Fy. Note that ¢ is the limit function of
an increasing sequence of integrable functions with convergent integrals. Then, applying the
theorem on monotone convergence leads to the fact that g is an integrable function, i.e., g is
almost everywhere finite, which immediately implies that £(A4) = 0 (observe that x € A iff
g(z) = +00). O
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Moreover, we quote the following results, which will be used in the proof. For their proofs,
the reader is asked to consult the corresponding books on measure theory, such as [Rud74].

Theorem 7.4.4 (Lusin’s Theorem). Suppose f is a measurable real-valued function on 1.
Then there exists an g € C(I) such that L({x € I: f(z) # g(z)}) < e.

Theorem 7.4.5 (Egorov’s Theorem). Let (f;)52; be a sequence of measurable functions on
I that converges at every point in 1 and let € > 0. Then there is a measurable set E C I with
L(I\ E) < e such that (f;)52, converges uniformly on E.

Let P denote the set of all real-valued polynomials with rational coefficients. Obviously, P
is a countable set. So we fix an enumeration of P, i.e., P = {p; € P : j € N}, where p; # ps

if j # k.
Lemma 7.4.6. Let (h;)52; C R. be a sequence with limh; = 0 and let f € C(I). Then the
following statements are equivalent:

(i) for every measurable, almost everywhere finite function g on I there exist a subsequence
(hj )72y € (hy)52y and a set Eg C (0,1) with L(E,) =1 such that

lim Af(z,x+ h;,) =g(x), =z € Eg;

k— o0

(i) for every pair (k,n) € N?, there ewist infinitely many indices s > n such that

L({x €(0,1): z+hs €l ’Af(x,x—khs) —pk(x)‘ > %}) < %;

(iii) for every pair (k,n) € N2, there exists an index s > n such that

L({xe (0,1): z+hs €1, ’Af(x,x—khs)—pk(x)‘ > %}) <

S |-

Proof. (i)=(ii): Fix k,n € N. Since p;, is a measurable function on I, we may choose a
subsequence (h;, )32, C (h;)52, such that

Af(-,-+h;,) — pi almost everywhere on (0,1).
S§—>00
Now fix an index s, € N with n < s/, such that |h;,| < £ for all s > s/,. Then the sequence
(Af(x,z+ hj,))s>s is defined on (4,1 — ) =: J,, and converges there almost everywhere
to pk.
By virtue of Egorov’s theorem (see Theorem 7.4.5), there exists a set Ey ,, C Jp, L(Egn) <
oL such that the former sequence converges uniformly on .J, \ Ey n to pi. In particular, we

2n?
find an index s, > s}, such that for all s > s,,, one has

1
Af(z,z+ hj,) —pe(z)| < e x €y \ Ekn, S>> sn.

It remains to note that js > n for all s > s,,.

(ii)==(iii): There is nothing to prove.

(iii)=(i): We begin with a measurable, almost everywhere finite function g on J. Applying
Lusin’s theorem (see Theorem 7.4.4), we see that there exists a sequence (g;)32; C C(I) such
that

1
L(E;) < % where E; :={z €1: g(z) # g;(z)}, j € N.
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Then according to Lemma 7.4.3, one may find a set Ey C I, L(Ey) = 0, such that every
x € I'\ Ep lies in only a finite number of the sets E;. In other words, for every = € I\ Ey,
there exists an index j/ such that x ¢ Ujsjr Ej» ie, g(z) = gj(x) if j > j..

Applying the Weierstrass approximation theorem, we obtain a sequence of polynomials
(gj)521 with |[g; — g;llt < %, j € N. Then it is easy to construct a subsequence (py,)52; C
(pr)32, such that ||pr, — gl < %7 J € N. Hence, for every x € I\ Ey, we have that if j > j,

then |g(z) — py, (z)] < % Thus the sequence (py,)32; converges on I\ Ey pointwise to g.
Using the assumption in (iii), there are strictly increasing sequences (m;)72; and (s;)

of natural numbers with s;41 > 2™+ > s; > 2" such that

o}
J=1

L({xe(o,l): x4+ hg, €1, Af(x,x—khsj)—pkj(x)‘z ! })< L

2my om;

Note that (hs;)52, is a subsequence of (h;)32.
Put

1.

As above, using Lemma 7.4.3, we see that there exists a set So C (0,1), £(Sp) = 0, such that
if z € (0,1) \ So, then there exists a j/ € N such that x € ijj;’ S;.

Fix a point 2 € (0,1) \ (Eo U Sp). Then there exists an index j, > max{j,,j} such that
x+hs; €(0,1), j > jg. Thus if j > j,, then

Sj={x€(0,1): x+hy, €L, |Af(z,z+ hs;) — pi,(z)] <

2m

[Af(z, 2+ hs;) = g(2)] <[Af (2,2 + hs;) = pr, (2)] + |pr, () — g(2))]

2
2m; J j—o0
Hence, the sequence (Af(z,z + hs;))jen converges to g(x) for almost every = € (0,1). O

Lemma 7.4.7. Let f1,fo € C(I). Moreover, it is assumed that fo is almost everywhere
differentiable on 1. If € > 0, then there exists a continuous function h on I, almost everywhere
differentiable on I, such that || f1 — h|l1 < € and h' = f} almost everywhere on 1.

Remark 7.4.8. (a) This lemma was used by M. Lusin to prove that a finite measurable
function is almost everywhere the primitive of a continuous function (see the footnote in
[Mar35]).

(b) Even more is true: every measurable finite function f on I possesses a uniformly smooth
primitive F, i.e., there exists a function F on I, uniformly smooth, such that F’ = f almost
everywhere. Recall that F is said to be uniformly smooth on 1 if F' is continuous and

F(z+h)+ F(x —h) —2F(z)
h

=o(l) as h — 0,

uniformly in z € (0, 1) (see [Hov09]).

Proof of Lemma 7.4.7. Take a partition tc = 0 < t; < --- < t§y = 1 of T such that on
each of the intervals Jy := [tg,tx41], one has sup{|f(z) — f(y)| : =,y € Jp} < §, where
f=fi—f2. Fixak € {0,...,N —1}. On Ji choose a continuous monotone function g with
9r(tr) = f(tr), gx(tet1) = f(tet1), and g, = 0 almost everywhere on Jj, (use, for example,
the Cantor ternary function; see [KK96]). Put g(z) := gx(z) if z € J. Then g is a continuous
function on I, and if z € J, then

|f (@) —g(@)] < [f(x) = Fa) + | f(te) —g(2)] <&,
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where t5, € {tg,tp+1} is the endpoint of Jy with f(ts,) = max{f(tx), f(tx+1)}. Hence, h :=
f2 + g satisfies the properties claimed in the lemma. O

Proof of Theorem 7.4.1. For (k,n) € N2, put
My » ::{f €C) : Vssn :

1 1
c({z€©1) i+ hs €1 |Af(z,2+hy) — pr(z)| > E}> > ﬁ}.
Note that C(I) \ M = Uy ,,en Mk,n- So we have to show that each of the sets My, is closed
and without interior points.
Fix a pair (k,n).
Step 1°. Take a sequence (f;)32; € My, such that f; = fy € C(I) and fix an s > n. Put
Vimde

1
S; = {xE(O,l): z+hs €l |Afj(z,z+ hs) — pr(x)] > E}’ j € Np.

We wish to show that S* := (N ~_, Ups,, S¢ C So. Indeed, let x € S*. Then for every
m € N, we find an index ¢, > m such that x € Sy, . Without loss of generality, we may
assume that ¢,,11 > ¢, (otherwise, take a suitable subsequence). Then z + hy € I and
|Afe, (z,2 + hs) — pe(z)] = £, m € N. Passing to the limit gives z € Sp.

What remains is to observe that £(5*) > 1 (EXERCISE). Hence, fo € My .

Step 2°. Take a function f € C(I) and a positive £. Applying Lemma 7.4.7 for the data
Pk, [, €, one obtains a continuous function h on I, almost everywhere differentiable, such that
If — hllr < e and A’ = py almost everywhere. It remains to observe that h € My, ,,. O

A generalization of Theorem 7.4.1 is due to V. Jarnik. To be able to state his result, let
us first recall that a measurable set E C [0,1) has right upper density o, « € [0,1], at a point
x €[0,1) if

lim sup LEA (@2 +h) =q.
h—0 h

Theorem 7.4.9 (cf. [Jar34]). Let M be the set of all f € C(I) for which there exists a
measurable set E C [0,1), L(E) = 1, satisfying the following property: if t € E and X € R,
then there is a measurable set E, C 1 with right upper density 1 at x such that

i fly) = f(=)

Ex\{z}oy—z+ y—x

=\

Then M is residual in C(I).
Remark 7.4.10. ) is called an essential right derivative of f at x.

Proof of Theorem 7.4.9. Step 1°. Let f € C(I) and let (a,b) be an open interval in R. We
say that the interval is essential for f if there exists a set By C I, £L(By) = 0, such that if
x € [0,1)\ By, then we can find a measurable set E, C I with right upper density 1 at = such
that

Af(z,y) C (a,b) forall yeE; z<uy.
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We enumerate all the intervals with rational endpoints, i.e., one gets a sequence of intervals
((ak, bk))zozl- Put
My, ={f € C(D) : (ag,by) is essential for f}.

We claim that (;—, M} C M. Indeed, fix a function f € (\,—, M. Using the fact that
Iy, := (ax, by) is essential for f, we see that there exist sets By := By C I, £L(Bg) = 0, such
that for every k and = € [0,1) \ By, we obtain a set Ej , C I of right upper density 1 at
such that Af(z,y) C I whenever y € Ej 5, © < y.

Put By := U, By,x C L. Obviously, By is, as a countable union of Lebesgue zero sets,
again a Lebesgue zero set. Now fix a point € [0,1)\ By and a X € R. Choose a subsequence
((ak"’bk"))neN of the above intervals such that lim, ,o ax, = lim, oo bx, = A. Since = ¢
By 1., we have the measurable set F, := Fj, . C I of right upper density 1 at x such that
Af(x,y) C I, whenever y € E,,, x < y.

Recall that if n € N, then there is a sequence (sp )7, C (0,1) with lim/_,o $5,¢ = 0 such
that

L(E,N(x, 24 Sny))

Sn,¢

=1.

Let hy := s1,1. Obviously, £(Ey N (z,z+h1)) > 0 = (1 —1)hy. Assume that a positive number
hpny,n > 1, with L(E, N (z,z+ hy)) > (1 — %)hn has been constructed. Then choose an 4,, so
large that

h 1
n <= d L(E,.1N(z, n > (1 - —) n )
Sn41,4, " an (Bns1N(z,xz+s +1,£n)) ] Sn+1,0,

Put hn+1 = Sn+1,0,,-
Finally, we introduce the following measurable set:

E=F,:= U(:r+hn+1,x—|—hn)ﬂEn.

n=1
Using the estimate
> L(EN (Z,x + hy))
> L(EnN(z,2+hn))  L(EnN (2,2 + hnt)) > (1 B z) L
h'n, hn n n— oo

it immediately follows that E has right upper density 1 at x.

Recall that ar, < Af(z,y) < bx, if y € Ep 0 (2 4 hny1, @ + hy). Thus, limp (51504
Af(z,y) = X Since z € [0,1) \ By has been arbitrarily chosen, we get f € M.

Thus it remains to show that all the sets My, are residual in C(I) (EXERCISE).

Step 2°. Fix a k € N. Let f € C(I). Put

An(f) = {xe 0,1): {yeliy>az, Af(z,y) C I}

has right upper density less than 1 at x}

Note that f ¢ My, if and only if L(Ag(f)) > 0.
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Moreover, for s € N, set
Bus(f) == {x €[0,1): if 0 < u < min{1/s,1 — z},
then £({y € (z,z +u] : Af(z,y) C Iy}) < (1 — l/s)u}.

Then Ap(f) = Uy .en Br,s(f) (EXERCISE). Note that L(Ak(f)) > 0 if and only if
L(Bi,s(f)) > 0 for some s.
Finally, put
Cr(l,s) :={feCl): L(Brs(f))>1/t}, {£,seN.

Then C(I) \ My, = U, sen Ck (¢, s). Thus it remains to show that the sets C (¢, s) are nowhere
dense in C(I).
Step 3°. We will prove that each of the sets C (¥, s) is closed in C(I). Indeed, fix ¢, s and take
a sequence (f;)52; C Ck(¢,s) with f; = f € C(I). It suffices to show that L(Bys(f)) > 1/¢.
Put F := ﬂ;f:lUjZm By s(f;). Since L(bk,s(f;) > 1/4, it follows that L(F) > 1/¢. So
it remains to verify that F C By s(f). To do so, fix a point € F. Then there exists a
subsequence (f;, )o°_; such that 2 € By s(f;,.) for all m € N.

m=1

Fix au € (0,2], # + u < 1. Then

S

Ly € (z,x +u]: Afy,, (v,y) € Ix}) >

» |

Put
G(z,u) == ﬂ U {ye (x,x+u]: Afy, (x,y) ¢ I}

m=1x>m
Then L(G(z,u)) > 2.
Moreover, using the uniform convergence and the fact that R\ Iy is closed, we see that

G(z,u) C{y € (xv,z+u]: Af(z,x+y) ¢ I}

Therefore, the measure of the set on the right is greater than or equal to . Recall that u was
arbitrarily chosen with the above conditions. Therefore, x € By, s(f).

Step 4°. It remains to prove that all the sets Cj (¢, s) do not have interior points. Indeed, fix
¢,s € N and assume that the function f € C(I) is an interior point of Ci (¢, s), i.e., that there
exists a positive r such that the open ball B(f,2r) with center f and radius 2r is contained in
Ci (¢, s). Choose a real-valued polynomial p such that ||p — f||i < r. Then B(p,r) C Cy (¢, s).

Take a large positive number ¢t such that

|Ap(z,y)| <t —lex| and [|p'[lr <t — el

where ¢j, := 2% Moreover, fix a natural number m such that ¢t < mr and if 0 < |y—=| < L,

then max{|Ap(z,y) — p'(2)], [p'(2) — p'(y)|} < »5.
We now introduce the following function g € C(I):

0,
g(x) = q9g(@), if 2 < 41— 5
gla), ifzl— L <z<2tl o=0,...,m—1
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where

i@) = (—r(D) +a)(a-2).

o) =21~ ) (1 ) ().
Then

1 1 t
< —(|lp’ - )< —<r
llle < =/l +lexl)(1 = 57) < — <r

Thus p+ g € C(¢, s), and so L(By,s(p + g)) > %.

Now fix a point z € [Z,ZE — L) for an arbitrary ¢ € {0,...,m — 1} and take a point
1

uwith0<u§min{%7‘%1—%—x}. If x <y <x+u, then
(o bk — Ak
[Alp + 9)(@,y) — el < [Ap(w,y) = p'(2)] + 1P (2) =P/ ()] < —5—
In other words, A(p + g)(z,y) € Ii, which implies that
L{y € (v,x+u): Alp+g)(z,y) C Ix}) > u.
Hence, z ¢ By s(p + g).
So we end with the following inclusion:
m—1
oc+1 1 o+1
B s C ( - 9 )7

ks (P+9) GL:J m 20m’ m

which immediately leads to % < L(Brs(p+q)) < ﬁ; a contradiction. O

7.5 The Saks Theorem

So far, we have seen that the typical continuous function on I has neither an infinite two-sided
derivative nor a finite one-sided derivative on I. To be more precise, the complement of this
set of functions is of first category in C(I). So the question remains whether there exists a
function f € C(I) that has nowhere a unilateral derivative, finite or infinite. Functions with
this property are called Besicovitch functions, because the first example of such a function
was found by A.S. Besicovitch in [Bes24]. For a while, there was hope of proving the existence
of such a function by showing that the set B(I) of Besicovitch functions is a residual one
in C(I). But in [Sak32], S. Saks showed that B(I) is a set of first category. Unfortunately,
his proof used very advanced tools, and therefore we will omit it. The proof we are going
to present is due to F.S. Cater (see [Cat86]); it uses only simple tools, as we will see. Other
proofs have been given by D. Preiss (see [Bru84]) and by K.M. Garg (see [Gar70]). Note that
this result suggests that a priori there is no direct way to apply Baire category theory to
prove the existence of a Besicovitch function. We will return to this problem in Chap. 11.

Theorem 7.5.1 (The Saks Theorem). The set
BI) ={f €CO): f has nowhere a finite or infinite unilateral derivative}

of all Besicovitch functions is of first category in C(I).
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Obviously, it is enough to study the functions with right-sided derivatives —oo. The proof
of Theorem 7.5.1 is by the following lemmas.

Lemma 7.5.2. The set
Fi={feCl): L{z € (0,1): DT f(z) <0}) >0}

is of first category in C(I).
Remark 7.5.3. Note that by Remark 2.1.7, the set

Af :={z€(0,1): DT f(x) <0}
is Borel measurable.
Proof of Lemma 7.5.2. Let
S:={(a,b,d) cQ®:0<a<b<b+d<1}.

For (a,b,d) € S, put

Flab.d)i= {9 € € s £l{w € (0,b): 9(0) 2 gl6). v <€ <z ap) > =,

It suffices to prove that

(a’) 3:1 - U(a,b,d)ES F(CL’ b7 d)7
(b)  F(a,b,d) is closed and without interior points.

Indeed, to verify (a), fix an f € F; and a point ¢ € Ay. Then there exists a positive hg
with ¢ + hg < 1 such that

sup{Af(c,c+h): 0< hgho} < %D+f(c) < 0.

Thus f(c) > f(&) for ¢ < & < ¢+ hy.
Let

Ak::{xE(O,l): w—i—%glandf(w)Zf(f)?xﬁfﬁx—i—%}, k € Na.

Then Ay C Apq1 and Ay C U,€6N2 Ay. Since L(Ay) > 0, there exists a ky € Ny with
L(Ag,) > 0. For simplicity, we write A = Ay, . Take an open set U C (0,1), A C U, such that
LU\ A) < L(A)/3. Then L(U) < 4L(A)/3.

Now write U = UjeMcN Jj, where J; are the pairwise disjoint connected components of
U. Note that J; are open intervals. Therefore,

LW)=> L(J;) < MéA) = % > LAang;).
jeEM JEM

Thus one of the intervals J;, say Jj, = J = (ao, bo), is such that
bo — ag = [:(J) < 4£(Aﬁ J)/?)

Finally, one may choose a,b € Q, ag < a < b < bg, such that b_T“ < L(AN (a,b)). Hence,
f € F(a,b,d) with d := rnin{ki07 1—b}.
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b) Step 1°. We will show that the set F'(a,b,d) is closed in C(I). Indeed, let (g;)32; C
F(a,b,d) and assume that this sequence is uniformly convergent to a g € C(I). Put

Ej:={x € (a,b): g;(x) = g;(§), z <{ < w +d}.
Then L(E;) > %52 Define E := ;2 ;2 E;. Then

b;“ < L(Ey) <c(GEj) L L(E).

k— o0
Jj=k

Let € E. Then z € E;, for a strictly increasing sequence (j5)7>; C N. Thus g;, (z) > g;, (£),
x < & < x + d, which immediately implies that g(z) > g(§) for all £ € [z, 2 + d]. Hence,
g € F(a,b,d).

Step 2°. It remains to verify that F'(a,b,d) has no interior points. Let us assume the
contrary, i.e., that B(f,e) C F(a,b,d) for some f € F(a,b,d) and € > 0. Choose a partition
a=ty <t <---<t,=D>bsuchthat t; —t;_1 < d and sup{f(t) : t € [t;_1,t;]} —inf{f(¢):
t € [tj—1,t;]} < e/4. Then there exists a “zigzag” function h € C(I), 0 < h < §, such that
h(t;) =¢/2,j=0,...,n, and L(N(h) N (a,b)) > 252, where N(h) denotes the zero set of h.
Then g := f+ h € B(f,e) C F(a,b,d).

Let x € (tj_1,t;) with h(x) = 0. Then ¢; € (z,z + d), and therefore,

(f +h)(@) = f(z) < f(t;) +e/4 < (f+Rh)(E)).
Hence,
N(h) N (a,b) € {z € (a,b): (f +h)(x) < sup{(f +h)(€) 1z <€ <z +d}}.
On the other hand, we know that

b—a
2 b

L{z € (a,b): g(x)>g(E), v <E<a+df) >

which implies that £((a,b)) > (b — a); a contradiction. O

Lemma 7.5.4. The set
Fo:={fe€Cd): fl; is monotone for some open subinterval J C I}
is of first category in C(I).

Proof . We only mention that the sets {f € C(I) : f|(4,5) is monotone}, where 0 <a <b <1
are rational numbers, are closed sets in C(I) without interior points. Details are left for the
reader (EXERCISE). O

Corollary 7.5.5. The set F1 UFy is of first category in C(I).

So far we know that “most” of the functions f € C(I) are nowhere monotone and Ay is of
Z€ro measure.

Lemma 7.5.6. Let f € C(I) \ (F1 U Fa). Then there exists a set M C I such that

(a) fi(x) =—o0 forallxz € M;
(b) M N J has the cardinality of the continuum for every open subinterval J C 1.
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Proof. Choose open sets U,, D Ay, U, C I, with L(U,,) < 1/2", n € N, and put

F(x):zx—FZ/ Xxu, (t)dt, ze€l, neN,
n=1"70

where xy, means the characteristic function of U,. Note that the series is a uniformly con-
vergent series of continuous functions. Hence, F' € C(I). By a simple calculation, one sees that
DyF(x) > 1,z €l and F'(x) = +o0 for x € Ay.

Take an open interval J C L. Since f is not monotone on J, there are pointsry = r,s; = s €
J with r < s and f(r) > f(s). Then there exists a positive number ¢ such that (f +eF)(r) >
(f+eF)(s). Let y be between these two numbers and set x, :=sup{t € (r,s): (f+eF)(t) =
y}. Obviously, r < x, < s. In particular, (f + ¢F)(t) < y whenever z, < ¢t < s. Therefore,
D*(f +¢eF)(zy) <0. By virtue of D F(x,) > 1, we get D f(z,) < —¢, i.e., z, € Ay. Thus,
F! (zy) = +o0. Using D*(f +¢eF)(xy) < 0 leads to D% f(x,) = —oc. Hence, f! (z,) = —oc0.

Let My :={zy € (ry,sy) : y € ((f +eF)(s),(f +eF)(r))} and M := |J; M. According
to the construction above, each of the sets M is uncountable. Thus its cardinality is that of
the continuum. Hence, M satisfies the properties stated in the lemma. a

What we have proved shows that the set of functions without infinite unilateral derivatives
is contained in a set of first category, i.e., most of the functions in C(I) are not Besicovitch
functions. Therefore, it seems difficult to find a concrete Besicovitch function or to show at
least, by an abstract argument, their existence. Nevertheless, a clever modification of the
categorial argument, as will be done in Chap. 11, will prove the existence of Besicovitch
functions.

Remark 7.5.7. From the reasoning above, we see that the set of f € C(I) that have a dense
set of knot points is residual in C(I); see Theorem 7.2.1(b). One has only to observe that the

sets
{fecl): Lz € (0,1): DT f(z) <m}) >0}, meN,

are of first category. Hence, the set
{fecC): DT f(z) = +oo for almost all z € [0,1)}

is a residual one.

7.6 The Banach—Mazurkiewicz Theorem Revisited

Recall that M(I) is a residual set in C(I), i.e., C(I) \ M(I) is small in the categorial sense.
There exists a stronger notion of being small, which even has a nice geometric interpretation.
It concerns the sizes of pores in C(I) \ M(I) near a function f € C(I) \ M(I).

Definition 7.6.1. Let X = (X, d) be a metric space, A C X, and z € X.
(a) A is said to be porous at x if

A
p(x, A) := limsup v R 4)

>0
R—0+ R '
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where
v(x, R, A) :=sup{r >0: J,ex : By(z,r) C Ba(z,R) \ A}

(p(z, A) := 0 if there is no positive r as above for certain R).
(b) A is said to be porous if A is porous at every point a € A.
(c) Ais called o-porous if A can be written as A = Uj';l A, where all the sets A; are porous.

Remark 7.6.2. (a) There are, in fact, two notions of porosity at a point, namely that of the
previous definition and so-called lower porosity, where the lim sup in the above definition
is substituted by liminf. Therefore, porosity in the sense of the above definition is also
called upper porosity. Since we are dealing only with the notion defined above, we will
simply speak of porous sets.

(b) Porosity in R was used by A. Denjoy in 1920 (under a different notation). The theory
of o-porous sets began with investigations of the boundary behavior of functions by
E.P. Dolzenko (see [Dol67]). It seems that he was the first to use the term “porous.”

(c) Let A C X be a porous set. Then A is nowhere dense in X. Therefore, every o-porous
set is meagre or of first category (EXERCISE).

(d) If A C R™ is porous, then its Lebesgue measure is zero (use the Lebesgue density theorem).
But there exists a closed nowhere dense set A C R™ of Lebesgue measure zero that is not
o-porous. For a proof see [Zaj87].

(e) Let X be a complete metric space without isolated points. Then there exists a closed
nowhere dense set A C X that is not o-porous (see [Zaj87]). Therefore, saying that a set
is o-porous is, in general, a stronger statement than claiming that it is of first category.

(f) For more information on porous sets, see [Zaj87] and [Zaj05].

(g) Moreover, a set A C X is porous at a point x if and only if there exists a positive g such
that for every € > 0, there are R € (0,¢] and z € X such that By4(z, 0R) C Ba(z, R) \ A
(EXERCISE).

Theorem 7.6.3 (cf. [Ani93]). Let

M :={f eC): f without a finite or infinite derivative in (0,1)}.
Then M(I) N M has a o-porous complement in C(I).
Proof. Step 1°. Put

M)

{f ecm: max{|D*f(@)],|D+f(@)]} = +o0
for all z € I'\ {H:Tl}}

Then M(I) = M*(I) UM~ (I).
It suffices to prove that M (I) has a o-porous complement in C(I). For n € Ny, put

A, = {f €C) : e sy |Af(@att) <nt, te (o, ﬂ }

Note that |, ¢y, An = C(I) \ M*(T).

Fix an n € Ny. It remains to prove that A, is porous at each of its functions. Fix a function
f € A, and a number € € (0,1). Then there exists a positive ¢ such that |f(z') — f(z")] < e
for all z’,z” € T with |2’ — 2”| < 6.
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Take a positive a with ¢ < min{%,d}. For x € (0,2a], put us(z) := 2¢(55), where
P (t) = dist(¢,Z), and extend this function to the whole of R with a period of 2a. For simplicity,
denote the extension again by wu,. If x € R, then there exists an interval I,(z) C [§,a] of
length & such that |uq(z +t) — uq(x)| > & for all t € I,(z). Indeed, we have only to study

points = € [0, 2a] If z €[0,22) Ufa, 12), then take Io(X) = [&,%]. If 2 € [3,a) U [Z2, 2q],
then I,(z) = [22, a] does the job.

In particular, u,|r € C(I), ||uq|lt = 1, and | Aug(x, x + t)] > 2 whenever z € [0,1— 2] and
tel,(z). Putg = 75ecu, and f* '—g+f Then B(f*,e)N A, = @. In fact, for h € B(f ),
z€[0,1— 2], and t € I,(z) we have

Ih(x+1) = h(z)] = g(z + 1) = g(@)| = [(h = g)(x+1) = (h - g)(x)]

A= YA ) — (= )@ 2 D e 2> S

Hence, h ¢ A,,. Moreover, recall that || f*— f|l1 = ||g|l1 = 75e. Therefore, B(f*,&) C B(f, 76¢)\
A,,, which implies that A,, is porous at f and, since f was arbitrarily chosen, that A,, is porous.
Step 2°. Let

S:={f el :liminf A, f(z,t) = —o0, limsup A, f(z,t) = 400,
t—0+ t—0+

xz € (0,1)}.

Obviously, S € M.
For n € N3 put

= el Tugpaisy: #AJ @0 <n 1< (0,2]}

Then C(T) \ S = U, en, (A5 U A;).

Fix an n € N3. Then A; is porous. Indeed, take a function f € A} and a positive e.
Choose § > 0 such that |f(z') — f(z")| < e for all 2/,2” € T with |2’ — 2| < §. Moreover, fix
a positive a with a < min{(%n7 %, 5t

Similarly to what was done in Step 1°, we find a continuous function u, on R with period
Ta, |ug] <1 =lus(a)| on R, and for every z € R, an interval I,(x) C [a,6a] of length equal
to % such that ue(x +t) — ue(x — t) > 1=, t € Io(a). In fact, u, is given on [0, 7a] by the
piecewise linear function whose graph connects the points (0,0), (a,—1), (3a, 1), and (7a,0)
by segments and that is extended to R by uq(z + 7a) = us(x), z € [0, 7a] (EXERCISE).

Put f* := 400cu, and g := f + f*. Then B(g,e) C B(f,401¢) \ A} (EXERCISE), giving
that A is porous.

In a similar way, it is shown that also A, is porous. Therefore, the complement of S in

C(I) is o-porous. O

Remark 7.6.4. (a) Looking at the proof of the former theorem shows that even the set S
(see Step 2° of the proof) has a o-porous complement in C(I).

(b) V. Aniusu also proved that the set of continuous functions having nowhere on I a finite
one-sided approximate derivative has a porous complement in C(I).

Remark 7.6.5. The complement of the set NDS cannot be o-porous because of
Theorem 7.5.1.
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7.7 The Structure of N'D(I)

In the Scottish book, S. Banach asked for a description of the structure of the set D of all
differentiable functions on I. In [Maz31], S. Mazurkiewicz proved that the complement of D
in C(I) is analytic, but D itself is not. Recall that a set is called analytic (or a Souslin set)
if it is the continuous image of a Borel set. On the other hand, due to R.D. Mauldin (see
[Mau79]), the set ND(I) also has an analytic complement in C(I), but it is not a Borel set
in C(I).

Theorem 7.7.1. (a) C(I)\ND(I) is an analytic set, i.e., it is the continuous image of some
Borel set.

(b) N'D(I) is not a Borel set in C(I).

Proof. (a) Recall that a function f € C(I) has a finite derivative at a point « € I if and only if
for every n € N, there exists an m € N such that if hy, ho € R, with max{|hi],|ho|} < L
and x + hy,x + ho € I, then

|Af(z,z+h1) — Af(x, 2+ ho)| < %

Let E, ., denote the set of all pairs (f,z) € C(I) x I satisfying the above condition.
Note that E, ,, is a closed subset of C(I) x I. Since C(I) \ ND(I) is the projection of
Moy Upe—q En,m., it is an analytic set.

(b) The proof of the fact that ND(I) is not a Borel set is significantly more complicated. It
is based on the fact that there exists an analytic subset of the Cantor ternary set that is
not a Borel set. For further details, the reader is asked to consult [Mau79).

O

Thus far, it is known that the set ND(I) is residual in C(I). There were attempts to refor-
mulate this statement to say that “almost” all functions from C(I) are nowhere differentiable,
which finally led to the notion of prevalence (see [HSY92]). We will not give full details here
but only a bit of an idea of what is going on in this direction.

Theorem 7.7.2 (cf. [Hun94]). There exist two functions g,h € C(I) such that for every
function f € C(L), the set

My = {(\p) €R®: f + Ag + ph € ND(I)} C R?

is of full Lebesgue measure.

In other words, the space C(I) can be partitioned into parallel planes such that in each
plane, almost all (in the sense of Lebesgue) functions are nowhere differentiable. In fact, the
plane is generated by the following two functions:

oo o0 1

g(x) := Z % cos(2"mz), h(x):= Z ﬁsin(Q"mc), zel

n=1 n=1

Note that g, h are exactly the functions whose existence is claimed in Theorem 7.7.2.

Lemma 7.7.3. There exists a positive number ¢ such that if a, 8 € R and J C 1 is a closed
interval of length ¢ < %, then

m?x{ag + Bh} — mJin{ozg + Bh} > Tog2)?
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Proof. Put F := ag + Sh. Then

Z (acos "rx) + [ sin(2" ) \/0424-622—008 "z +0),

where 9 € [0,27] is correctly chosen. Note that without loss of generality, we may assume
that o + 82 = 1.
Let J C I be a closed interval of length 5. If k € C(I), then

mJaxk - rnJink > 2m7r/ k(x)cos(2™ M rx + 0)dx, j € N. (7.7.1)
J

Indeed, in order to prove (7.7.1), one may assume that
—mink =maxk =K >0
J J

(add to both sides of (7.7.1) a suitable constant and use the fact that [ cos(2"ma)dx = 0,
j € N). Then |k| < K. Therefore,

) , 2
/ k(z)cos(2™ x4+ 0)dx < K/ | cos(2™ Mz + 0)|dx = K2T’
J J 7T

which gives (7.7.1).
Continuing with the function F', (7.7.1) leads to

_ : > gm _ n m-+j
m?xF HlJlIlF >2 7T/ E 3 cos(2"mx + 0) cos(2" x + §)dx

n? 2

— i 27 1 /J (cos (2m*7 —2™)ma) + cos (2™ + 2"z + 29))dx

Since the length of J is 5, the integral of cos ((2™*7 & 2")7a + 6) over J is zero for n > m
unless n = m + j and the minus sign is chosen. Let n < m and J = [a,a + 5]. Then

/ cos ((2™% £ 2")mx)da
J

sin (2™ £ 2")w(a +27™) + 0) —sin (2" £ 2")7wa + 6)
(2m+i + 2n) 1

211
> -
= gm(2mti 4 2n)

Hence we obtain

m . on on
PSS ")
mox b 2 e —|—] z:: Sz \gm¥i _gn | gmi 4 on

™ ™ 2"
> — : —_
~2(m+j5)2 2m(27 —1) ; n?
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To continue, one needs the inequality Y., i—z < 572n—77;, which can be verified directly for

m = 1,2,3,4 and then by induction for m > 4 (EXERCISE). Therefore, the former inequality
may be rewritten as

T 51
F—minF > - —
B R = o )2 m2(2 1)

In particular, for j = 10 and m > 2, one is led to

s _ 5w S s T 2w
2(m+10)2  m?2(210—-1) = 2(6m)2  200m? T 225m2’

max F' — min F' >
J J

Finally, let J be an interval of length ¢ < % Choose m € Ny such that 2% <e< Qm%l
Let J,,, C J be an interval of length 27™. Then

2
max ' — min F > max F' — min I’ > 2 > 7T > (log2)*m :
J Jm Jom 225m2 ~ 450(m — 1)2 ~ 450(loge)?

proving the lemma. a

The main step in verifying Theorem 7.7.2 is contained in the next result, dealing with
nowhere Lipschitz functions. Recall that the set of all nowhere Lipschitz functions is a Borel
set (see Remark 2.5.2(d)), while the set ND(I) is not.

Proposition 7.7.4. Let g, h be the functions from above. Then for every f € C(I), the set
{(\, ) € R?: f 4 \g + ph is nowhere Lipschitz on 1} C R?

is of full Lebesgue measure.

Proof . Obviously, it suffices to show that the set of (A, x) for which f+ Mg+ ph is M-Lipschitz
at some point of I has measure zero. Denote this set by Sy, i.e.,

Sy={(\ p) €R?: f + Ag + puh is M-Lipschitz at some 2 € T}.

Fix an N € Ny and cover I with N closed intervals Ji,...,Jy of lengths € = e := % Fix
such an interval J, = J and denote by Sis,; the subset of parameters (A, u) € Sy for which
the function f+ Ag+ ph is M-Lipschitz at a point of J. We will discuss the diameter of Sy, ;.

Let (Aj,i5) € Sm,g, put fj = f 4+ Ajg+ pjh, and assume that f; is M-Lipschitz at the
point z; € J, 7 =1,2. If z € I, then

\fi(z) = fila;)| < M|z — ;| < Me.

Thus, |fi(x) — fo(x) — (f1(z1) — fa2(x2))] < 2Me, x € I, and therefore, max;(f1 — f2) —
miny(f; — fo) <4Me. Since fi1 — fo = (M — A2)g + (11 — p2)h, Lemma 7.7.3 yields

e/ (A1 — A2)? + (1 — p2)?
(loge)?

<4Mze,

where ¢ does not depend on J. Then

4Me(loge)?

diam SM,J S
C



130 7 Baire Category Approach

2
—4M€(lcog ) Therefore, the measure of Sw,s is bounded

Thus Sy, s sits in a ball of radius
from above by 7164222 (log £)4. Since Sar = UM, Sas ., it follows that the measure of Sy is
bounded from above by N wli#e?v (logen)?*. Letting N — oo finally shows that Sy is of

measure zero. O

Proof of Theorem 7.7.2. It remains to recall that a function f € C(I) that is nowhere Lipschitz
on I belongs to ND(I). O
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Chapter 8
Weierstrass-Type Functions II

Summary. In this chapter, using more advanced tools, we extend results stated in Chap. 3.

8.1 Introduction

Recall (§ 3.1) that

Wyano(@) =Y a"cos’(2nb"z +0,), z€R,

n=0

wherep e N0 <a <1,ab>1, 0 :=(0,)5, C R. The reader is asked to recall the list of all
partial results related to the function W), 43 6 presented in Remark 3.1.1. Now our aim is to
prove the following general theorems:

(9) If ab > 1, then Cpp, Sap € ND(R) (Theorems 8.2.1 and 8.2.12).

(10) If ab > 1, then Wi 4.6 € M(R) C ND4(R) (Theorem 8.3.1). Using different tools, an
analogous result will be proved in Theorem 8.7.3.

(11) If b € Ny and ab > 1, then W 449 € ND4(R) (Theorem 8.4.1).

(12) If (p € 2Ng + 1 and b > p) or (p € 2N and b > §), then W, 4,0 € ND(R) (Theo-
rem 8.6.7).

(13) If ab > 1, then there exists a zero-measure set = C R such that x is a knot point of the
function f := Wi 4.0 (i.e., DT f(z) = D™ f(z) = 400, Dy f(z) = D_f(z) = —o0) for
arbitrary 6 € R and z € R\ = (Theorem 8.7.4).

(14) Let ¢* ~ 1.3518 € (0, §) be such that tan¢* = 7 4¢*. If ab > H := 1+ﬁ ~ 5.6034,
then Wi 450 € M(R) N ND>®(R) C NDL(R) N ND>(R) (Theorem 8.7.6). Observe
that the constant H is better than the original Weierstrass constant 1 + %77 ~ 5.7123
(cf. Theorem 3.5.1).

It is clear that many cases remain undecided. The most important open problems are the
following:

Is it true that if (p € 2Ng + 1 and b > p) or (p € 2N and b > L),
then W, 050 € NDL(R) This would be a simultaneous generalization of (10), (11),
and (12).

Characterize the set of all p,a, b, 8 such that W, 4 1.0 € ND>®(R) |7 | (cf. (14)).
(© Springer International Publishing Switzerland 2015 133
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8.2 Hardy’s Method

This entire section is based on [Har16]. We wish to point out that nowadays, the main results
presented in this section, Theorems 8.2.1 and 8.2.12, are direct consequences of more general
results, e.g., of Theorem 8.6.7 or Theorem 8.7.3. Nevertheless, innovative for his time, Hardy’s
methods are in our opinion worth being presented.

Theorem 8.2.1 (cf. [Harl6]). Assume that 0 < a < 1, ab > 1, a := —%. Then it is

impossible for the function t — Cq (=) to be o([t — to|*) when t — to for some to € R.
Consequently,

o the constant o is the mazimal number such that Cgp is a-Holder continuous at some
point tg € R (¢f. Remark 3.2.1(g));

e afinite C}, ,(to) does not exist for every to € R, and therefore, Cyp € ND(R).

An analogous result is true for the function Sqp.

We will consider only the case of C, ;. The case of S, is left to the reader as an EXERCISE.
Put Hy :={s=0+it € C:0 > 0} and define

F(s):= Z ae™" seH,.
n=0

Remark 8.2.2. (a) Since
|a"e_Sbn| =a%e " <a", s=o+ite H,, necN,

the function F is well defined, F € O(H4)NC(H4,C), and |F(s)| < A:= ;- s€ H,.
We have

F(s) = Z ae~"" cos(tb") —i Z ae~"" sin(tb")
n=0 n=0
=:G(s)+iH(s), s=o+itc H,.

Let g(t) := G(it) = Cap(5), t € R.
(b) Using Remark 2.4.1, we see that

oG >

S (5) ="~ > (ab)"e™"" sin(tb"),
n=1
Z—G(s) =— Z(ab)”e_”bn cos(tb™), s=o+itec H.
o
n=1

For ¢ > 0, define

Yol(s) = Z bree=st" sc Hy.
n=0
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Remark 8.2.3. (a) For each oy > 0, we have [p"2e— (70" | < |pree=o0b"| for ¢ > oy and
t € R. Since

_ n _1 n
|bnge oob |1/n — bl —oob 0,
n—-+oo

we conclude that the function ¢, is well defined, ¢, € O(H 4 ), and |¢, (0 +it)| < ¢,(00)
for 0 > 09, t € R.
(b) By the Weierstrass theorem for holomorphic functions, we get

oy Zb" oD~ (A)pyp(s), s€Hy, peN. (821
(c) We have
01 a O'+Zt0 an (1—a) —(U-Hto)b" Z(ab>ne—(g+it0)b"'
n=0

Before going into detail, we will describe the main proof. G.H. Hardy mainly used results
on the solution of the Dirichlet problem for boundary values on the real axis; see Lemma 8.2.4.

Proof of Theorem 8.2.1. Suppose that Cq (=) = g(t) = o(|t — to|*) when t — to.

(1) First we obtain an integral representation for the function G (Lemma 8.2.4), which gives
us formulas for g—f and %—Cj (Remark 8.2.5).

(2) Using these formulas, we prove that 2¢ (o + itg) = 0o(c®~!) and 9% (o + ito) = o(c®~!)
when ¢ — 0+ (Lemma 8.2.6).

(3) Hence, by Remarks 8.2.2(b) and 8.2.3(c), we conclude that ¢1_, (0 +itg) = 0o(c®~1) when
o — 0+.

(4) On the other hand, we will prove that |, (3% +it)| > 2(3%) 7%, t€R, meN, 0> oo > 1
(Lemma 8.2.8).

(5) Lemma 8.2.9 will show that we always have @,(c + it) = O(1/0?) when ¢ — 0+. In
particular, by Remark 8.2.3(b), wgp)a(a +it) = O(1/c1=**P) when ¢ — 0+ (p € N).

(6) Now, by (3) and Lemma 8.2.11, we get gpgp_)a(a + itg) = o(1/017%"P) when ¢ — 0+
(peN).

(7) Using once again Remark 8.2.3(b), we see that ¢1_q1p(c + itg) = o(1/0!=%"P) when
o — 0+ (peN).

(8) Taking p € N such that 1 — a+ p > o, where g is as in (4), we get

l—a+p

1—a+py\l-otp 1
(=) e )25 men

bm
a contradiction. O

Lemma 8.2.4 (Schwarz Integral Formula). Let P = Q+iR € O(H;)NC(H.,C), |P| < A,
q(t) == Qit), t € R. Then

o [T q(u)du )
=2 [ Fiutg smoriteH.

Proof. Fix an s = 0 + it € Hy. For r > |s], let C, denote the closed contour of the form
[ir, —ir] U [, where I.(0) = re?, § € [-n/2,7/2]. By the Cauchy formula, we obtain
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_ 1 P .1 PQ . 1 [ P
P(S>_%/CTC—SdC_2_ﬂ'i/CTC—SdC 27ri/CTC—|—§alC

1 aP(()

T crmdg
BN G S Y ST S
a u [ir,—ir] (C_S)(C‘f'g) +7TZ Ar (<_8>(C+§) .IT+IT.

For r > 2|s|, we have

1 [™? oA 40A
|I;'|§—/ IE pdu=—= — 0.

T )2 (%r)Q r  r—+oo
Consequently,
. . r +iR(iu)
= lim Re(I')=— 1 z/R _a(w) +iRG) y
@) r—}I-Poo e(lr) T—ir-ir-loo T )_, ¢ ((zu —s)(iu + 5)) “

. g/j e (q(u) +iR(iu)>du o /+OO q(u)du . -

r—+o0 T liu — s|? T oo 024 (u—1t)2

Remark 8.2.5. (a) Taking P := 1, we get

+oo
o du
1=— _, ite H .

7T/_OO o2+ (u—1t)? ot +

(b) Let
oq(u)
h(o,t,u) T (U= 1) (o,t,u) € Hy xR.
Observe that
Oh (u—1)? —o?
ot = = 7
80(07 7’Ll/> q(“’) (0_2 + (u_t)Q)Q
and
oh |(u—t)? — o?|
()] < A w2
Moreover, for each (o,t) € H,, the last function is integrable with respect to u on R
(EXERCISE). This permits us to calculate g—? by differentiating under the integral sign,
ie.,

1 +oo —t2— 2
oQ / (=t —o u)du, s=o+ite Hy.

e N R O Dk

(¢) Analogously,

oh B 20(u —
E(C"? t ’LL) - Q(u) (

o2+ (u—t)?)?
and
lu —t|

h
tou)| <240 — 12—
7.t < T+ (u—1)2)?

5
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Thus,
0Q . 20

too u—t ,
ot (S)— - [m mq(u)du, s=oc+ite Hy.

(d) In view of (a), by differentiating with respect to o, resp. t, we get

+oo N2 2
1 / =t =0" o,
T J_o (624 (u—1t)2)2

25 [T u—t

? . mduz& oc+ite H,.

Lemma 8.2.6. If g(t) — g(to) = o(|t — to|®) when t — to, then

8_G(U +itg) = o(c®™1), 8_G(U +itg) = o(c®™ ') when o — 0 +.
ot 0o

Proof. Let v := g — g(to). Note that |y| < 2A. Take an € > 0 and let § > 0 be such that
[v(w)| < elu —to|* for u € [tg — ,tg + d]. Using Lemma 8.2.4 and Remark 8.2.5, we get

oG . 20 [T u — tg
E(U +itp) = - /_OO Tt (= t0)2)29(u)du

_20’ +oo u—t()
T ) (@2 (u—to

)2)27(u)du.

Hence

oG . 20 / / u — 1o
— (o +ity) = — + u)du
ot ( 0) ™ ( [u—to|<6 |u—t0\>5> (02 + (u— t0)2)27( )

= I, + 1.
For |u — to| > ¢, we have

U—to
)(02 F (1 —t0)2)?

24
S
)] <

and the right-hand-side function is integrable on |u — to| > 6. Hence, I/ = O(o) when
o — 0+. On the other hand,

_ _ « “+oo a+1
o] < 2_0/ e tolel ol g < 62—0/ L —
|u—t0\§5

0 (624 (u—10)2)2 — 7 J_o (02 +u?)?

2 +oo |U|a+1
_ a—1 _. a—1
= &0 ; ‘/_Oo md’l} =. &0 C

Finally,

oG
l-a E(a + ito)) < eC + const o™ < 2C for 0 < o < 1.
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The proof for %(a + itp) is analogous:

oG 1T (u—tg)? — o
8_0'(U+ Zto) - g[oo (0_2 ¥ (’LL — t())g)gg(u)du’

1/+°° (u —tg)? — o2

T ) (0% + (u—1t)?)

57(u)du.

Hence

g_f(a + i) = }T </|U—t0|§5 " /u—to>5 ) (U(;LJ: fz)— ;o()j?)Q u)du

= I +1I
For |u — to| > § > o, we have

) (u—t9)? — o?
(0% + (u—t0)?)?

24
S
10| <

and the right-hand-side function is integrable on |u — to| > 4. Hence, I = O(1) when
o — 0+. On the other hand,

1 —t0)? — o?|e|u — to|*
Img—/ (u = t0)® — ®lefu— tol |
T Ju—to|<6 (02 + (u—t0)?)

1 1142 — o2|lule 1 [T°° 02 = 1]lv]@
< 6—/ Mdu = 600‘_1—/ wdv = ec® 10
T

e a2y 7). arep
Finally,
11—« oG . 11—«
a—(a—i—zto) < eC + consto <2Cfor0 <ol ]
o

In view of Remark 8.2.2(b), the above lemma implies the following result.
Corollary 8.2.7. If g(t) — g(to) = o(|t — to|*) when t — to, then

o0

Z(ab)"e‘”bn sin(teb™) = o(c® 1),

n=0
oo

Z(ab)"e“’b" cos(tob™) = o(c® 1) when o — 0 +.

n=0
Consequently,

Z(ab)”e_(”Jrit“)bn =o(c™™ ') when ¢ — 0 +. (8.2.2)

n=0
Lemma 8.2.8. There exists a o9 > 0 such that for every o > 09, we have

wg(b%Jrit)) > %(%)_97 teR, meN.




8.2 Hardy’s Method 139

Proof. For m € N and s = 3% + it, write

m—1 >
5) = ( 3 bnge—sb") Fomee " 4 N e = fi(s) + fa(s) + fa(s).
n=0

n=m-+1

Obviously,

[o(5)] = 1f2(5)] = [ fa(5)] = [f(s)] = b2 (1= b7 fu(5)] — b €| f(s)] ).

We are going to show that

e~ Bre

b7t fi(s)l < T—=ma

k=13, (8.2.3)
where
=logh— 143, Bg:=—logh—1+b.

One can easily check (EXERCISE) that B, Bs > 0. Consequently, for ¢ > g9 > 1, we get
(EXERCISE)
po(s)| > §0™ee™8 > S (35%) 78,

which will complete the proof. To prove (8.2.3), we proceed as follows:

m— m—1
bmect| () < 3 b=V e = 3 gmellmom o =187

n=0
_ Ze—g(klogb—1+b_ EXERCI*EZe—gk(logb 1+ € e
1— e Bre’

k=1

b—mgeg|f3 |< E bn mge(l b m)g_ E e —o((m—n)logb—14+b"""")
n=m-+1 n=m-+1

oo sneiss —Bsp
_ Ze—g(—klogb—l+bk) FXEROISE Z o 0ok(—logb—1+b) _ _© ° O

k=1 R 1—efae’

Lemma 8.2.9. For every o > 0, we have
|polo +it)| < po(o) = O(1/0%) when o — 0+, te€R.
Consequently, by (8.2.1), for all o > 0 and p € Ny we have

[0 (0 + )| < @orp(0) = O(1/0*7) when 0 — 0+, tE€R.

Proof. ! Fix a 0 € (0,1) and let m € N be such that 7 := gb™ € [1,b). Then we get

00 m—1 00
c%p,(0) = Z(ab")ge_”bn = ( Z (ab")ge_"bn> + Z (ab”)ge_"bn
n=0 n=0 n=m
k:l n=0

1 The authors would like to thank W. Jarnicki for helpful remarks related to the proofs of Lemmas 8.2.9
and 8.2.10.
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7

< (Z(Tb_k)g) + i(Tb”)ge_Tbn
n=0
g

Lemma 8.2.10. Let @ : (0, +00) — C be a C? function such that

S

>
Il
—

+ b%p,(1) = const . O

M8

(B'79)2) + 7%, (r) < T

>
Il
—

&(0) =o(1), (o) =0(1/0), P"(6)=0(1/0%) when o — 0 +.
Then @'(0) = o(1/0) when o — 0+.

Proof. We may assume that @ : (0,+00) — R. Suppose that 0@’ (6)—~ 0 when o — 0+.
Since the function ¢ — o®’(0) is bounded near zero, there exists a sequence 1 > o, \, 0
such that 0,9 (0,) — 4c # 0. We may assume that 0,9 (0,,) > 2¢> 0, n € N. Let M > 1
be such that 0?¢"(0) < M, o0 € (0,1+¢]. Put 8, := %=, 7, := 0, + 6, € (0,14 ¢}, n € N.
Obviously, 7, N\, 0. By the mean value theorem, for € (¢, 7,), we get

M M c
<

B (1) — @ (0)] = (1 — )" (60)] < bur < 5,20 = £
fn On On
Hence ¢'(n) > &' (0,) — &= > 2¢ — = = £ Using once again the mean value theorem, we
get
B(10) — Do) = 2B () > 6y < o
Tn) — Opn) = On n) 2= On— = 7T 3
g on M

a contradiction. O

Lemma 8.2.11. Let ¢ > 0 and let ¥ : (0,4+00) — C be a C*™ function such that
¥ (o) = o(1/c?), WP (5)=0(1/0%*?) when o — 04+, peN.
Then for each p € N, we get W) (a) = o(1/52*P).

Proof . Tt suffices to prove that ¥/(o) = o(1/09"!) when ¢ — 0+, and then replace ¥ by
¥’. Define &(0) := 02¥(c) and observe that & satisfies the assumptions of Lemma 8.2.10.
Indeed,

od' (o)
09" (o) = 0*(0(0 — 1)o* ¥ (0) + 200°~ W' (o) + 0?¥" (7))

o(00°™ W (0) 4+ oW (0)) = 00°¥ (o) + 02T (o),
0(0 — 100 (o) + 200 W/ (0) + 0220 (o).

Hence, using Lemma 8.2.10, we conclude that

S H 4 ot+lyy/ — T o+l
0= Ulg&(ga V(o) + 00 (0)) = Uli}%l_i_(f (o). O

Now we move to the more difficult case ab = 1.
Theorem 8.2.12 (cf. [Har16]). Assume thatb> 1, a:=1/b. Then Cy 3, S1/pp € ND(R).

We will consider only the case of Cy;. The case of Sy is left to the reader as an
EXERCISE. The idea of the proof is similar to that of the proof of Theorem 8.2.1.
We keep previous notation.
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Lemma 8.2.13. If a finite derivative ¢'(to) exists, then

oG 0*G

E(a +itg) — ¢'(to), W(a +itg) = o(1l/o) when o — 0 +.

Proof. Write g(u) = g(to) + ¢'(to)(u — to) + p(u)(u — to), where p(u) — 0 when u — to.
Note that the function p is bounded. Take an e > 0 and let § > 0 be such that |u(u)| < e,
u € [to — 0,10 + ¢]. Then (using Remark 8.2.5) we get

oG . 20 [T u — to
E(U"‘Zto) - ?/;OO (0_2 ¥ (’LL — t())g)gg(u’)du

20 +oo u — t() ,
= [OO (02 + (u—t0)2)? (g(to) +¢'(to)(u —to) + p(u)(u — to))du
a2 [ st 2 T Lt
T @@ 7 S (07 (w02
Moreover,
20 (T (u—to)du 2 /+oo V2dv
T J-o (0'2+(U—t0)2)2 T oo (1+1}2)2
1 v +oo
= 7—T(arctanfu - 1+—U2) ‘_OO =1. (8.2.4)

ence = to). On the other hand,
H =y On th her hand

20 (u —to)?p(u)du
1;;:?(/ +/ ) o tat = eE
lu—to| <& lu—to|>48 0

Similarly as in the proof of Lemma 8.2.6, one can easily prove that J” = O(o) when 0 — 0+
(EXERCISE). It remains to estimate J.. In view of (8.2.4), we obtain

2 —tg)%d
|J;|§5_U/ 2(“ 0) u22§€.
T Jju—to)<s (0% + (u —t9)?)

Finally,

%(a—i—ito) —g'(to)‘ <consto+e<2for0<o<k1,

which proves that 2% (o + itg) — ¢'(to) when o —» 0+.
Analogously as in Remark 8.2.5, one can easily prove that %? may be calculated by
differentiating under the integral sign (EXERCISE). Hence

0%G ) 20 [T 3(u—ty)? — o3
W(U_FZtO) = ? [OO (0_2 ¥ (’LL — t())g)gg(u)du’

_20/+°° 3(u—to)? — o?
S ) (02 (u—t0)?)?

(9(t0) + g/ (to)(w = to) + () (1 — to) ) du
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20 (3(u—t9)? — %) (u — to)
~ow [

+oo _ 2 _ 2 _
+ 2—0/ (Blu=to)” = o7)(u to)u(u)du =1 +1I.

s (02 + (u—19)?)3
Moreover,
+oo _ 2 _ 22 _ _
20 (3(u —tp)* — %) (u — tp) du— 20 * (302 —1)v du— 0.
T J-x (02 + (u - t0>2)3 T J-—co (1 +v )

Thus I/ = 0. Now we estimate I//:

;= 20 (3(U _ tO)Q — 0-2)(11' — to) u)auw =: / 7
- T </“_t055+/u—to|>5> (02 + (u — t)?)3 plu)du =: J. + J7.

As above, we get J! = O(¢) when 0 — 0+. It remains to estimate J.. We have

20 38— t0)* — o[ — to

ol J)| <e— du
T Jju—tol<s (02 + (u—1t0)?)?
2 [T 302 —1]v|
<e— ————dv =: conste.
TJ) oo (I4+02)?
Finally,
2
3 5 — (o + zto)‘ < constq 02 + consts &,
which completes the proof. a

Lemma 8.2.14. If a finite derivative ¢'(to) exists, then p1(c+itg) = o(1/0) when o — 0+.
Proof. We have

GG (o +ito) Z e " sin(b"t) =: A(0),

ot
8825 (o +ity) = z%b” —o" cos(b™ty), o > 0. (8.2.5)
Observe that
Z bre= " sin(b"to), A”(o Z b= sin(b"tg), o > 0.

Consequently, by Lemma 8.2.9,
|4 (0)] < p1(0) = O(1/0), |A"(0)] < ¢2(0) = O(1/0®) when o — 0 +.

Now we apply Lemma 8.2.10 to the function @ := A — ¢'(tp). In view of Lemma 8.2.13, we get
A'(o) = o(1/0) when ¢ — 0+. Finally, in view of Lemma 8.2.13 and (8.2.5), we conclude
that
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(o +itp) = Zb” —ob cos (0"to) — sz” —ob" gin (b"to)
=0(1/cr) when 0 — 0+ . O

Proof of Theorem 8.2.12. Suppose that a finite derivative Cl/b »(22) exists for some ¢ € R.
We take in Lemma 8.2.11 g := 1 and ¥ (o) := p1(0 + itg). By Lemma 8.2.14, 1 (0o + itg) =
o(1/c) when ¢ — 0+. Lemma 8.2.9 implies that ##)(¢) = O(1/0%*P) when ¢ — 0+
(p € N). Thus, by Lemma 8.2.11, ¥P) () = o(1/09*P) when ¢ — 0+, i.e., p14p(0 + ity) =
o(1/0'*P) when ¢ — 0+ (p € N). Let p € N be such that 1+ p > g, where go is as in
Lemma 8.2.8. Then

() (2

N .
pm pm m ey

1
“’50)\ 3

a contradiction. O

Remark 8.2.15. Notice that for the case b € N, G.H. Hardy gives in [Har16] simpler proofs
of Theorems 8.2.1 and 8.2.12 based on the Poisson integral formula.

8.3 Baouche—Dubuc Method

Theorem 8.3.1 (cf. [BD92]; see also Theorem 3.11.1). If ab > 1 and a := —% € (0,1),
then Wi o0 is a-anti-Hdolder continuous uniformly with respect to © € R and 0 (c¢f. Re-

mark 3.2.1(h)). In particular, Wi 459 € M(R) C ND_L(R) (c¢f. Remark 2.5.4(a)).

Remark 8.3.2. In fact, A. Baouche and S. Dubuc in [BD92] considered only the case 8 = 0
and proved that Wi 4 1.0 is weakly a-anti-Holder continuous uniformly with respect to € R.

Proof of Theorem 8.3.1. By Remark 3.2.1(h), we have only to check that there exist ¢ >
0 and §p € (0,1] such that for all @ and 6 € (0,dp), there exists a ¢ € (0,0] such that
(Wi a,b,0(t) — Wi,a0,0(0)] > ed.

Put f:= Wi 0. Let L,m € N, N € 2N, be such that b* < § and L < m. Let h := 5.
To simplify notation, put A, = 27b™. Note that A,,h = wN. Take an n € Ny. First observe
that

h 1 h
/ cos(Amt + 0p)dt = — sin( At + Gm)'
0 A 0
1
- (sin(Amh 0, — sin9m> —0.
Let
9 [k
I:= E/ f(t) cos(2mb™t + 0,,) h/ )) cos(Amt + 0,,)dt
0
We have

2 [, 1 1 h

- 5 Amt m t=—|t i 2A'm, 2 m

h/o cos”( +0p,)d h( +2Amsm( t+ 20 ))’0

SN I ( (2Amh + 20,,) — sin(20 ))—1
2Amh sin sin(20,,) | = 1.
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Moreover, for n # m, we get

>

h
/ cos(Ant + 0,,) cos(Ant + 0,,)dt
0

1 h
0
__(sm((A t+ An)t + 00 +0m)  sin((An = Ap)t + O ))h
b An+ A A, — A, 0
1 1 .
T hAZ — A2 (An51n((An+Am)h+9n+9 ) — Ay sin(6, + 6,,,)

— Apsin((Ap + Am)h + 0, 4 0) + Ay sin(0y, + 0,,)
+ Apsin((Ap — Ap)h+ 0, — 60,,) — Ay sin(6,, — 6,,)
+ A sin((An — Ap)+ 0y — 0,) — Ay sin(0, — 9m))
L2
hA2 — A2
— Ay, cos(A b+ 0,)sin 6, + A, cos 8, sin Gm)

(An sin(A,h + 6,,) cos6,, — Ay, sin 0, cos 0.,

1 .
5 A%_—AQ (An cos 0, cos(0,, + %Anh) sm(%Anh)

m

+ A, sin0,, sin(0,, + %Anh) sin(%Anh)).

Hence

|sin(1A4,h)].

2 h
‘E/ cos(Ant + 0,,) cos(Apt + O, dt)
0

4
h |A - Am|
Thus

m—L—1 o0
2a™b" 2a™
[ —a™| < + D o pmlh
n=0 n=m—L, n#m 7T|b —b |h

i_l 2a™b"™ = 2a™
pm — bm—l 7T-(b?n _ bm—l)h

< 2am—me—L 2am—L

S @b Dom — 1) " 7l —a)(b™ — b1k
< 2CLm_Lb_L N 4am—L

T (@-1)1-g) Nr(l-a)1-g)

< sa™,

where

2 1 1
(@)1 - ) <ab— 1 o a))'

Fix L, N € N, N = 0 (mod2), such that s < 1 and bL < % Put ¢ := 12;5 Then
I > 2ca™ for m > L. Consequently, for every m > L, there exists a ¢, € (0,h] such
that |f(tm) — f(O )| > ca™. Now take a 0 € (0, 5r) and let m € N, m > L, be such that
h =3 <6< 52—+. Let € := ca(£)*. Then
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|f(tm) — f(O)] > ca™ =

c 620‘( N

£ )" s e 0
e . Nopo 2bm—1> -

8.4 Kairies—Girgensohn Method

The main aim of this section is to discuss the case ab = 1, at least when b € N5. The general
case remains open.

Theorem 8.4.1 (cf. [Gir94]). If a € (0,1), b € Ny with ab > 1, and 6 € R, then Wi 40 €
ND,(R).

The proof will be based on studying systems of functional equations (see Sect.4.2 in the
discussion of the Takagi function) and the Schauder coefficients of solutions of such a system.
To adjust the function Wi 46 in order to obtain simpler formulas, we put

Wapo(x) = Z a”sin(brb"x 4+ 0), x €R.

»0y

n=0

Note that Wi ,p0(z) = VVZL,b,G-s-g(%I)7 z € R. Hence it suffices to verify that f)[v/;,bﬁ €
ND_(I).

Fix a, b, 0 as above. Then W@M satisfies the following system of functional equations on I
(EXERCISE):

g(x;rj) = (=1)’ag(x) + (-1) sin(rz +6), z€l, j=0,...,b—1 (8.4.1)

8.4.1 A System of Functional Equations

In this part, we will discuss a system of functional equations that generalizes (8.4.1) from
above, namely we study solutions of the following system:

+j .
g(z 5 ]> =a;9(x) +g;(z), ze€l j=0,...,b—1, (8.4.2)
where a; € R with |a;| <1land g; : I — R, j=0,...,0—1.

Note that if a; = (—1)7%a, a € (0,1), and gj(z) := (—1)sin(rz+0),x €I, j =0,...,b—1,
then (8.4.2) is exactly (8.4.1) from above.

If f:T— R is a solution of (8.4.2), then

90(0) = (1 — ao)£(0), go—1(1) = (1 —ap—1) (1),
1(3) = a1 f () + g,1(1), 7(3) = a;£(0)+ g50),
where j = 1,...,b— 1. In particular,
j_l—lgb_‘;il_)l +g;(1) =a; 190_(?0 +g;(0), j=1,....b—1 (8.4.3)
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Theorem 8.4.2. If (8.4.3) is true and all the g; are continuous, then there exists exactly
one f € C(I) solving (8.4.2).

Remark 8.4.3. Applying this result to (8.4.1), it follows that W/;,bﬂ is the only solution
of (8.4.1). Moreover, one may study (8.4.2) without knowing the explicit form of its solution.

Proof of Theorem 8.4.2. We introduce the metric space

X = {u e C(T) : u(0) = 90(0) u(l) = g—1(1) }

1—ag’ 1—ap_q

with d(v/,v") := ||u' — v”||;. Then the mapping T : X — X given by

7+ 1
Tu(z) == aju(br — j) + g;(bx — j), ifaxe [%, ‘%}, j=0,...,b—1,
is well defined (use (8.4.3)). Note that every continuous solution of (8.4.2) is a fixed point of
T. Moreover,
d(Tu', Tu") <max{|a;|: j =0,...,b—1}-d(u/,u"),

i.e., T is a contraction. Therefore, by virtue of the Banach fixed-point theorem, there exists
exactly one function uy € X with Tuy = wug. Hence ug is the only continuous function
satisfying (8.4.2). O

8.4.2 The Faber—Schauder Basis of C(I)

Let b € Na. We introduce the following functions oo o, 01,0, and 0 j, (1 =0, ..., i1, j=
1,...,b—1,neN)onl:

UO’Q(LC) =1 Z, (71)0(%) =2,

0i4n := the polygonal line with nodes at
b+j5—1 ib+ 4 b+ +1
(070)7 (Z +b'Zl 70)7 (Z b_rtjvl)v (%7())7 (170)

Note that all these functions depend on b; nevertheless, for simplicity, we omit the extra
index b, here and in our further discussions.

Theorem 8.4.4. If f € C(I), then f has the following unique expansion:

oo bmTl—1b—1

f=%0f)o00+70(Horo+ D D> Yijn(f)oism

n=1 i=0 j=1

on I, where the series is uniformly convergent.
The Schauder coefficients vo,0(f), v1,0(f), Vi,j,n(f) satisfy the following relations:

70,0(f)=f(0),. ’71'70(f)=f.(1)7 | -
) = (55:%) =524 () =34 ()
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Moreover, if

pnTl_1b-1

for="00(o00+0(Horo, fai= D, > %ijn(F)oijm, neN,
i=0 j=1

then f, is a polygonal line with nodes at most at the points 7, and there we have fn(i%) =
f(3), m=0,...,0"

Remark 8.4.5. In the case b = 2, this basis (given by the 090, 01,0,0i, ;) may be found in
papers of Faber (see [Fab08, Fab10]).

Proof of Theorem 8.4.4. Step 1°. We first prove the uniform convergence under the assump-

tion that f,, is linear on the intervals [, =] m = 0,...,0" — 1, and f, (=) = f(2),

m=0,...,0" (n € N). Let € > 0 and choose ny € N such that

! 1" € / 1" / 1" 1
|f(@") = f(x )|§§ forall ', 2" €I, |2’ —x |<bT0
Let n > ng. Take an m € {0,1,...,b"} with 2; := & <2 < ”};1 =: x9. Then |z — 21| <
T3 — 21 = 3= < . Thus, |f(z) — f(z1)] < £. In view of our assumption, we have that

Jnlies 2, is linear and f,(21) = f(x1), f(2x2) = fn(x2). Hence

A

[f (@) = fo(@)] < [f(2) = Flz)] +[f(21) = fulz)] < §+ |fn(21) = fu(@)|

9 9
S falw2) = fulo)] = 5 + () = fan)] <.

IN

Therefore, || f — fnll < € whenever n > ny.

Step 2°. Note that by definition, f,, is piecewise linear with nodes at most at the points
we, m = 0,...,b". Moreover, 0;;x(0) = 0;;x(1) = 0 for all admissible indices with 4, j for
k € N. Hence, f(0) = fo(0) = 70,0(0) and f(1) = fo,0(1) = 71,0(f)-

Assume now that the formula for the Schauder coefficients for n—1, n € N, and f ( bﬁl) =
fr—1(325), m=0,...,b"" %, are verified. If N > k > n, then

ib+ j ibF b + jbFn
on () s () <o

Moreover, if (s,t) # (4,j) are admissible indices for n, then Us,tm(iitj) = 0. Therefore,

f = fa=1+%,n(f)oijn; in particular,

f(ibb—:j) _ fn_l("bbj:j) +%in(F) = f”(lbb#)

Recall now that f,,_; is linear over the interval [bn%l, lfg"—}l} , which together with the induction
assumption implies that

f”‘1<ibb:j> - b;jf”‘l(bni—1> + %f”‘l(g_—b

=5 () i )

Finally, merging the last two equations gives the claimed formula for v; ; »(f). O
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Applying the former result on the form of the Schauder coefficients, we get the following
lemma, which will be used later in the discussion of nowhere differentiability properties of the
Weierstrass function.

Lemma 8.4.6. Let f € C(I), n € N, i €{0,...,b""t —1}. Then:

(a) if f is concave on [t 5k, then %Jn(f) > O. forallje{l,...,b—1};

(b) if f is differentiable and f' is convex on [pr, £ with i < b"~t — 1, then vijn(f) >
Vit1,4n(f) for all j € {1,...,b—1}, i.e., the numbers ; j »(f) are decreasing with respect
toi;

(c) if f is differentiable and f' is convex on [bni Ty g AL then

Yign () = Yip—jn(f), J=1,..., {g}

(d) if f(x) =xf(1—x), x €L, then vijn(f) = £yn-1_1-ip—jn(f) forall j=1,...,0—1.

Proof. (a) Let bn+1 < <y<a
Af(y,x"). In particular, we obtain

%J»n(f):j(;n;j) (Af(z_gibb:j) Af(zb+j (i4b—n1)b)> ~ 0.

Then concavity implies that Af(z',y) >

(b) For = € [pir, 4] put f(z) := f(x + h), where h:= pLr. Applying that f' is assumed
to be a convex function implies

Fed =1 (o + mr o )
< )+ a4 )

oo = (252 )
< D)+ e a + ),

where it < 71 < 2 < . Adding these two inequalities gives

fl(@a) + f(xr 4+ h) < f'(z1) + f(x2 + h),

implying that ]7’(962) < f’(xl) Thus, f is concave on the interval [t 2], Applying
(a) leads to

<= () - (4 1)
() ()
0 G) =+ )
= Yi,jn(f) = Vit 1,5,n (f)-

(c) Put h:= 2£} and f(@):=fz)— f(h—2),z € (et o). Let oy < @1 < @ < 2tk
Since f’ is assumed to be convex, we get
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Flan) = (BB 22y G g)

h — 2x1 h —2x1
< )+ P (- )
Flt=an) = £ (Pt + 22 )
< ) ),

Adding these two inequalities yields
F(@2) + f/(h— 1) < fl(@1) + f/(h— 21),

implying that f’(z2) < f'(21). Hence, the function f is concave on [, 25t ], There-
fore, one obtains that

~ ~ i 2i+1
Af(zy,w2) > Af(z1,23), T ST < T2 <T3 < o

Note that f(;;%ll +a) = —f(;lfj}l — ). So we have Af(an',17 lf;"—,ll) = Af(an',17 22;1—*111)
Using the formula for the Schauder coefficients yields

oD = e (A (55 - AT ()

- (a7 ) - a5 2o

or

0 < %n(f) = (f(ibb:j> - f(QZjn:j - ibbtj»
b—j ' 2+ 1 '

B ’b](’f<b"2—1)_f'< bz’:ll_bnl—l))
0 G=) G 1)

=i in(f) = Vio—jn ()

which completes the proof.
(d) The proof is a direct application of the form of the Schauder coefficients, and therefore,
it is left as an EXERCISE.
O

8.4.3 Nowhere Differentiability and the Schauder Coefficients

Generalizing a result of Faber (see [Fab08, Fabl0]), it is possible to formulate necessary
conditions for the Schauder coefficients of a function f € C(I) with f) (z9) € R for some
zo € [0,1). Fix b € No. Let f € C(I), ¢,n € N with ¢ <b"7 !, and j € {1,...,b— 1}. Put

FO(f) = minfmax{y, jn(f) i <s<itq—1}: 0<i <"t =g},

3
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SV =0T, Signlf) ="zl f).

Theorem 8.4.7. If f € C(I) and xo € [0,1) are such that f' (zo) € R, then

lim 42 (f):O, geN, j=1,...,b—1.

n—00 n

Remark 8.4.8. This result makes it possible, at least in principle, to exclude the possibility
that a function f has a finite right-sided derivative.

Proof of Theorem 8.4.7. Let
xozzg—:, 0<& <b,
k=1

be the b-adic representation of zy with the condition that there are infinitely many j’s with
& #9. Fix se{l,...,q}. For n € Ny, put

n—1
. &k ]
Un = Z b_k + bn—l’
k=1
n—1
;o &k s+1
Un _Zb_k+ pn—1’
k=1
¢ s
1z k
v _I;bk+bn—1+bn

Note that if n > ng for some ng € Ny, then u,,v),,v!! € I. Moreover, we have

b
0, 0<u—m< T g

bn—1 nooco pn n—oo

0< ’U —x9 <
! qb 11
Up — o < q(Uy, — Up), Up —To < 7(vn—un).

Applying Remark 2.1.4(a), we get limy, o0 (A f(un, v),) — Af(un,v)))) = 0. To evaluate this

difference, fix an n > ngy and recall that fx, k& < n, is linear on the segments [bn%? Z’Z—ﬂ]

Therefore, Afy(un,v;,) = Afy(un,v)). Moreover, define 7, := > 7° ., fr and note that
Tn(Un) = rn(v)) = rp(vl) = 0. Hence, we have

0= lim (Af(un,v;,) = Af (un,vy,)) = lim (Afp(un,vy,) — Afnltn,vy)).

n—oo n—oo

Since fn(un) = fa(vl,) =0, we end up with 0 = — limy, 00 Af, (U, v!!). Put i, 1= &7 2 +
<o+ &n—1. Then Af,(up,v)) = T'yin+s7j,n(f). Hence, the sequences (b ’yin+5)j7n(f))

neN,
converge to 0, s =1, ..., q. In particular, if n is large, then ’
O(f) < max{[8, +e () :s =1,....q} — 0,
which completes the proof. a

In order to apply the former theorem, one needs an effective way to calculate the Schauder
coefficients.
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8.4.4 Schauder Coefficients of Solutions of a System
of Functional Equations

Given b € Ny, we now study the continuous solution f € C(I) of the generalized system of
functional equations (8.4.2) satisfying (8.4.3) with continuous functions g;.

Theorem 8.4.9. Let f be as before. Then:
(a) 00(f) = 22, mo(f) = 2

(b) 10,5,1(f) = %((GJ‘ = 1)v0,0(f) +9j(0)) + %((%‘—1 — 1)y1,0(f) +9j—1(1))7
j=1,...,b—1;

(C) 7i+ub"—1,j7n+1(f> = au%,jm(f) + ”Yi,gyn(gu),
neN,izo,...7b"_1—1,j:1,...,b—1, v=20,...,b—1.

Proof. (a) Use (8.4.3) and Theorem 8.4.4.
(b) We know that yo,j1(f) = f($) — b—_lf( 0) — £ f(1). Using (8.4.3) leads to

_b=j

L (3£(0) + 6500 + 2 (0515 (1) + g5-1(1)).

Together with (a), it gives (b).
(c) Recall the representation of ;4 4n-1 ; »,(f) in Theorem 8.4.4. Applying to the three terms
on the right-hand side of that representation the functional equations in (8.4.2) gives

f((z'+ullj::)b+j> :f((z'b+j)£)_”+1/) _ yf(Zb+J) +gy(ibbtj)7

1) = (5 = () o)

f(i+z/b;’n‘1+1> :f((i+1)b;”+l+u> _ Vf(H—l) +gl,(§):_}>,

which verifies (c).

In order to show that f has nowhere a finite or infinite right-sided derivative on [0, 1), it

suffices to find j and ¢ such that the sequence (SJ(‘Q( f))n does not converge to 0. To do so,
Theorem 8.4.9 will be useful.
Put

a:=min{la;|:j=0,...,b—1},
gj,n :gj,n(gm'-wgb—l) = max{&id’n(g,j): 7;:0,...7[)”_1 — 17
v=0,...,b—1}, neN, j=1,...,b—1.

Lemma 8.4.10. Let ng € N, ig € {0,...,b" "t — 1}, and jo € {1,...,b — 1}. Assume that
a > 0. Then
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k
|5io+rb"0—1,jo,no+k(f)| > (ab) (|5i07j0,n0 bz 5+1 Joﬂlo-‘rs)?
s= 0

where k,r € Ng with ig+rb™~1 < po+k=1 _1 (note that the empty sum is by definition equal
to 0).

Proof. We will use induction over k£ € Ny.
Step 1°. Let k = 0. Then r = 0, and the claimed inequality is obviously true.
Step 2°. Assume that the lemma is true for k € Ny. We have to verify that the claim is true

for all 0; 4 pno—14ppmo+h—1 jo no+k1(f)s ¥ =0,...,0—1,if it is true for &; 4 pno-1 jo no+s(f)-
Using Theorem 8.4.9 and the induction hypothesis gives

|5ig+rbn0*1+ubno+k*1,jo,no+k+1 (f>|
= |ba’1/51;0+’r‘bn071,jg,ng—‘rk(f) + b51;0+Tbn071,jg,no+k(f)|
> (ab)|5i0+rb"0_17j0,n0+k(f)| - b|§i0+rb"0_17jo,no+k(f)|

k—1
1 ~ ~
> (ab)** (I8 oo (] =5 —(ab)sﬂ Bioinarts) = Djgm s
s=0

k
Z (ab)k'f‘l (|§i0,j0,’n0 bz S+1 J07n0+5) O
s= 0
Put
a - 1 N
Mj(7n)(f) =) Waj,n+s € [0, 00].
s=0

Corollary 8.4.11. Let ng € N, ig € {0,...,0" "t — 1}, jo € {1,...,b— 1}, and k,r € Ny.
Assume that « > 0. Then

B,k ()] = (@0)* (185 3o ()] = AL, (F)).

Finally, we end up with a criterion that may be helpful in proving nowhere differentiability
properties of the solution f of (8.4.2).

Theorem 8.4.12. Assume that ab > 1. If there are suitable indices iy, jo, and ng with
10i0.50,m0 ()| > bMO no(f); then f has nowhere on [0,1) a right-sided (finite) derivative.

Proof. An immediate consequence of Corollary 8.4.11 and the assumption is that

|§i0+Tb"_1,j0,no+k(f)| > (ab>kc7

where C := |85 jo,no (f)] — bMJ;lzm(f) > 0. Hence, the left-hand terms cannot converge to 0
if k£ tends to co. Put

q:=b""" and tj, := min{|6;, 1 jpn-1 jnix(f)| 17 € N}

Then (tx ) does not converge to zero. Finally, recall that gj(g)n0+k(f) > t. Thus, ((5;0 no k) KEN
also does not tend to zero. Hence, Theorem 8.4.7 implies the nowhere dlfferentlablhty of f. O

To be able to apply this kind of result, we obviously need that M J(Oazl

n (8.4.2) under which this holds will be discussed in the next lemma.

,(f) < co. Conditions
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Lemma 8.4.13. Let ab > 1.

If all the f ) m (8.4.2 diff jabl I with ||g)llt < L dab>1, th
a all the functions g, in (8.4.2) are differentiable on I with ||g, |1 < L1 and ab > then

(@) UF) .
M} < 2L, 2 c N =1.... — 1.
J,?’L(f) b( b 1) n Y .] Y 7b

(b) If all the functions g, in (8.4.2) are twice differentiable on 1 with ||g/||1 < Lo, then

Laj(b—j)

M) —_— N, j=1,....,b—1.
jsn (f) = 2bn_1(ab2_1)7 ne y J ) )

Proof. (a) By assumption, we have |g,(z') — g, (2")] < Li|2’ — 2" for 2/,2” € I for all v.

Now fix an i € {0,...,b" 1 —1} and a v € {0,...,b— 1}. Then

ot < 52 (1) o) - e )~ (55
b;j v b bb :2L1j(:n:1j)'

<

Thus, |0;,5,n(gv)] < 2Ly J(b ) Since i and v were arbitrary, we get 5]n < o[, =0

Plugging this estimate 1nt0 the definition of M J(i (f) leads finally to M J(?L)( f) < abl_
Fixav e {0,...,b—1} and let 2/, 2” € I. Then

o

gu(x/) _ gu(fﬂ”) _ g,’,(w”)(xl _ ;C”) + T(xl _ x//>27
where ¢ lies between 2’ and z”’. Using Theorem 8.4.4 implies

Yijin(gv) = —%(Qu(b%_l) —gu(ibbj:j)) _ %(f(;):_}) _QV(ibbj;j))

() o)
]

j ib +] ] b—j)2
__9/51)(b 3)5° 1" j(b—j)*
- T A
1b+j ib+j i+1

where & (resp. &) lies between bn 4+ and
assumptions in (b), it follows that

Lo (b—4)5* | j(b—3)"| _ L2j(b—3j)
|6’L,j,’ﬂ(gl/)| 2 bbn + bbn 2bn

(resp. L and 7=r). By virtue of the

If one puts this estimate into the definition of M O‘)(f), then the claim in (b) is an easy
consequence.
O
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8.4.5 Nowhere Differentiability of Wi 40 for ab > 1, b € Ny

After this long journey along Schauder bases and systems of functional equations, we are now
in a position to prove Theorem 8.4.1.

Proof of Theorem 8.4.1. és mentioned at the beginning of this section, it suffices to show
that the function f := W, ;¢ with ab > 1 has nowhere on [0,1) a right-sided derivative.
By virtue of Theorem 8.4.12, it suffices to find suitable indices ¢, j,n such that |d; ;»(f)| >
oMLY (f) 2 bMS) (f). Put My (f) = MUV ().

Step 1°. Let us first discuss the case b = 2. Thus f = W, ;¢ and the data in the associated
functional system are given by ag = a1 = a (i.e., @ = a), go(z) := sin(wz + ), and g1(x) =
—sin(mz + ), € I. Then Lemma 8.4.13(b) leads to M ,,(f) < gn, n € N. Fix n = 3. Then
we have the following list of 0; ; »(f) (use Theorem 8.4.9):

Yoo(f) =88, 4 o(f) = —Sprto) — sind,

0.11(f) = ((a—1)$22 —sind) + ((a — 1)$2% —sinf) = —4sind,
b0,1,2(f) =2ado1,1(f) + 280,1,1(g90) = —8asind + 4 cos¥,

01,1,2(f) = 2ado,1,1(f) + 200,1,1(91) = —8asind — 4 cosb,

S0.1.3(f) = 2ado.1.2(f) + 280.1.2(90) = —16a?sin 6 + 8a cos f

+16sin(f + F) sin® F,
81.1.3(f) = 2ad112(f) + 261.1,2(g0) = —16a?sin @ — 8a cos

+16sin(0 + 3T) sin” I,
82.13(f) = 2ado.1.2(f) + 280.1.2(g1) = —16a?sin 6 + 8a cos f

—16sin(f + §)sin® %,
83.1.3(f) = 2ad112(f) +261.1,2(91) = —16a®sin @ — 8a cos

—16sin(0 + 27) sin® Z.

By assumption, we have 1 > a > % Then:
if 0 € [0, Z], then |03,1,5(f)| = 16a2sin @ + 8acosd + 16sin(0 + 3X)sin® T
> 4sinf +4cosh >4 > % > 2Mi3(f);

if 0 € [T, 2], then |61,1,3(f)| = 16a®sin 0 + 8a cosd — 16sin(f + 2T sin®

5
> 4sin 6+ 4cosf > 4> I > M, 4(f

);
if 0 € [3, 28], then [02,1,3(f)| = 16a?sinf — 8acosd — 1651n(9+ 31) sin® Z
> 4sinf — 4c05924>T22M1,3(f),

if 0 € [2%, 7], then |d0,1,3(f)| = 16a®sinf — 8acosd — 16sin(f + 3F) sin® T

> 4sinf —4cosh >4 > % > 2Mi 3(f).

Hence the condition from above has been verified, which implies that f has no right-sided
derivative on [0, 1).

Step 2°. Now we assume that b € N3, and here we will discuss three different cases.

Case 1°. Let f(x) := Wy p0(z) = >0, a”sin(brb™z). Then the data in the correspond-
ing (8.4.2) are given by a; = (—1)/* and g; = ( 1)/ sin(rz), = € I. Note that |gf||; < =°.
Therefore, Lemma 8.4.13 leads to M ,(f) < g=r. Then
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61.1,2(f) = (=1)abdo,1,1(f) + bdo,1,1(g1)
v 7T2
=0 — b?sin? 7S s b<—5< —bMi 5(f).

Hence Theorem 8.4.12 applies.

Case 2°. Let f(z) = m7b,ﬂ/2(x) = >0 a"cos(brb™x), v € 1. Then the data in the
corresponding (8.4.2) are given by a; = (—1)’* and g;(z) = (—1)? cos(rz), = € L. Note that
[Vi,j,n(95)] = |7i,jn(g)], where g(x) := cos(mx), x € I (see Theorem 8.4.4).

Then:

M, (f) = 1/b 251 ntk

—Zmax{|5llk(gu)|: 0<i<b"'—1,0<v<b-1}

k=n

=Y bt max{|yiik(g,): 0<i<b" ' =1, 0<v<b-1}
k=n

> rmax(lan(@)l s 021 < - 1)
k=n

()

= ZbkmaX{Wo,l k()]s vor—1—11,6(9)]}
k=n

@)

= Z b* max{~o,1,1(9), —Ypn-1-1,1,6(9) }
k=n

@ Z b* max{"0,1,6(9), v0,0-1,1(9)}
k=n

Y3 qokl9)
k=n

= A}gnoo (Zbk<cos— —cosO) — éb’“%l — cos bkL—l»

= ngnoo (bN(cosbiN - COSO) — b"_l(cos bnﬂ_l — 1))

=cos’ 0+ 0"~ 1(1—cosbn7T1> =b"" 1(l—cosb:l>

The equality (1), (2), (3), resp. (4) from above is a consequence of Lemma 8.4.6(b), (a), (d),
resp. (c).

In particular, we get bMio(f) = b*(1 — cosF) < 2 (use that cos(mz) > 1 — 3z for
z €[0,3]).

Assume first that b is even. We will calculate d1,1,2(f).

Using the recurrence formula (see Theorem 8.4.9), we have v0,0(f) = 1= and y1,0(f) =
. Thus the next step leads to
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b—l(a—l

00,1,1(f) = b(—

- +91(0))+%(a_1+go(1))) — _9%,.

1—a 1—a

Therefore, using that ab > 1, we obtain
61,1,2(f) = abdo,1,1(f) + bdo,1,1(g1)

b—1 1
= —2ab? —b2(cosf — ——cos0 — —cosw)

b b b
= _9p? (a + %) + b2 (1 — cos %) = —91? (a + %) + bM; 2(f)
< —4b + %b = —%b < —bMi 2(f).

Assuming now that b is odd, a similar procedure as before leads to

b—1
1—a

1
a =
T b2(1 - cos%) = 207+ bMyo(f) = bM1a(f):

—a

(5171,2(f) = 2ab

Therefore, in both cases we have the inequality |61,1,2(f)| > bM7 2(f). If the strict inequality
is true, then Theorem 8.4.12 applies directly. If |11 2(f)] > bM1 2(f) holds, we get

DMLY (f) = ab®M{%(f) — bd1 2
< abloy,1,2(f)] — b[01,1,2(g0)]
< |abdy,1,2(f) 4+ b01,1,2(90)| = [01,1,3(f)|-

So we end up with |d1,1 3(f)| > bM1 3(f), which allows us to apply Theorem 8.4.12. Hence,
f has nowhere on [0,1) a right-sided derivative.

Case 3°. Let f := I//Iv/a,bﬂ. Then f = cosf - f1 +sinf - fy, where f1 := m,b,o and fo :=
ﬁ//:l,byﬂ—/g. We may assume that cos6-siné # 0. Recall (cf. (8.4.2)) that f; solves the following
system:

h(%) =aPh(z) + 9P (), ze€l, v=0,. .. b-1, (8.4.4)

with the associated data ') = a?) = (=1)"%a, ¢V(z) = (~1)’sin(rz), and ¢\?(z) =
(=1)Ycos(mzx), « € I, v = 0,...,b— 1. Then f is the uniquely determined solution of the
following system:

n(* : ) = ah(@) +gufa), wEl =0, b1, (8.4.5)
where a, = (—1)"%a and g, (z) = cos ) - g,(,l) +sind - g,(,2)7 v=0,...,b—1.
By virtue of Theorem 8.4.12, it suffices to find suitable indices i, j, n such that §; ;. (f) >

bMJ(‘;)(f), where the data d; j»(f) and Mj((il)(f) are taken with respect to the system (8.4.5).
By virtue of Theorem 8.4.4, it is clear that

0ijm(f) =cos0 -8 jn(f1) +sinb - §; jn(f2),
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where 6; ; »(fx) is understood with respect to (8.4.4). Moreover,
M) (£) < |eosb]- M) (F1) + [sinf] - M[2)(fo),

where M(jazl(fk) is understood with respect to (8.4.4).
Now fix the indices i = 0, jo = b — 1, and ng = 2. Then Theorem 8.4.9 leads to
do,b-1,2(f1) = abdop—1,1(f1) + b50,b—1,1(g(()1))
= b0op-11(g") = —bdo11(g8")
= —01,1,2(f1)-

Here we have used that dg p—1,1(f1) =0, gél) = —g1 , and Lemma 8.4.6(d).
A similar calculation gives

00,6—1,2(f2) = abdo p—1,1(f2) + bdo,p—1 1(982)):

CLb5011(f2)+b5fJ11(gl )), if b is even
—ab5011(f2)+b5011(gl )), if b is odd

=01,1,2(f2)-
Recall that d1,1,2(f;) is negative, k = 1, 2. If now cosf and sin § have the same sign, then

bMy 2(f) < |cosf|- My a(f1) +|sinf| - My 2(f2)
< JcosO| - [01,1,2(f1)] + |sin @] - [61,1,2(f2)]
=]cosf-0112(f1) +sind - d11.2(f2)]
= 101,1,2(f)|-

In the remaining case, in which cos @ and sin # have opposite signs, one is led to
bMp—1,2(f) < [cosO] - My_12(f1) + [sinf] - My_1(f2)
= [cosf| - My a(f1) + [sin6] - Mis(f2)
< |cosf] - |61,1,2(f1)] + |sinf] - [1,1,2(f2)]
= [cos0] - | = dop—1,2(f1)] + [sIn0] - [60,6—1,2(f2)]
=|cosf - 0pp—1,2(f1) +sinb - 5o p—1,2(f2)]
= [60,6-1,2(f)],

which completes the proof. a

8.5 Weierstrass-Type Functions from a General Point of View

The Weierstrass-type function W), 4.6 from Chap.3 may be considered a special case of the
following more general family of functions:

F@,p,ab@ Zan bx‘f'e) z € R,
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where:
e & :R — Tissuch that &(—x) = &(z), P(x + 1) = &(x), and |P(z) — D(y)| < |x — y|,
z,y €R, (8.5.1)
e peN,

o a:=(a,)22, CCyand ) la,| <+oo,
o b:=(b,)22, CRxo, byy1 > by, n € Ny, and ZZO:() | |br, = +00,
o 0:=(0,),CR (8.5.2)

Remark 8.5.1. (a) Let v(z) := cos(2mz), € R. Then

Fl/,p,(a")zo:o,(b" ?:O*ie = VVp,a,b,G~

(b) Let 9(z) := dist(z,Z), * € R. Then Fy 1 (any= 7). .0 = Tape, which is a Takagi-

van der Waerden-type function (cf. § 4.1), and Fy 1.a,,0 = Ta,b,0, Which is a generalized
Takagi—van der Waerden function (cf. Theorem 4.3.1).

We fix a function @ with (8.5.1). To simplify notation, we will use the following conventions
(similarly as in § 3.1):

e if @ is fixed, then Fp,a,b’g = F.g;’p’a,b,g;

o if &, p,a,b are fixed, then Fg := Fg p, 6.6,0;

o ifd p a,b,0 are fixed, then F := Fgp p qp,6-

Functions of the type Fg p o6 have many common properties that are listed below.

Remark 8.5.2. (a) > 77 sup,cp |an®? (bpz + 0,)] < D07 |an| = A. Consequently, F €
C(R,C) and |F(z)| < A, z € R.

(b) Fo(x + zo) = Fyypro(z), Fo(—2x) = F_g(x), x,20 € R.

(c) The function F), g6 may be formally defined also when B := > |an|b, < 400. How-
ever, in this case, Fyg is Lipschitz continuous, uniformly with respect to 6. In particular,
Fy is almost everywhere differentiable. Such functions are of course irrelevant from our
point of view.

Indeed,
|Fo(x+h) — Fo(x)] <Y |an]|®” (bn(x + h) + 0,) — 3 (buz + 0,,)]
n=0
mtoﬁm value oo
< D lanlpl@(bn(a + h) +60n) = Dbz + 0|

n=0

(8.5.1) =X
< pY_ lanlbulh| =pBlh|, w,heR.

n=0

Observe that if moreover, @ € C*(R) and C := sup, g | (z)| < +< (e.g., & = v), then
F € CY(R,C). Indeed,

Z sup |an (PP (bpz + 0,,))'| < Z |an|pb,C = pBC.

n=0 z€R n=0

(d) For every p,a,b, and every 8 € (0,1], the following conditions are equivalent
(cf. Remark 3.2.1(e)):
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(i) Fp is 8-Holder continuous uniformly with respect to 8, i.e.,
Jes0 Vo : |Fo(z 4+ h) — Fo(z)| < ¢|h|?, z,h €R;

(ii) Fy is right-sided S-Holder continuous at 0 uniformly with respect to 0, i.e.,
3e, 5050 Vo : |[Fa(h) — Fo(0)| < c[h|”, h € (0,60).

(e) If |ay] < a™, b, <b*, n €Ny, where 0 <a<1,ab>1, and o := —%, then Fp q.60 is
a-Holder continuous uniformly with respect to 8 and

|Fpapo(x+h)— Fpape(x) < pconst(a,b)h|¥, =z, heR.

Indeed, let 0 < h < 1 and let N = N(h) € Ny be such that &N h < 1 < bN¥*1h. Then

|Fo(h) — |<pZ|an||d5 (@ + 1) + 0n) — Dby + 0,,))|
Nl N-1
(Zlanlb h+2|an|2) (Z (ab) h+22 )
n=0 "0
(ab) - av 1 92 .
:p( ab—1 h+21—a><p(ab— 1—a>aN§Cph’

where ¢ depends only on a and b. Using (d), we get the result.

(f) For every p,a,b, and 5 € (0,1], the following conditions are equivalent (cf. Remark
3.2.1(h)):

(i) Fp is B-anti-Hélder continuous uniformly with respect to x € R and 6, i.e.,
Je>0 Vo, 2er, 5€(0,1) Shac(0,0) | Folx & he) — Fo(x)| > e6”;

(i) e, 5050 Yo, 5€(0,50) Inyc(0,0) : [ Fo(hy) — Fo(0)] > €6”.
(g) The following conditions are equivalent (use (b)):

(i) Fg € ND(R) (resp. Fo € ND>(R)) for every 6;
(ii) for every 0, a finite (resp. finite or infinite) derivative Fg(0) does not exist.

(h) The following conditions are equivalent (use (b)):

(i) Fo € NDL(R) (resp. Fo € NDP(R)) for every 0;
(ii) for every 6, a finite (resp. finite or infinite) right-sided derivative (Fg)’ (0) does not
exist.

Our main aim is to discuss nowhere differentiability of the generalized Weierstrass-type
function

W.ab6(x Zancos 2nbyz +0,), xR,
n=0

where p, a, b, 0 are as in (8.5.2). Functions of the above general type were studied parallel
to the classical Weierstrass functions; cf. § 3.5.1.

We will see that the nowhere differentiability of the function W, q 5, is strictly related to
the nowhere differentiability of the exponential function
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o0
Eqp(z) = E a,€2™nt g e R,
n=0

which will be studied in § 8.6.

While studying the functions W, a b0 and Eqp, we always assume that p,a,b,0 sat-
isfy (8.5.2). A special role is played by the cases p = 1 or/and (8 = 0 or 8 = —7%), ie.,
by the functions

Caop(z):=Wiapo(zr) = Z ap cos(2mh,x),

n=0

Sap(x):= Wiapb—z(z) = Z an sin(2wb,x), x € R.

n=0
We begin with an extension of Remarks 3.2.1 and 8.5.2 for the function E4 3.

Remark 8.5.3 (Details Are Left to the Reader). (a) Eqp € C(R,C) and |Eqp(z)| < A :=
Yoo olan], z € R

(b) The function Eqp may be formally defined also in the case that Y ° |an|b, < 4o0.
However, in this case, Eqp € C}(R,C).

(C) Ea,b(l‘ + 130) = E(e2ﬂibnzgan)oo b(l))

n=0>

(d) For every a,b, the following conditions are equivalent:
(i) Eqp is -Holder continuous uniformly with respect to (arga,)22 ), i.e.,

E|C>0 va':(a’n)zo:(): la’,|=|an|, n€Ny - |Ea',b(x + h) - Ea',b(x)| < C|h|B7
x,h € R;

(ii) Fg is p-Holder continuous at 0 uniformly with respect to (arga,)s ), i.e.,

T, 8050 Yo' (@)t | =lan], nedo * [Barp(h) = Eqrp(0)] < b7,
|h| < do.

(e) If lan| < a™, by, < b™*, n € Ny, where 0 < a < 1, ab > 1, and « := —ﬁ%, then Eqp is
a-Holder continuous and

|Eqb(x+h) — Eqp(z)| < const(a,b)|h|®, z,heR.

(f) The following conditions are equivalent:

(i) Egp € ND(R) (resp. E,rp € ND*(R)) for any a’ = (a;,)0% with |a,| = |as|,
n € Np;

(ii) for every a’ = (al)s%, with |al,| = |an|, n € Np, a finite (resp. finite or infinite)
derivative E ,(0) does not exist.

(g) Assume additionally that (b,,)3, C N. Then E4 p(z) = f(€2™®), z € R, where f is given
by the power series

f(z) = i anz’, z€D. (8.5.3)

n=0



8.6 Johnsen’s Method 161

Obviously, f is holomorphic in D and continuous in D.

o If Egqp € ND(R), then D must be the domain of convergence of (8.5.3); cf. Proposi-
tion 3.5.8.

o If bg% > A > 1, n € Ny, then (8.5.3) is a Hadamard lacunary power series, and its
domain of convergence coincides with D (cf. [Boal0, RS02]).
Such an approach has been used, e.g., in [Bel71, Bel73, Bel75].

8.6 Johnsen’s Method

Roughly speaking, the aim of this section, based on [Johl0], is to apply Fourier transform
methods (cf. § A.3) to study the nowhere differentiability of Weierstrass-type functions.

Remark 8.6.1. Suppose that we have a function ¥ € C§°(R,I) such that suppX C Rsg.
Define y := F~1(Y), i.e.,

x(t) == /R)Z(T)e%””dr, teR (cf. §A.3).

Obviously, by Proposition A.3.3, we have ¥ = ¥ = F(x), i.e.,

(r) = R(r) = / Ny

We know that y € C®(R) N L>=(R) and t*y € L*(R) for every k € N (cf. Remark A.3.2).

—

Moreover, X*) = (—2mi)¥tkx (cf. Remark A.3.2). In particular,

) X (1)
t tk —27iT t — X — < .
AX( ) e d (—27Ti)k 0, 7<0,keNy

Remark 8.6.2. Let ¢ : R — C be a bounded continuous function and let ¢, € R.

(a) If a finite ¢'(tp) exists, then we put Ap(tg,to) := ¢ (to). Observe that Ap(tg,:) €
C(R,C)NL>(R).

(b) If ¢ € HP(R;tg), then we define

le®) — ¢to)]

Hpp(to,t) == t—to]

te R\ {to}.

Observe that Hgp(tg, ) € C(R\ {to},C) N L>®(R\ {to}).
The following result is a generalization of Theorem 2.1 in [Joh10].

Theorem 8.6.3. Let

o0
J(t) = Z U st € R

n,s=0
where:
(n,s)(n,s)eNoxNy C C and 3577 ¢ lans| < 400,
e Q)X CR,Qo>Q1>>Qr>0>Q;,i>r+1 (for somer € Ny),
o (bn)3o CRug and B2 > A > 2 neN,
o an b0 foraqge{0,...,r}.
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Then J € ND(R). Moreover, if sup,,en, |an,q|bl = +oo for some q € {0,...,r} and B € (0,1],
then J € NHA(R).

Remark 8.6.4. Theorem 2.1 in [Joh10] is the case ¢ = r = 0 and a,, s = 0 for s > 0.

Proof of Theorem 8.6.3. 1t is clear that J € C(R,C) N L>°(R). Suppose that J'(to) exists (for
some tg € R). Observe that Qs € (%,)\Qr), s =0,...,7. Let X € C§°(R,I) be such that
X(Qq) =1, X(Qs) =0, s # ¢q, and supp x C [%, AQ.]. Moreover, let x be as in Remark 8.6.1.
Take an arbitrary k € Ny and calculate

by / X(bst) I (to — t)dt = by, / (bit) ( Z 1y 5 €27 IQebr (b0~ t))dt
R R

n,s=0

Z an, S€27mQSb to/bkx(bkt>e—27ristntdt

n,s=0
) —oriO.
= E an,seQ”leb"tO/x(u)e Qe T 1y
n,s=0 R
o0
. =N b (%) )
= 5 anaritinng(Quln) U g, rrinae
n,s=0 k

where (*) is a consequence of the following facts:
e if s> r, then QSZ—" < 0, and therefore )?(QSZ—") =0;

o ifse{0,...,r} and n > k, then Q. 7 = QsA > QrA, and hence X(Q s ) =0;

e ifse{0,...,r} and n < k, then st—: < % < %, and hence X(ng—:) 0;
o ifse{0,...,r} and n =k, then X(Qs) #0iff s = ¢.
Recall that by [, x(brt)dt = [ x(u)du = X(0) = 0 (Remark 8.6.1). Hence we get

ay, qe2™rQato — p, / x(bit)J (tg — t)dt = bk/ x(bit)(J(to — t) — J(to))dt
R R
= / x(w)(J (to — u/bg) — J(to))du = / x(u)(—u/br) AJ (to, to — u/bg)du
R R
where AJ(tg, ) is as in Remark 8.6.2(a). Consequently, by the Lebesgue theorem, we have

—ay, b e*m O Qato = / X(w)uAJ(tg, to — u/by)du
R

— J’(to)/Rx(u)udu:J'(to) —

k— o0

Hence ay, 4br — 0; a contradiction.

Suppose that J € HP(R, o) (for some to € R) and let HgJ(to,-) < C, where HgJ(to, ) is
as in Remark 8.6.2(b). Then we get

lar glbf < / ()l ul Hs J (to, to — w/b)du < C / ()] [uldu < +oo.
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Hence supyep, |ak,q|b§ < 400; a contradiction. O

In the case ¢ = r = 0, we immediately get the following result.

Theorem 8.6.5. Assume that a,b satisfy (8.5.2), bz;” >A>1,n€ Ny, and apb,— 0.
Then Eqp € ND(R). If, moreover, sup, cy |an|bl = +o0o for some B € (0,1], then Eqp €

NHA(R).
Theorem 8.6.6. Assume that p,a,b,0 satisfy (8.5.2),

LES R

bn = TLEN(),

p, ifp=1(mod?2)
if p=0 (mod2)’

P
PR

and anb,—= 0. Then Wp.ap0 € ND(R). If, moreover, sup,cy lan|b? = +oo for some B €
(0, 1], then VVp’a’b’g S N{]—Cﬁ(R),

Proof. We have

= 1, . . p
VV;;,a,,b,G(t) = Z an (5(61(27&7")&4_9") + B_l(Qﬂb"tJre")))
n=0
_ i a i i p 6i(p—2s)9n 627ribn (p—29)t
= — "9p — s .

For s > p, put ans := 0. For s € {0,...,p}, let a, s := an%p(p)ei(p_%)e", Qs := p— 2s,

R {% if p=1 (mod?2)

. Th
1, ifp=0(mod2)

Qo p _Jp, ifp=1(mod2) <A
Q p—2r |& ifp=0(mod2)
and therefore Theorem 8.6.3 applies. O

Theorem 8.6.7. Assume that p,a,b, 0 satisfy (3.1.2) and

s 1P if p=1 (mod?2)
L ifp=0(mod2)’
Then Wy, 5.6 € ND(R). If, moreover, ab® > 1 for some B € (0,1], then W, a0 € NHA(R).
In particular, the above theorem extends Hardy’s results (cf. Theorems 8.2.1 and 8.2.12).

Corollary 8.6.8 (Darboux-Type Functions). If
a:=(1/nl)72,, b= ((n+ 1)),
then Wy, a0 € NH'(R) C ND(R) (for arbitrary 6).
Remark 8.6.9. The classical Darbour function is the case p=1and 6 = —3 (cf. [Dar79]):

1
Wiap-z(t)=> —sin(2r(n+ 1)), teR.

n=0
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Proof of Corollary 8.6.8. We have 62:1 =n+22>p+1>pforn > p—1. Moreover,
anby, = n + 1. Thus we may apply Theorem 8.6.6. O

Corollary 8.6.10. Let

an

f(t) = n; @ cos?(2m(2n — Dt +6,,), tER,

where 2n—1:=1-3-5---2n—1),a>1,peN, 0 = (0,)52, CR. Then f € ND(R).
Moreover, f € NH'(R) ifa > 1.

Proof. Put a, := (2%11)”, by :== (2n — 1)!Il, n € N. Then a;;” = gn57 — 0, which implies

that fo:l a, < —+oo. Moreover, bz“ =2n+1 > pforn > 1 and apb, = a”. Thus
Theorem 8.6.6 applies. a

Corollary 8.6.11. Let

1
f) =" ol cosP (22" +6,)), teR (peN).

n=1
Then f € NHY(R). In particular, f € ND(R).
The case p = 1, @ = 0 has been studied in [Cat83].
Corollary 8.6.12. Let

ft) = Z an cos? (2mbyt + 0, ) sin? (27bnt +6.), tER,

n=0

where a,b satisfy (85.2), p,p' € N, (62)2 0, (0)0 C R,

p+p, ifp+p =1 (mod2)
bn %”,, ifp+p =0 (mod2)’

n € Np,

and apby, = 0. Then f € ND(R), and if sup, ey |lan|b? = +oo for some B € (0,1], then
f € NHA(R).

Some special cases of the above result were proved already in [Muk34].

Proof. We have

oo

1, . —ilon p
f(t) = Za”(§(el(%bnt+en) 1 emil2 bnt+9n))) %
n=0

y (l(ei(zﬂbntw;) _ e—i(erbnt_pg;b)))p

2%
LN (P ie2e) (p—25)

_ _ i(p—28)0, 27ib, (p—2s)t

=S gy > ()2 «
n=0 s=0

/

1 (7 ! i(p'—25")0" 2mibn (p—2s")t
s'=0
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Sesmr 55 () ()

s=0s"=0
~ (_1)5 i((p—28)0n+(p'—2s )9n)627ribn(p—25+p'—25’)t

p+p’

E an E an 27erant7

where

o 1 1 P\ (s s' i((p—25)0n+(p'—25")0},)
Up,p = an2—pW Z } (S) (p,) (_1) € )

s€{0,..., p
s'€{0,....,p"}
s+s’:g

Observe that

p+p’ ’ oo
p\ (s
Zanz |an g| <Z|an| Z , < Z|an| < +00.
2p 20" s/ \p
s€{0,...,p} n=0
s'€{0,....,p"}
s+s'=p
Now we argue as in the proof of Theorem 8.6.6. O

Remark 8.6.13. Observe that Theorem 8.6.6 gives a very effective method of finding nowhere
differentiable functions. Nevertheless, the requirement ”* L > A > 1, n € Ny, is very restric-
tive. We would like to study, for instance, functions of the form

tl—>Z gmintt (p>1, ¢>0),

where Theorem 8.6.6 does not work. We need a more subtle tool.
Theorem 8.6.14. Assume that a, b, 0 satisfy (8.5.2) and a, Ab,—~ 0, where
Aby, = min{b, — bp—1,bp11 —bn} (b—1 :=0).

Then Wi,a.6,0, Eap € ND(R). If, moreover, sup, ey, |an|(Abn)? = +oo for some B € (0,1],
then Wi a0, Eap € N}CB(R),

Proof. Let f := Wi gp6. It is clear that f € C(R,C) N L*°(R). Suppose that f'(to) exists.
Let ¥ € C*(R, 1) be such that x(0) = 1 and supp x C (—%7 %) Define x as in Remark 8.6.1.
Let X#(7) == X (T ) Observe that

- 1 1
supp Xr C (bx — 5(bx — bp—1), b + = (bk-',-l —bi) ).
2
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Define xx(t) := (F~'Xk)(t) = [p Xx(7)e*™*7dr. Note that

~ T_bk 2mwitT /~ 2mit (b +Abgu)
th:/x—e dr= [ x(u)e BT Abrdu
0= [ 2("5") RO

= Aby, e2mitbr X (Abgt).

We have

T

Xk () f(to — t)dt = /RXk(t) ( i ap, cos(2mby, (to — t) + Hn))dt

n=0

= Z an / Xk (t) cos(2mby, (tg — t) + 6,,)dt
n=0 R
_ Z a / Xk(t)l(ei(%rbn(to—t)—i-en) n e—i(Qﬂ-bn(tg—t)—o—On))dt
2
n=0 R

_ Z aﬂ§ <61(27rbnto+9n) / Abke%mtbkX(Abkt)e—%mbntdt
n=0 R

1 e i(@mibatot0n) / Abke%ritbkX(Abkt>e27ribntdt)
R

by

L ienbatoro,) —2mi 2y
3 (s [ g g,
n=0 R

by tby,

. 2 n+bg

+e 1(2ﬂbnto+9n)/x(u>e TRy, udu)
R

= 1/ b, — b
_ = i(27wbpto+6n) /\( n k)
ZB 4y (6 X\ Aw,

n e—i(27ribnto+9n)5<\( b £ bk)) _ Ok i(2mbyto+6y)

Aby, 2

Note that
. . b
/ Xk (t)dt = / Abkezmwkx(ﬂbkt)dt = / eQmuﬁfx(u)du
R R R
. by
=%(- ) =0
Hence

ettt — [ @)t — 1) = f(to)
- / Ay x (Abyt)(f (fo — 1) — f(to))dt
- / T () (f (to — 1w/ Abg) — f(to))du

_ / TR () (—u ) Abg) A (to to — 1) Aby)du.
R
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Moreover,

271'z’uAb—£C — 1 o _b_k —
/Re “x(ujudu —2m'X( Abk) 0

Then, by the Lebesgue theorem,

Aby, i -2k
_ akz_ke@(zwbktowk) — / &2 aby x(w)uAf(to, to — u/Aby)du
R

:/Rezmﬁ*ﬁxx(u)u(Af(tmto—u/Abk)—f( o))du —s 0,

k—+o00

where Af(tg,-) is as in Remark 8.6.2(a). Hence ayAbr, — 0; a contradiction.
Suppose that f € HP(R;ty) and let Hgf(to, ) < C. Then we get

Lax(Aby)?| < / ()] Hs £ (to, to — u/by)du < C / ()]l ds
R R

where Hg f(to, ) is as in Remark 8.6.2(b). Hence supjcy, |ax|(Aby)? < +00; a contradiction.

The proof for E, p is analogous—EXERCISE. O

Theorem 8.6.15 (Riemann-Type Functions). Forp > 1, ¢ >0, let F € {E,C, S} with

o0

1 4. 1
E(t) =) ﬁe%m L Cpa(t) =C(t) :=Re E(t — cos(2mnt),
n=1 n=1

Spq(t) = S(t) :=ImE(t) = Y nl—p sin(2mnit), teR.

n=1
Then:

(a) if 0 <q<p-—1, then F € CL(R);

(b) if ¢ >p+1, then F € ND(R);

(c) if ¢ >p+1 then F € NH(R);

(d) ifg>1 and o € (0,1] are such that o > L5, then F € NH*(R);
)

(e) ifg>p—1 andO<o¢§T, thenFEfHo‘( ).
Remark 8.6.16. (a) The classical Riemann function is the case p = ¢ = 2:

— 1
R(t) := Z — sin(rn?t), t€R (cf. Chap.13 and Fig.8.1).
n=1 n
(b) The functions Cp 4 and S, , were also studied for other configurations of parameters
p>1,q > 0. For example:

e If 1 < p < 3, then finite derivatives C ,(t), S; 5(t) do not exist at any ¢t € R\ Q
(cf. [Harl6], Theorem 4.31).

e A finite derivative S| ., ,(t) does not exist at any ¢ € Q (cf. [Lut86], § 6).

In particular, S35 2 € ND(R).
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1.2+

0.8

0.6

04|

0.2 1

01 02 03 04 05 06 07 08 09 &‘1
02|

sin(wn’a)
n2

o0
Fig. 8.1 Riemann-type function I3z +— >

n=1

Proof of Theorem 8.6.15. Put a, := =, by, :=n4.

np?

(a) is obvious.
(b) and (c) follow from Theorem 8.6.14. Indeed, using the mean value theorem, we get

S e ()

1 1 q 141
— q—1_ B
- npa @n n = np—atl (1 n) ’

and the right-hand side tends to ¢ when ¢ = p+ 1, and to +00 when ¢ > p+ 1.
(d) We have

an(Abyye > == DD 1 (1 _ (1 _ 1)")“

np npP—ad n

1 1\« q“ 1\ ale—1)
_ q—1 = _ i
T pp—ag (qfn n) = nP—ogta (1 n) ’

(e) Fort € Rand 0 < |h| < 1, let N = N(h) be defined by the relation N < |h|~%/9 < N +1.
Then we have
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=1
J— q _ q
IC(t+h) — }z::n cos(2mnd(t + h)) — cos(2mn t))’
1 Moo > 1
n=1 n=1 n=N+1

* 1—p

*) 2N p—
< o NP | 4 < const || 7,
-

where (*) follows from the estimate
=) 1 © o zl=p 0 N1-P (M)l—P
Z —< / = = ‘ = <2
n:N_HnP Ny 2» 1l—pin p-—-1 p—1
—1/a\ 1- p—1
SL(W ) RN
p—1 2

The proof for S is analogous—EXERCISE.

Theorem 8.6.14 permits us to study functions generated by very slowly increasing sequences
()52 ;. The following corollaries will illustrate this phenomenon.

Corollary 8.6.17. Forb>a> 1, let F € {E,C, S} with

o
1 2min’tlog® n
Et):=)_ Tlog i’ ,
n=2
o

C(t): =ReE(t) =) TTosT

cos(2mn?tlog’ n),

o0

S(t):=ImE(t)=

1 a
= nloghn

sin(2rn’tlog’n), teR.

Then F € ND(R). Moreover, if b> a > 1, then F € NH!(R).

Proof. We use Theorem 8.6.14 with a,, := ——~—, by, := n2?log”n. Observe that the function

nlog®n’
(1,400) 2 By 22 logbx is convex. In particular, b, — b,—1 < bpa1 — by. Thus, Ab, =
by —bn—1>2(n—1) 1ogb(n —1). Consequently, we get

_ by _ _ b
0. Ab, > 2(n —1)log’(n—1) _on 1 (log(n 1)) 1ogb_an. -

nlog®n n logn

Corollary 8.6.18. Let F € {E,C, S} with

o0
22—t
= ape”" Tanl”, a,, cos 27r| |
TL

n=no n=no
oo

S(t):= Y aysin (27r| N ) teR,

n=no
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where (an)p>p, C Cuy Y02, lan| < +00, |any1] < lanl, n € Ny, and there exists a convex
function B : [ng, +00) — R such that B(n) = fa7» m € Ny Then F € ND(R).

Proof. We use Theorem 8.6.14 with b, := |L Then for n > N,,11, we have

an|”

n n—1
|an| Abn = |an|(bn — ba_1) = |a,,|( —) > 1. 0

[an]  Jan—i]

For p € Ny, define Exp,, := expo---oexp, L, := logo---olog; note that L, is defined on
—_—— ~———

pX pX
the interval (Exp,_,(1), +o0) (with Expy(1) := 1). Observe that

'(z) = 1 T X
L= L@ Law PR

Corollary 8.6.19. Forp e Ny anda > 1, let F € {E,C, S} with

S 1 in? @
E(t) = 2min“tLi(n)---Lp—1(n)Ly(n)
®) n;[) nLi(n)---Ly_1(n)L%(n) '

C(t):=ReE(t), St):=ImE(), teR,
where ng > Exp,,_;(1). Then F' € ND(R).

Proof . We apply Corollary 8.6.18 with B(z) := 2®Ly () - - - Lp—1(z)L§(x).
Indeed, let

1
A= @ L @)
P(x) = . iaL;_“(x), x> Exp,_;(1).

Then 1" = A. Thus for z9 > Exp,,_;(1), we have

oo

/:O A(z)adr = /:O W (z)de = P(z)| = —b(zo) < +oo.

zo

Consequently, > A(n) < +00. Moreover,

oo
n=no

B'(z) = 2xLy(x) - Lp_1(x) Ly (x)

p—2
+ x(z Lei1(w)--- Ly_1(z) + 1)Lg(x) + xaLg_l(x), x> Exp,_4(1).

Thus B’ is increasing, which implies that B is convex. a
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8.7 Hata’s Method

The aim of the section, based on [Hat88b, Hat88a, Hat94], is to discuss some subtler nowhere
differentiability properties of the Weierstrass-type functions Wi 440 with ab >1and 8 =0 =
const. In particular, we will prove that:

(a) There exists a zero-measure set = C R such that every + € R\ = is a knot point of
Wi a.b,0 for arbitrary § € R—Theorem 8.7.4.

(b) Let ¥* € (0,%) be such that tany* = 7 +¢* (¢* =~ 1.3518). If ab > 1+ o=
then Wi 40 € ND>*(R)—Theorem 8.7.6.

(c) Notice that M. Hata in [Hat88b] proved a weaker result stating that WA 45,0 € ND>(R),
provided that ab > 1+ 72 ~ 10.8696 (in fact, looking at Hata’s proof gives ab > 10.7425).

~ 5.6034,

cos 1[1*

8.7.1 Nowhere Differentiability of the Weierstrass-Type
Functions: Finite One-Sided Derivatives

Let f(z) :== Wi ape(5) with 0 <a < 1,ab > 1,0 € R (cf. §3.1). We fiz a and b and put

a:=—1%E% € (0,1).

For z € R, €, > 0, define
Ef(e):={s €R: f(x +3) — f(z) > e[s]"},
Eg(e):={seR: f(z+s)— f(z) < —¢ls|*},

=E, () N[0, Ey(e,—n) = Ey(e) N [-n.0],
Ex(e)N[0,1],  Ex(e,—n) := Ex(e) N [-n,0].

Remark 8.7.1. (a) All the above sets are Borel measurable.

(b) If0 < &' < ¢&”, then EX(x,¢") C EF(z,e').

(c) Ef(e) N E; (e) ={0}.

Recall (cf. Remark 3.5.6) that a point xg € R is a knot point of f if

) :
) :
m(f) ={seR:[f(z+s)— f(2)] > els|"} = B[ () UE, (),
n):
)=

D* f(zo) = D™ f(x0) = 400, Dy f(x0) = D_f(xo) = —

Remark 8.7.2. Let x € R, € > 0, and let (§,,)5°_; C Ry be such that §,, — 0. Then
(EXERCISE):

(a) If Ef (e, 5m) # {0}, m € N, then D f(z) = +o0.
(b) If E; (g,0m) # {0}, m € N, thenD+f(x)=—oo
(c¢) If E (e,—0m) # {0}, m € N, then D~ f(z) =
(d) If Ef(e,—0m) # {0}, m € N, then D_f(x) =
(e) If Ey(e,8m) # {0}, m € N, then D¥ f(x) = +00 or D+f( ) = —o0.

(f) If E,(e,—0m) # {0}, m € N, then D~ f(x) = +o0 or D_f(x) = —o0.

(g) If Ef (e,46,,) # {0} and E; (¢,+d,,) # {0}, m € N, then z is a knot point of f.

Recall (cf. Remark 3.2.1(g)) that there exists a Koy = Ko(a,b) > 0 such that

If(z +h) — f(z)| < Kolh|®, z,heR. (8.7.1)
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Notice that in the theorems below, all the constants K;,e;,n;,C; > 0 will depend only on
a,b (and will be independent of 0). Moreover, once they have been defined, the constants

K, e;,m;, C; remain the same for the entire section.

Theorem 8.7.3. There exist g = €o(a,b), no = no(a,b), and Cy = Cy(a,b) > 0 such that

L(Ey(e0,£m)) > Con,  x € R, n € (0,n0].
In particular, f € NDL(R) (¢f. Remark 8.7.2(e),(f)).
Proof . Step 1°. There exist 1 = 11(a,b) and C; = C1(a,b) > 0 such that
n
[ M@z~ f@lds = co'e, s e Ry Ol
0

Indeed, define r : R — R,
x) = Z a "(cos(mb""x 4+ 0) — cosf), xe€R.
=1

Observe that

Z ~"| cos(mb™ x+9)—cos€|<22a " sin(mb"x/2)]

n=1 n=1

Z )Y Mz| = bw 1|:1c| =: Ki|z| < 400,

In particular, r € C(R). Using the same method (EXERCISE), we get
r(x +h) —r(z)| < Kilh|, z,heR.

Let g := f+r — <22 Observe (EXERCISE) that

g(z) =ag(bz), =zeR.

Define

z € R.

bt T+n/b’ .
Inor(u) = —/ u(s)e™™ *ds, uweC(R,C), n, N, T eR.

2n T—n/bt

Note that I, o 7(1) = 0. Put Ty, 4 := T + (25 — n)/b*. We have

nt n—1 T, 411 ]
Lo (r)] = _Z/ T(S)e_mbesds’

2n =0 Tn,l,j

be n—1

2/b* »
~ 120 Z/ r(Th,e,j + s)e—”b (Tn,l,j-‘—s)ds‘
j=0"0

bz n—1 Q/b2 .
== Z/ r(Thye; + s)e il Sds’
0

2n
=0

(8.7.2)

(8.7.3)

(8.7.4)

(8.7.5)
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pt =l p2/0f »
= | — TTL . — Tn ) ) —T sd ‘
) n ZA (T( .J =+ 8) T‘( ,E,J) € S
7=0
(8.7.4) pt W=l p2/bf o109\ K,
< o Kd<_K_(_) =L
S on 2, 1sds < S K05 (5 7
7=0
bé e T—i—n/be »
In,&T(f) = — ak/ COS(ﬂ'bk({E + S) + 0)e—z7rb 5ds
2n k=0 T—n/bt
s T+n/bt
= v Zak/ o (el (T (@+s)+0—mbls) | —i(mb* (a+a)+0+mbls))
ni = Jrongp
L T4n/bt
= laeei(ﬂblz-Fe) + b_ Z ak/ ei(ﬂ.bk ($+5)+9—7Tb[s)d8
2 4dn Iy
k=0 T—n/b

k£l
pt & . /T+n/b2
+ — a e
4dn ];) T—n/b*
1

Y
=: iazel(”b o+0) 4 Roer.

—i(mb" (x45)+0+7b’s) ds

Observe that

e < 55 Y S+ g Yo
TS T 2 T T A 2 R0 )
k£E N

=— —_ — ) =: = Ay
er(Za bF—C 1] —|—Za b=l 41 nt
=

Hence

K,

1, 1
> _ Y e P
e (9)l 2 ne ()l = Uner(r)] 2 5a S Ae— 57 3~ (ab)!

Take an L = L(a,b) such that (;Z;L
1

:af(l_ﬁ) — Z A,

< %. Consequently, |1, . 7(g)| > %aL - %AL. Now take

an N = N(a,b) so big that ¢y := $a* — & A > 0. Define hg := 2N/b%, hy, := ho/b™. Then

B ho /b™

a™[g(b™ (z + 5)) — g(b™x)|ds

S—
H_

9z £ 5) — g(x)|ds ®L /

ho
lg(b™x £ 5) — g(b"x)|ds

3

3
S—
>
[=)
Q
—~
>
3
5
H
&
m
J
3
o
w
ISH

v
N N N N
e ol ol oe

N— N— N— N—
3

3
S—
o
3
D)
H_
>
o
Q
—~
w
N—
®
ay
3
o
S
=
8
|
N
IS
_»
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b x4+2N/bl L a\m
’/ g(s)e”m® SdS‘ = (3) holIn, L pmatn/e(9)]

> b-m<1+a hoco = cohg “hite == e hlte.

On the other hand,

h h
m m 1
/ |r(x £+ s) — r(x)|ds S/ Klsds=K1§hiI =:coh?,.
0 0

Thus

hom hm hm
/0 flas)— f(a)lds > / 9z £ 5) — g()|ds — / Ir(@ 4 5) — r(z)|ds

Z (Cl — Cghin_a)h}.,ja = h1+a

5 fom m > mgy = mg(a,b).

Put 1 := hy,,. Take an n € (0,7;] and let M = M(n) € N be such that hpy <7 < hpr—1.
Then

hy—\e  a
( ) _ Clhl-‘roz

/"|f(xis> Fla)lds > Sngpe = & @
o b 2b M-—-1

2
— =: Cip't
~ 2bc”’ H

Step 2°. Using Step 1° and (8.7.1), for x € R, ¢ > 0, and 7 € (0, 71], we get

n
Cumt*e < / Fa+5) — f())ds

< en®( — LBy (e, £1))) + Ko / s ds
Eq(e,£n)

< en®(n— L(Ex(e,£n))) + KonL(Ex (e, £n))

N

Consequently, if ¢ := %Inin{C’hKo}7 then

E(Ex(ao,:lzn)) Ci—
] Ko — €0

=:Co >0, ne€(0,m] O

8.7.2 Knot Points of Weierstrass-Type Functions

Theorem 8.7.4. There exist ea = e2(a,b),n2 = n2(a,b),Ce = Cs(a,b) > 0, and a zero-
measure set =5 = Z3(a,b) C R such that

+ _
lim sup min { L(E] (¢2,£n)) 7 L(E; (e2,£m))
n—0+ n n

}202, z €R\ .

In particular, each point x € R\ Z3 is a knot point of f (c¢f. Remark 8.7.2).
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Proof . Define

/o" _
I (zt) := /1 Md& M(zt) —hmlnf —

1/t slta n—-+400

L(EF (e, pn))

d*(e,zp) = limsup =22 0 e {— ).
n—0+ n
Step 1°. Let
oK. ) log b
Ei=qxeR: M(zu) < % ——ggC2%, pe{— +} (8.7.6)
Then there exists an 3 = £3(a,b) > 0 such that
e0Cd -
d* — = C — = 8.7.7
(537$N) - 4(€QCO+2bK ) 3 ,UG{ 7+}7 S 2 ( )
Indeed, we consider the case y = + (the case p = — is left for the reader as an EXERCISE).

Suppose that there exist sequences (0,,)2_; C (0,20), 0 — 0, (¥,,)°_; C =5 such that
min{d* (8, Tm+), d~ (0m, zm+)} < C3, m € N. We may assume that d= (0, xm+) < Cs,
m € N (the other case is left for the reader as an EXERCISE). Thus there exists a sequence
(Tm)$9_1 C (0,79) such that

L(E, (0m,n)) <C3n, n€(0,7,), meN. (8.7.8)
In view of (8.7.2), we get
L(ES, (com) _ L(EF,, (Gm:1))

Tm Tm

- 8.7.8
LBy, Omym) GO

> > Cy—
n n n

n € (0,7), meN. (8.7.9)

Co — C3,

Take an m € N and let L = L(m), N € N be such that

1 1 1 G 1
ST ST N S 5 SN

o (8.7.10)

Then for £ > L, we get

1/b*
m + - m
/ f(x ‘2_0[ f(;E )dSZ/ _|_/ —|-/ =:Is+Ip+Ic,
1/bl+N S Ex (5m) EB(ém,) EC(ém)

Eae) == EX(e)n[1/b N 1/b], Ep(e) := E; (e) N [1/6°N1/b4,
Ec(e) = [1/6N, 1/6]\ (Ea(e) U Eg(e)).

where
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Since §,, < €9, we have

81+a

I4 Z/ f(il‘m+5) f(xm)dSZ / E—Ods ZaobZL(EA(EO))
EA(E()) EA(E())
(8.7.9)
> b (L(B; (e0,1/b%)) — 1/b"N) " > " g(Co — C5 — 1/bV)
(8.7.10)

80(00/2 — 03)

Moreover,
K L(E; (6,1/b"
|IB|§/E . )Todngob“Nﬁ(EB(&m))gKObN ( mi/be /%)
B 9m
(8.7.8) 7.10) 2
< Kochg < K()bO—C37
0
5 1/b
|IC|</ —ds < 6 —(5 log(b™).
Ec(6m) S 1/bt+N S
Thus
{+N-—-1 1/b* _
TR L COE BN CE RN
-, /bt+N s
> 2% 5 Nlogh.
Finally,
* k £+N-1
M(ap+) © liminf | — ; z; Ii(wn+)|
j

1 /e0Cy log b
> _
N( 5leogb) 3b EQCO Om 1ogb,

where (*) follows from the lemma below.

Lemma 8.7.5. Let (a,)52, C C be a bounded sequence. Then for arbitrary L, N € N, we

have

= k 44+N-1
liminf |— E a; —hmlnf — g g aj’
n—+oo |n 4 k—4o00 -

Jj=0 Jj=

= k +N-1
limsup |— E aj‘ zlimsup‘ E E aj)
n—s+oo 1 T =0 k—+o0 N

Proof . Assume that |a,| < B, n € Ng. We have only to observe (EXERCISE) that for k > L,
we have
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(+N-1 E4+N-1 E+N-1
1 R, k+N 1
W 2w kN(Rk+N > “J)_k_N+ k <k+N > %)
(=L j=¢ 7=0 7=0
and |Ry| < (N?+ NL)B. O

Consequently, there exists an m such that M(z,,+) > logb 66002; a contradiction
9% 0
(cf. (8.7.6)).

Now in view of Step 1°, we have only to prove that 55 := R\ 5; is of zero measure.

Step 2°. We have

n—1

, [t flaxs) - F@) 4
;Ij(x:l:)—/l/ g

o /1 cos(mb*(z £ s) + 0) — cos(mbFx + 9) ds
1

kgo fom 81—0—&
i . /bk cos(mbPx + 0 & ws) — cos(mbFx + 0) bEog
2 bk /4 glta
00 +ins
o ) ﬂbkm+9 :
“re(Soetteen [T S0 )

o b
Form € Z, n € N, put

b +ims 1
+ . _ € -
Gy, = /b e ds,

m—1
Sp(t): =€ e 4. 4 e,
Sno(t) : = Sn(t)em — (ilt+0) + i (bt+0) 4t ei(b”’1t+0),
Spo(mb™z), fm>0

Apn(x) = Spymo(rz), if —n+1<m<—-1.
0, ifm< —n
Then
+ims k
) N S
peon 8 k=0 m=k—n+1

i Ay ()G,

m=—0o0

It is known (cf. [KSZ48]) that there exists a zero-measure set =y C R such that

1
lim —S,(mx) =0, xR\ Z).

n—+oo n

Let z € R\ Zj. Since

|Sh4m,0(t) = Sno ()] = |Sngm(t) = Su()] < |m|, m=>-n+1,
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we get L5y, 4 o(72) — 0 uniformly with respect to 6 (for m > —n + 1). Since
S0 (b™t) = Sntmo(t)] = [Sn(b™t) = Spam(t) <m, m >0,
we get 2.5, o(mb™x) —> 0 uniformly with respect to 6 (for m > 0). Hence for z € R\ =, we
have
n—1 1 e}
lim S I;(z+) = Re ( im ~ Y Amm(x)Gi)

n——+o0o n—+oco n
J=0

© Re (mioo nll}l}_loo %Amm(x)Gi) =0,

where (1) follows from the fact that

o0 oo

1 > 2ds
> cMna@ck < X eE < [ <o

m=—0o0 m=—0o0

In particular, M (z+) = 0, z € R\ Zp. Thus R\ 5y C 55 (cf. (8.7.6)). Using (8.7.7) completes
the proof. O

8.7.3 Nowhere Differentiability of Weierstrass-Type Functions:
Infinite Derivatives

Theorem 8.7.6. Let ¢* € (0,5) be such that tany* = 7 4 * (p* ~ 1.3518). If ab >
1+ ﬁ ~ 5.6034, then there exist €4 = €4(a,b),ns = n4(a,b),Cs = Cy(a,b) > 0 such that

for every x € R, we have

{ﬁ(EJ(E4,n)) L LB (ea, =)
" 1

L(ES 0 —n) | £E; (Eam)
n n

In particular, f € M(R) N ND>(R) € NDL(R) N ND>®(R) (c¢f. Theorem 8.3.1 and Re-
mark 8.7.2).

lim sup min
n—0+

)

} > 0. (8.7.11)

Proof. Put
&' (e.0) s = limsup (EEZE) | LE & )y
n—0+ n n
LB ) | L )
b= 1n—>%:1—p ( n " 7 )

Let S := {p € L>(0,1) : ||p|loc = 1}. For p € L>=(0,1), put p(z) := p(x — |z]), z € R.
Define
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) 1 (Y fla+s)—flz—s) _slogs
Fop) =1 = d )
(#) = limeup |7 /W st P(iog )
z €R, pe L*(0,1).
Observe that
1! +s)— —s) (lo
’_ f(z S)1+zf($ s)p( gs>d8’
1/bn s logb
1 [t 29K
= _/ =[Ipllocds = (27Kologb)||p| -
n 1/bm S
From now on, fix an x € R.
Step 1°. Assume that y(z) := sup,es Fr(p) — Fr(1) > 0. Let 5 : %. Then
cs = min{d*(e5, x), d«(e5,2)} > v(@) =:C5. (8.7.12)

8bK

Indeed, suppose that c3 := d.(e5,x) (the case c3 := d*(e5,x) is left for the reader as an
EXERCISE). Take a § > 0. Then there exists an L = L(d) € N such that

LIES (e, =) | L(E; (s,n))

<c3+9, ne ( blL}
Let B, (z) := (B (e5) U (—EF (e5))) N Ry,

2Kys*, if s € E.(x)
Ry — Ry, z(8) = .
Vo Ry + Yeld) {25530, if s ¢ E,(z)
Then

flets) = fle—s) = (flz+s) = f(2) = (flx—s) = f(z))
S {—2Kos°‘7 if s € E.(x)

= —u(s), s€ER,. 8.7.13
—e58* —e5| — s|%,  if s ¢ E.(x) Yels), s * ( )

Take £ > L and p € S. Then

1/b* 1 1/b° o 2K
‘/ 1+a 0g5> S) S/ Ed8+/ o
1/bt+1 S logb 1/bt+1 S E.(z)N[1/bt+1,1/b%] $

< 2e5logb + 2Kob T L(E.(z) N [0,1/b])
< 2e5b + 2Kob T (L(E; (e5,1/b")) + L(ES (5, —1/b)))

< @ + 2bKo(c3 + 9).
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Consequently,

b ah(s) (logS)d)

limsup |— JIta 1

n—+oo 1M J1/pn

= limsup l | tals )p(bﬁ)dsJF%/ll/bL e ~(log8>d8)

n— 400 /bL slto 10gb /bn slta logb
= lim sup —/ ¢15_ ) p( OgS)d ‘
n—otoo 1M Jypn ST logb

< limsup n—L (@ + 2bKo(cs + 5)) = @ + 20Ko(cs + 9).

n——+o0o

Since § > 0 was arbitrary, we get

hmsup —
n—-+oo 1/bm slta

b ah(s) (logs

; )d)<—)+2bKOC3, pes.

Thus,

F$(p) < @ + 2bKc3

4
. 1 (Y fla+s)— flx—s)+.(s) _slogs
1 - d )
* ggi&? /1/bn slte p(logb) g
e — flx — v
< (@) + 20Koc3 + limsup — / flz+s) fgzr JRiC) ‘ds
4 n—+oo T J1/pn slta
1 J—
(8'7:'13) PY(‘/'C> + 2bK()C3 + hm SU.p l f(w + S) fgx S) + ww( ) S
4 n—+oo N 1/bn S ta

<

1
@ + 4bKocs + lim sup 1 fats) —flz=s) ds)

n——4oo 1T 1/bm™ slta
()

= N + 4bKocs + F.(1).

It follows that 0 < y(z) < X + 4bKocs. Finally, c3 > g = Cs (cf. (8.7.12)).

Step 2°. (Cf. Step 1° of the proof of Theorem 8.7.4.) Let

. E()Cg . 1
6T gy S0 Co := 4e0Co + 8K,
Then
min{d* (g6, x), d«(g6,2)} > Cs (EQC 4 Fw(l)) (8.7.14)
) ) 9 0 Ogb

Indeed, we may assume that cy(z) = g0C3 — l;”’bF (1) > 0. Suppose that d.(eg,x) <

Coscq(z) (the case d*(g¢,x) < Cgea(x) is left for the reader as an EXERCISE). There exists an
L = L(x) € N such that
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E(EI(;67—77)) N E(E;7(7€67n)) < Coea(a), ne (07%) < (0.10).

Using (8.7.2), we get

L(E}(0,7)) > L(E; (g0, —1))
" = " = b

Analogously,
L(E; (50, 1))
n
Let N € N be such that bLNS 7°< bN r. Take an £ > L. Then

1/b*
/ f(x+f+a ds—/ / / =:Is+1Ip + Ic,
1/be+N S Ea(es) Ep(es) Ec(e6)

Eale) == Ef ()N [1/bN 178, Ep(e) := E; () N [1/6TN 1/b4],
Ec(e) = [1/6N, 1/67\ (Ea(e) U Eg(e)).

> Co — Ceea(x), ne (O b1L>

where

Since ¢ < €9, we have

Iy > / wds > / 6—Ocls > eob’L(E (o))
E(eo) § Ea(eo)

> b’ (L(ES (g0,1/b%)) — 1/b7N) > 0(Cy — Coea(x) — 1/6N)
2 80(00/2 — 0604(:6)).

Moreover,
K By (6, 1/
ol < [ By < koY p(En () < Rgp? AP
Ep(es) © 1/b

2
< K()bNCGC4($) < KQbFCGCz;({E)?
0

1/b* d 2
o] < / Sds < 86/ . g6 log(b™) < MbN
Ec(ee) S 1/bt+N S 8b

é‘OCg i o EI()C()
8 Cy 4

Thus

1/" r+s)— f(x 1 cq(T
/ %dSEIA—Hm—UdZZ(soCO— 4(/(’0))'

1/b4+N
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Using the same methods, one can prove (EXERCISE) that

/1/# f@) ~fa—s) >4<000_ (ir)>.

1/be+N slte Co

Consequently,

Gt L/v" r+s)— f(x—s
I B

— Jbt+N slto
j=

>

(E()C() — C4(x)) > 0,

1
2 Co

and therefore, using Lemma 8.7.5, we get

4

k 1
F,(1) = limsup N ZZ
1
>

+N-—
> Usat) = Li(z-)|

Jj=

(200 - Cg?) > Y0 (45 — ea(a)) = Fa(1);

k—+oo

L
N

[\

a contradiction.

Step 3°. (Cf. Step 2° of the proof of Theorem 8.7.4.) Take a p € S. Then

Lofla+s)— f(z—s) 5(10g5)d5

1/bm glta logb

9 1 . k 1
=2 Z a® sin(rbFx + 9)/ sin(mb’s) 5( Ogs)ds

— 1o ST logb

b :
0o . _rlogu — klogh
» i . / sin(mu), 1o ~(logu — klogb
— kE:O a Sln(ﬂ'b x + 9) be /b U1+a b p( log b )du

k

oo b .
1
=2 Z sin(mb*z + 9)/ Sl;(_zrj) ﬁ( Ogs)ds.

Py pl—n logb

For m € Z, n € N, put

b
o sin(ws) _slogs
Gniwi= [ e (i)

m—1

Sn(t): = et 4 it 44 eib"_1t7
Spa(t) : = Im(S,(t)e") = sin(t + ) + sin(bt + 0) + - - - +sin(b" "1t + 0),
Spo(md™mx), ifm>0
Bpn(x): =1 Spemeo(mz), if —n+1<m<-—1.
0, ifm<-—n
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Then

bk . k
Zsm (mb*a + 9)/ SI;SQ ds = Zsm (mb*z + 6) Z Gm(p)

k=0 b= k=0 m=k—n+1

Z Bm,n(x>Gm (p)

m=—0o0

Let (n;)72, be such that

1 J— J—
J—too In; 1/b™i sT

183

Since 1|s, (z)| < 1, we may assume that Snj,g( ) — sp(x) when j — +o0. Similarly

as in Step 2° of the proof of Theorem 8.7. 4 we get - 75 Snj+m, g(mx) — s (x) uniformly with

respect to € (for every m > —n + 1) and sn
0 (for every m > 0). It follows that

3

1 (Y flz+s)—flx—s) _slogs
lim | = ‘
J—EPOO ’I’LJ ‘/]:/bn‘] 81+a p(logb)ds
=1
Jim | 3D B @G o)

m=—oQ J

> JJELO ;B (2)Gom (P)

= sin(7s) 1og8
:2) Z )_2|89 |‘/ Cstta Flo gb)ds)

where (**) follows from the fact that

o0 o0

1 > ds
> B, @G0 < Y Gulpl < | <

m=—0o0 m=—0o0

Consequently,

y(x) > Fy(p) — Fp(1) > lim L/l fl@+s)—flz—s) N(logS)dS)

Jotoodng Jypmi slto log b
1/t — f(z —
— lim —/ f($+8)1 f@ S)ds‘
j—=+too In; /bn,v glta

sin(rm 1ogs sin(ms)
= 2lsg(x )/ sl+0‘ logb> )_/ slto ds)

sin(ms) logs N
> 2|s5( |/ e logb) —1)ds =: 2|sj(x)|U(p).

Note that U(p) is independent of = and 6.
Step 4°. If U* := sup,¢s U(p) > 0, then (8.7.11) is fulfilled.

(ﬂ'bm ) — sp(x) uniformly with respect to

(8.7.15)
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Indeed, let

logd 2
165 0C0

oo sin(ws) 5. °

fO slta ds

Cy =

If [s;(z)| < c5, then
°° sin(ms) logh
F.(1) < 205/0 ita ds = % €0y,

and therefore, c4(z) = £0C3 — lfgbbF (1) > EOC . Thus, using (8.7.14), we get (8.7.11) with
CGE[)C(%

€4 := g6 and Cy := =
If [sj(z)| > c5, then y(z) > 2¢5U* > 0. Thus, using (8.7.12), we get (8.7.11) with €4 :=¢5
and Cy := X‘ZIU(* .

Consequently, it remains to prove that U* > 0, provided that ab > 1 + — w* =:c".
Step 5°. Define
o0
G(t) := Z a"sin(wb"t), teR.
n=-—oo

Note that G € C(R). Let M := minj<;<p G(t). First, we will show that U* > 0, provided that
M <0.
Indeed, if M < 0, then there exist 1 < p < v < b such that

SlIlﬂ'bS sin(m
0> [(Gim 3 o [T 3 [,

n=—oo n=—oo

Observe that vb™ < pb"t!. Define p: I — R,

log b

0, if ﬂ <t < losv
p(t) =
1, otherw1se

Then, using (8.7.15), we get

0> Z /bn Sljlm =—/OOO Si;(fj)(ﬁ(izi‘lj)—1)ds=—U(p).

n=—oo

Hence U* > 0.

Step 6°. Now in view of Step 4°, we have only to prove that M < 0, provided that ab > c*.
First observe that ¢¥* ~ 1.3518 > 1.2566 ~ %77. Consider the function

T+
ney

One may easily check (EXERCISE) that g(¢) > g(v*) =1+ ﬁ > 5. We will prove that

for every ¢ € (%”, %), if ab > 1 + g(3)), then there exists a point x* € (1,2) such that
G(z*) < 0. The point ¢ = ¢* gives the best estimate. Thus, fix a ¢ € (2?”, %) and assume

that ab > 1+ g(¢). In particular, b > 5. Set g1 := 1. We define inductively a sequence of odd
natural numbers ¢; < g2 < .... Let 7y, := b(g, + %) Obviously, there exists a p,, € Z such

that |p,, — 3”2—_1| < % We set gp+1:= 2p, + 1. We have |¢n+1 — 7| < 1. Note that

(27r ™

= 2)91/“—>1+



8.7 Hata’s Method

qn+127n_1:b(qn+%)_1>5qn_124qn'

Let

. Gn  qnt1
I"'::[b“—l’ b"—l}

Observe that I,,4+1 C I,,. In fact,

dn+1 P)’n_l "/} 1 w 1
—_— > — =qy — — = >(n — — = > (n,
R T T R

and therefore, 4% > ¢,,. Similarly,

i1 42 9 9
i tl _m¥2_ 2 Y
b b T b T 5

Thus N~ In = {z*} C (1,2). We have

_ qn+1 1/) 1 (i 2 ¥ 2
bnl*_n> _n>___ —_ — = - — T 07
x qn = b n = T b > T b = T 5 >
n 1 2
g < B <Py 2 cn en
Hence )
sin(mb" " 1z*) < —sin (w - %)7 neN.
Consequently,

G(z*) = Z a"sin(mb"x*) + Z a”"sin(rb~"z")
n=0 n=1

< — a" sin ( — —) + a "wb "z
2 (e mg) 2
1 . 2 Tx*
——1_asm(1/)—7) +ab—1
1 2 1 2
< - i - )+ — -
= 1—a$n@) b)+aw4(”+¢+b>

To get G(z*) < 0, it suffices to have

or equivalently,
+ v+ 2F +sin(y — 2F
ab > 17r v T -(w b2)7r
E(ﬂ"i"(/} + T) +Sln(w — T)

-+(%).

where

T+ +t+sin(y —t) 0<t<y

F@?:%w+¢+w+mmw—ﬂ’ B

One can check that F' is decreasing (EXERCISE). Thus, F(t) < F(0) = g(¢), 0 <t <.
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8.8 Summary

8 Weierstrass-Type Functions II

In a concentrated tabular form, the best known results may be summarized as follows (recall
that ND>® C ND D NDL D M D M NND>®):

ND* | ND | ND. M | MAND
p=1, 6=0, b odd p=1, @ arb., b even p,b odd, =0
ab>1+%7r(l—a) b>14, a=1/b ab>1+%p7r

Theorem 3.8.1 Theorem 3.6.1 Theorem 3.5.1
arb., @ arb.
=1, =0, be2N\ (3N p arb.,
AT S (a<as(p), >4 () or
Theorom 3.9.5 (a<az(p), b>¥2(a))

eorem 5.9. Theorem 3.7.1
p=1, 6=0, b>3 0 arb., ab>1 - _

IR p=1, O=const p=1, @ arb. | p=1, 6=const
ab>143=Dr=0a) | (p odd, b>p) or beNa, ab>1 ab>1 ab>5.6034

2(b—1) cos(E7)

Theorem 3.9.9

(p even, b>p/2)
Theorem 8.6.7

Theorem 8.4.1

It is seen that many cases remain undecided

Theorem 8.3.1

Theorem 8.7.6




Chapter 9
Takagi—van der Waerden-Type Functions 11

Summary. In this chapter, using more developed tools, we extend results stated in Chap. 4.

9.1 Introduction

Recall (cf. § 4.1) that
Topo(z) =Y a"p("z+0,), zcR,

n=0
where 0 <a <1,ab>1,0 = (0,2, CR, and ¢(z) := dist(z,Z), = € R.
Let us summarize some results proved so far:
(1) T = T1/2}270 S N:D:t(]l) (Theorem 421)
(2) Tijpp,6 € NDL(R), provided that b > 10 (Theorem 4.3.1).

(3) Tupo € NDL(R), provided that ab > 1 and b € Ny (Theorem 4.3.2); in particular,
T /p.5,0 € ND(R), provided that b € Ny.

Now we like to go further and obtain the following results:

(4) If ab > 1, then T, 4.0 € M(R) C ND_(R) (Theorem 9.2.1).

(5) A characterization of the set of all x € R such that T'_(z) € {—o00, +0o0} (Theorems 9.3.1
and 9.3.4).

The question whether T /559 € ND4(R) for 1 < b < 10 remains open

9.2 The Case ab > 1

Theorem 9.2.1 (cf. [BD94]). If ab > 1, then Ty is a-anti-Holder continuous uniformly

with respect to x € R and 0 (a := —%). Consequently, T p.6 € M(R) C NDL(R) for
every 6.

Proof. Assume that ab > 1 and let Tp := T, 0. Remark 8.5.2(f) reduces the proof to the
following condition:

© Springer International Publishing Switzerland 2015 187
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3e, 50>0 V6, 5€(0,60) Inie(0,6] : [To(hy) — To(0)| > 0.

We are going to prove that there exist ¢ > 0 and N € N such that for an arbitrary 8, we

have
b [
W/ To(t) cos2m(b™t + O,,)dt < —ca™, m € Ny.
0

Suppose for a moment that (9.2.1) has been proven. Since

N

P
/ cos2m(b™t + 0,,)dt =0, m € Ny,
0

we get (for arbitrary )

N

b [

~ (To(t) — To(0)) cos2m(b™t + Oy )dt < —ca™, m € Ny.

Put §p := 1. Fix a 6 € (0,1) and let m € Ny be such that b],\;
implies that there exists an hy € (0, A7) C (0,6) such that

c c N\«
—_ m_ - _ — > @
To(hs) = To(O)] > ea™ = 120 = s (bbm) > &6

with ¢ := which completes the proof.

ND( )
We move to the proof of (9.2.1). Define

ak

Ji(x,0,N) := NoF

Direct calculations give
bm
— / To(t) cos 2w (bt + 0, )dt
N Jo
-
n=0

&0 k+mbm

n= k+m Z
k+mpm phtm

. o0 +6
u:bk+m't+0k+nz a bm k+m m _ em-'rk}
— E T 'c/;(u) COS 271' (b ka + 9m)
k=—m Ok 4m

’I’me

/bm PVt + 0,,) cos 2w (b + 0, )di
/ P( bk+mt + O ) cos 2w (bt + 6, )dt

du

=a™ Z Jk(xk, 9;“ N) with zg := Otk 9;6 =0,, — b‘k9m+k.

k=—m

z+Nb*
/ p(t)cos2m (b~ "t +0)dt, keZ z,0 R, NeN.

bk+m

(9.2.1)

(9.2.2)

< § < b, Then (9.2.2)

(9.2.3)

The remaining part of the proof of (9.2.1) will be divided into the following ten steps.

k
< ifk>0
Step 1°. | Jx(z,0,N)| << 2% -, z,0eR, NeN.
P Wit 0,20 {“’b)k, itk <0

™
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Indeed, the case k > 0 is obvious. If £ < 0, then integration by parts gives

|k (x, 0, N)|
ak z+NbF 4+ NbP
=5 N‘qp(t) sin 27 (b= %t 4 6) — / ' (t) sin 27w (b~ %t + 6)dt
T x T
k k
a k k (ab)
< S =
< 27TN(Nb + Nb¥) —

P
1
Step 2°. ‘ cos(x—i—ny)) <——, z,y€R, peN,.
2 B

Indeed,

p p
'Zcos(x +ny)‘ < ‘Zei(a:-i-ny)
n=0 n=0

_ ‘ 1 — eiptl)y 1

- < .
T—ew | = [sin(y/2)]

Step 3°. If m := b~F € Z, then

a®(1 — (=1)™) cos 270
Ji(@,6,N) Noteo 212m?

uniformly with respect to x,0 € R.
Indeed, let p(N) := [£|. Then

N
mak T+

~ () cos 2mr(mt + 0)dt

x

Ji(x,0,N) =

N
mak z+

= (p(N) /01 () cos 2w (mt + 6)dt + / " P (t) cos 2 (mt + H)dt)

z+p(N)

N
T+

1
— (p(]{]\f> / () cos 2m(mt + 0)dt + m () cos 2mr(mt 4+ 0)dt).
m 70 z+p(N)

Observe that

i+ N
m m 1 p(l\/)
— < — —
N /I ) ’l'b(t) €Oos 27 (mt + Q)dt) 2 (1 T]XL ) — 0.

Thus

1
Ji(x,0,N) — ak/ t(t) cos 2 (mit + 6)dt
0

N—+oc0
a* . 0 1 L 0
=5 (’Q/J(t) sin 27 (mt + )‘O —/0 ' (t) sin 2w (mt + )dt)
a” 2

1
= W(COS 27r(mt + 0)‘0

F(1 - (=1)™) cos 276
=2 ( (2 2) Q)COS T uniformly with respect to z,6 € R.
m2m

— cos 2w (mt + 9))1/2)
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Step 4°. If b= ¢ Z, then

Ji(z,0,N) —> 0 uniformly with respect to z,60 € R.

400

Indeed, let p(N) := | Nb*|. Then
Je(z,0,N) = / (1) Z cos 2 (bR (t + ) + 0)dt

z+Nb*
+ / (t) cos 2m (bt + G)dt) .

+p(N)

Obviously,

p(N)
NbF ) Notoo

z+NbF .
t) cos 2 (b~ t+9dt‘<— 1-—
Nb ‘/IJFP(N ( (

uniformly with respect to x,6 € R.

On the other hand, using Step 2°, we get

p(N)—1 %

a
2 - @ @ @ @
ka’/ (o) Z cos2m(b™HE 4 17) + O] < S ] Wt

uniformly with respect to z, 0 € R.

Step 5°. If d € Qs and d" € N for some h € N, then d € N.
Indeed, let d = 57 where p, ¢ € N are relatively prime. Then p" = d"¢", which implies that

q=1.
Step 6°. Let S := {k € N:b* € N}. If S # @, then S = rN, where r := min S.
Indeed, suppose that k € S\ N, k =rq+h, ¢,h €N, 0 < h < 7. Then b = (br € Qand
(") = (b")" € N. Consequently, by Step 5°, b* € N; a contradiction.
Step 7°. Jo(z,0,N) = — 5.
Indeed, using the proof of Step 3°, we get
1N ! 1
Jo(z,0,N) = N/ ©(t) cos 2mtdt = / (t) cos 2mtdt = — —.
0 0

Fix an 1 > 0 such that 3n < = Moreover if S# @ and S =rN (cf. Step 6°), then we
require that 1 be so small that 3n + m < ﬂ%
Step 8°. There exists an M € N such that

> |k, 0,N) <y, xz,0eR, NeN.
|k|>M

Indeed, we only need to use Step 1°.

Step 9°. If S = &, then (9.2.1) is satisfied.
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Indeed, by Step 4°, there exists an N € N such that |Ji(x,0, N)| < §; for all ,6 € R and
0 < [k| < M. Consequently, >, ., |Jk(z,0, N)| < 3n for all 2,0 € R. Thus, using (9.2.3) and
Step 7°, we conclude that

bm w+b% m 1 m m
N/ To(t) cos2m(b™t + Oy, )dt < (377 - F)a =: —ea™,
z € R, m € Ng.

Step 10°. If S # @, then (9.2.1) is satisfied.
Indeed, by Step 6° we have S = rN for some r € Ny. Analogously as in Step 92, we find
an Ny such that

i@, 0. N)| < 35 0 <M <M, —k ¢S N>Np, a0 R

(in particular, the above inequality holds for all 1 < k < M). Using Step 3°, we find an
N > Nj such that

o) < S0 M<k keS, z,0 R
1< L _M<k<-1 — )

|Jk($, ) >| < 2 + M = x2ab + M’ >R 17 €0, z,0c
Thus

S @0 N <3n+> o —ae Ll e

— 72abbPT m2ab(b” — 1) w2

k#0 p=1

and we finish the proof as in Step 9°. O

9.3 Infinite Unilateral Derivatives of T7 /320

Recall (cf. Theorems 4.2.1 and 4.3.2) that T € ND_L(R). The aim of this section is to
characterize the points € R for which infinite one-sided derivatives exist. In fact, since
T(x+1) = T(z) and T(—x) = T(z), * € R, we get T, () = T',(z + 1) and T’ (z) =
—T’.(—x). In particular, T, (z) = —=T%.(1 — x). Hence, it suffices to consider only T", (x) for
x € [0,1). We will discuss the following two cases:

(a)

a) (Cf. Theorem 9.3.1) x € I is a dyadic rational, i.e., z = & with m € N, k € Ny, k < 2™.
(b) (Cf. Theorem 9.3.4) = € (0,1) is not a dyadic rational.

om

We begin with the simpler case of x a dyadic rational.

Theorem 9.3.1 (cf. [BA36]). If x €1 is a dyadic rational, then T, (x) = +o0.

Proof. We have only to show that T”, (z) = +oo for x = 5% with m € N, k € No, k < 2™.

2’!71,
Define
k

1
Sk(t) == g ¥(2"), tER ke
n=0
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Observe that

e Since |¢¥(t) — Y (u)| < |t — u| for all t,u € R, we get |AS,,,—1(z, 2+ h)| < m.
o If n > m, then ¥(2"z) = ¥ (k2"~™) = 0.

elfm<n<m+p—1land 0 < h < Q,n%p, then 2"h < W% < %, and therefore,

1 Y@ (zt+h) _ »(2"h) _ 4
2" h 27h :
Consequently,
1
AT(x,x+h)>p—mifor0 < h< +,pEN
which immediately implies that T", () = +o0. O

From now on, we assume that x € (0, 1) is not a dyadic rational. We will use the following

two representations of x:
o0 o0
Y=Y
ok’
k=1

n:l
where (a,)p2; C N, ap < ant1, n €N, (ex)72; € {0,1}.

Remark 9.3.2. (a) ¢y, =1 <=k € {a1,a2,...}.
(b) It is excluded that:
o there exists a p € N such that ap4r =a, +k for all k € N, or
e there exists a p € N such that e, =1 for all £ > p.
Equivalently: sup{n € N:a, + 1 < apt1} = sup{k € N: g, = 0} = +o0.
(¢) 1 —z is not dyadic.
We will use the following notation:
I, =1+ +4+¢e,,0,:=n—-1,,D,:=0, — I, =20, —n=n—2I,.
Let =, () := (an+1 — an) — logy(ant1 — apn) — (an — 2n).
Remark 9.3.3. (a) If a, < k < apn41, then I, = n, and hence Dy, = k — 2I;, = k — 2n >
an — 2n = D,,, . In particular,

Dy — +o00 <= D,, — +00. (9.3.1)
(b) Since =y, (x) > —(a, — 2n), we conclude that

Zn(r) — —00 = a, — 2n — +o0. (9.3.2)
Theorem 9.3.4 (cf. [Krii07, AK10]). If x € (0,1) is not dyadic, x = > oo | 52—, 1 —a =
Son ) gh where (an)52 CN, (bp)o2 CN, an < ang1, by < bpg1, n € N (¢f. Remark 9.3.2),
then:
(1) T (z) = +00 <= an — 2n — +00;
(2) T' (z) = +o00 <= =, (x) — —00;
(3) T (z) = —o0 <= Z(1 — ) — —00;
(4) T' () = —00 <= b, — 2n — +00;
(5) T'(x) = 400 < Z,(x) — —00;
(6) T'(z) = —00 <= Z,(1 — 1) — —o0.

Remark 9.3.5. Observe that:

e Statement (1) is equivalent to (4).
e Statement (3) is equivalent to (2).
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e (5) is a direct consequence of (1), (2), and (9.3.2).
e Analogously, (6) is a consequence of (3) and (4).

Thus, we need to prove only (1) and (3).
The proofs will be given in Sect. 9.4. First, we present some examples and auxiliary results.

Example 9.3.6 (cf. [AK10]). (a) (Cf. [Krii07], Proposition 5.3) Assume that the number of
consecutive 0’s in the expansion of x is bounded, i.e., ap+1 — a, < M, n € N. Then
Zn(z) < M — (an — 2n). Thus, using (5), we get the implication a, — 2n — 400 =
T (z) = +oc.

(b) Let ), := “2%L and assume that limsup,,_, . An > 2. Then =, (z)-/~> —o0.

Indeed, if A\,, > 2, then
En(z) = (A — 2)an + 2n —logy (A\n, — 1)ay,)

mean value

theorem 1
(c) If for some 0 < e < 1 we have limsup, ., An = 2 — ¢ and

liminf, o % > %, then =, (z) — —o0.
Indeed, take an &’ € (0,¢) such that liminf, . % > f—, and let N € N be such that
Ap £2—¢" and %= 25_2/ for n > N. Then for n > N, we get

Eae) = (M -2+ z—”)an ~logy((An — )ay)
< (&' +€Nayn —logy(An — Day) = —logy((An — 1)ay,).

(d) The criterion from (c) applies, for example, to the following particular cases (EXERCISE):

® a, :=3n (with € :=1);

e a, :=p(n), where p(z) = as2° +---+ag, s > 2, as > 0, and p(n) < p(n+1),n €N
(with € :=1);

e a,:=|a"], where 1 < o < 2 (with £ :=2 — a);

® a, := the nth prime number (with € := 1; hint: lim,, 4 o nl‘;ﬁ =1).

(e) If a,, = 2", then =, (x) = 2Tt —2.2" 4+ 2n — log, (2" — 27) = n — +o0.

(f) If ap = 2" + n, then

Enp(x) =2"T 4 n +1-2(2" +n) +2n —logy (2" +n+1— (2" +n))
=n+1-log,(2"+1) =1—-logy(1+27") — 1.
(g) fa, =2"+ (1 +¢)n (¢ > 0), then
Za@)=2"""+ (1+e)(n+1)—2(2" + (1 +e)n) +2n

—logy (2" + (1 +e)(n+1)— (2" + (1 +¢)n))
=1+ec—en—logy(1+27"(1+¢)) — —o0.
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1< I, n
di(x):= lim —Zsk: lim —, do(z):=1—di(z)= lim O—,

n—+oo N n—+oco N

provided that the limit exists. Theorem 9.3.4(5)(6) implies the following corollaries:

(i) If 0 < di(z) < 3, then T"(x) = +oo0.
(ii) If 2 < di(x) < 1, then T'(z) = —oc.
(iif) If di(2) = 0 and limsup,, , , ,, “2= < 2, then T"(z) = +o0.

n

(iv) If di(x) = 1 and limsup,, ,, b"% < 2, then T'(z) = —o0.

Indeed, observe that di(z) = lim, e % Moreover, if 0 < dyi(z) < 1, then
limy, 400 “25+ = 1. Consequently, (i) and (iii) follow from (c) and (5). Tmplications
(ii) and (iv) are left to the reader as an EXERCISE.

Some other examples will be given in Sect. 9.5.

Let p € N and h € (5757, 55 be such that « + h < 1. (9.3.3)
Write z+h=> 7o, ;—/’;, where ¢}, € {0,1}, k € N. We assume that sup{k € N : e, =0}=+oc.
Let X, (z) :=1—2e, = (—1)°", Xp(x+h) :=1—2¢/, = (=1)*, n e N.

Lemma 9.3.7. Let h be as in (9.3.3). Then
Y (2" (2 + h)) — (2 z)

1

ok

— gn—1 Z

k=n+1

(Xn+1(x)Xk(l‘) — Xn+1(l‘ + h)Xk(ZC + h)), n € Np.

Proof. We have (cf. the proof of Proposition 4.1.4)

n n > 1 . > €k
1/’(2 [[:) =2 (511—0—1 Z 2_k_|_ (_1)6 +1 Z 2_k)
k=n+1 k=n+1
1

=2" Z 2_k(€”+1 +(1— 2€n+1)8k)
k=n+1

=2" Z 27(_5(1_25n+1)(1—2£k)+§>
k=n+1
n—1 G 1 1

=2 Z 2_an+1($)Xk(x) + 3 O

k=n+1
Define
kozko(h) — maX{kEN:é‘l:E'l, ...7Ek:g;€}7 ifé‘lza‘/l
) 07 1f €1 # 53 .
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Remark 9.3.8. (a) ko < p.

(f)

Indeed, suppose that kg > p+ 1. Then

> €, — €k =1 1
h= 2 *5—< ) =
k=p+2 k=p+2

a contradiction.
€ko+1 =0and g, = 1.
Indeed, suppose that ex,+1 =1 and ¢}, ,; = 0. Then

b 1 > el — €k
= okt T Z ok
k=ko+2

1 =1 1 1
S Tomrr T 2 2% = "Rttt ghort = 0
k=ko+2

a contradiction.

Consequently,

° Xk0+1(l‘) =0 and Xk0+1(l‘ + h) =1;

o ifkg=p—1, then Op, = O, + 1.

If kg <p—2,theney=1and e} =0 for k=ky+2,...,p.

Indeed, let h = Y7, ;—’; Observe that ] = --- = ¢)_; = 0. Suppose that e = ¢}, for
some k € {ko + 2,...,p}. Then, since ¢}/_, = 0, we conclude that e, = ¢}_,. After

a finite number of steps, we get ex,4+1 = €}, ,,, which contradicts (b). Thus e # ¢},
k=ko+1,...,p. Suppose that e, =0 and &, = 1 for some ¢ € {ko+2,...,p}. Using (b),
we get

1 L el — €k > €l — €k
h=grm t > oh + > ok

k=ko+2 k=p+1
1 r eh—er 1 1
>t D ot 5
k=ko+2, k#L
1 12 1
> X wty o w
k=ko+2
J 1 1 1 1 11 1
*W_(W_ﬁ)+2z>_—l_2_p—2p—l>2?

a contradiction.

Consequently,

o ifky+2<p,then Xi(z)=1and Xy(z+h)=0for k=ko+2,...,p;
o if kg <p—2,then O), = Oy, + 1.

Assume that 1 < g < pand gg =0, ggq41 = --- = €p = 1. Then kg = ¢ — 1 (use (b)
and (c)).
If h = 5, then kg < p—1 and ¢4 = ¢}, for all k > p.

Indeed, we have h = Y 7o 55—,"“ If we add z+ h, then it is clear that €5, = ¢}, for all k > p.
Moreover, e, = 1 — &, s0 ko <p— 1.
If h = 5 and €, = 0, then kg = p — 1 (use (c) and (e)).
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(g) limh_>0+ ko(h) = +4o00.
Indeed for every k € N, there exists a ¢ > k such that ¢, = 0. Then for every p > ¢ and

s < h < 55, using (c), we get ko(h) > ¢ —1> k.
Lemma 9.3.9. Let h be as in (9.3.3). If ko = ko(h) > 1, then

T(x+h)—T(z) = (tho) + (—(p—ko—2) i 2%(1_%—5;))

k=p+1
( Z Z Xng1(2) Xy (2 )—Xn+1($+h)Xk(l“+h)))
n=p k= n+1
=: A(h) + B(h) + C(h).
Remark 9.3.10. Observe that
3 (9.3.3)
|B(h)| < |p— ko — 2| Z =lp—ko—25; < 6lp—ko—2lh,
—p+1
S | 1 (933)
h)| < Zkz w =T < 4h (9.3.4)
n=p k=n+1

In pa[ thulaI,
hm AT(J: X + h) :|:<>O e 11m (D + _(h)) - :I:()O
h—0 ? kO(h‘) h

Proof of Lemma 9.3.9. Using Lemma 9.3.7 and Remark 9.3.8, we get

T(x+h)—T(x)— C(h)

ko—1 0
_ % Y Y (X1 @)Xk (@) — X @+ )Xo+ B)
n=0 k=n-+1

2

S~ Xu(a) - Xe(a + 1)
=ko+1 k=n+1

1-22) 3 (e — i)

n= k=n+1

1 o0
5 Z — 2, +1—2¢))
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—s(p—1—ko) Y o(1—2e,+1-2¢))
k=p+1

=1 =1
=(ko—ﬂko)zz—k(ﬁ%—%)—(p—ko—2) > (L —er—et)

k=1 k=p+1
=Dy (x+h—a)—(p—hko—2) > x(1—cr—¢p)

k=p+1

= A(h) + B(h) O

Lemma 9.3.11. Let h be as in (9.3.3). Assume that kg = ko(h) < p—1. Then

oo

> 2ik(1 —ep —ey) < h. (9.3.5)

k=p+1

Moreover, if epyrm+1 = 0 for some m € Ny, then

=1 1
k:ZpH S(l—ee—cp) —h(1 - 2—m) (9.3.6)

Proof . If kg = p — 1, then (using Remark 9.3.8(b)) we get

. &g 1 > 54
doomth=g Y o
k=p+1 k=p+1

If ko < p— 2, then (using Remark 9.3.8(b)(c)) we get

P 1 > Ek 1 > E/
_ k
>t X mthmgamt X g
k=ko+2 k=p+1 k=p+1
In both cases, we have
€k 1 > el
Do th=gt D o
k=p+1 k=p+1
Hence,
=1 , 1 =1, >~ 2
h — Z 2_k(1_5k_5k):2_p+ Z 27(25k—1): Z o =0
k=p+1 k=p+1 k=p+1
Moreover,
1 = , 1 =
h(1—2—m)+ Z 2—k(1 ex—€) > h 2m+p+ Z 2k(l €k — €})
k=p+1 k=p+1
1 = € €k 1 = ,
_2_p+ Z ok ok~ gm+p + Z Q_k(l €k~ €%)
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1 1 =1
=5 e T 2. (-2
k=p+1

1 1 1 2
Z 95 “gmip T ) D+ o =0 O
k=p+1

Lemma 9.3.12. Forc>1, let

1
f(m) = fe(m) := (1 - 2—m)(c —m), m € Np,
and let m* = m} := max{m € N: f(m) = max f(Ng)}. Then
logy ¢ —2 <m* <logyc+ 1. (9.3.7)

Proof . First observe that f(0) = 0. If ¢ = 1, then f(1) = 0 and f(m) < 0 for m > 2. Thus

m* =1.1f ¢ > 1, then f(1) = $(c—1) > 0, and hence m* > 1.

Note that f(m + 1) — f(m) = 527 (c+ 1 —m) — 1. Thus
fm+1)> f(m) <= 2" +m<c+ 1.
Consequently,

2™ L —1<e+1=2" <c+2-m*<c+1<2c
= m" <logyc+1,

IV > e+ 1=2" 252"l L s erl>e
= m"* >logyc— 2. O

9.4 Proof of Theorem 9.3.4

We are going to prove statements (1) and (3) of Theorem 9.3.4.

Proof of (1)(<=). We assume that a,, — 2n — 4o00. Then D,, — +oo (cf. (9.3.1)). Let
gt < h < & and ko == ko(h).
o Ifky <p-—2,then

Bty =—( Y d-c—e)) k-2 > ~hip— ko~ 2)
k=p+1

By Remark 9.3.8(b)(c), we have Dy, = 20y, — ko = 20, — 2 — k. Consequently,

B(h
Dko—i—(T)220,,—2—ko—p+k0+2:20p—p:Dp.
o If kg =p—1, then by (9.3.10), we have

B
Dk0+$Z2Op—2—k0—6=20p—(p—l)—8:Dp—7.
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e If ky = p, then by (9.3.10), we have

B(h
Diy+ B > 904, ko ~12=20, -p-12=D, - 12

Thus, T", (z) = +oo0. O

Proof of (1)(=). Recall that a, — 2n = D,, and Dy — +oo <= D,, — +o0
(cf. (9.3.1)). Suppose that Dy —= +oco. Then there exists a subsequence (ny)7; such that
limg— 400 Dn,, = g < +00. Let p := min{n > ny : &, = 0}, hy := 2,%,6 Thus ko(hx) =pr — 1
(cf. Remark 9.3.8(f)). Consequently,

< 20k (hy) = Ko(hr) +6 =2(0p, — 1) = (pr —1) + 6
= 2(Op, —2)—pk+7§20nk —ngp+3 =Dy, +3;
a contradiction. 0

Proof of (3)(<=). We assume that =, (1 —x) — —oo. Hence b,, — 2n — +o0 (cf. (9.3.2)),
and therefore D,, — —oo. Consequently, D — —oo (cf. (9.3.1)).

Let 21,% <h< 2%7 and let n € N be such that b, <p < bp41. Let m :=b,4+1 —p—1 € Np.
Then eptm+1 = 0.

o If ko = p, then Dy, + 28 < D, 412,

o Ifkg=p—1,then Dy, + 28 < D, 16

o If kg < p—2, then kg = b, — 1 (cf. Remark 9.3.8(b)(c)(d)). Since Op, = n, we get
Dy, =20y, — ko < 20y, — ko = 2n — ko. Using (9.3.6), we get

#S (1—2%)(P—k0—2)§ (1—2%)(29—/60)-
Thus
Dko+@ §2n—ko+(1—2im>(p—ko)
ko=bn—1_

p:bn+i m—1

1
2 — by, + (1 - 2—m)(bn+1 — by —m) + L.
Put mg :=mj  _, (Lemma 9.3.12). Then

2n — b, + fbn+1—bn (m> <2n—b, + fbn+1—bn (mn)
<2n—bp 4+ bpt1 — by —my < bpy1 — 26, + 20— my,
(9.3.7)
< by — 2by, +2n —logy(bpy1 — by) +2=Z,(1 —z) + 2.
Finally, T', (z) = —cc. O

Proof of (3)(=>). Suppose that there exist a subsequence (b,,)32; and M € R such that
Zn.(1—1x) > M, s € N. We consider the following two cases.

e D, — —o0, or equivalently, b, —2n — +o0. Fix any s € N, and let m, := my
(Lemma 9.3.12). Note that mg < by, 1. Define ps := b, +1 — ms, hs := 2% Then

s+1—bng
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bry1 — Mg —bp, > by 11 — b, —logy(bn, 41 —bn,) — 1
> M+ (by, —2ns) —1 — +o0.
s—+4o00

Hence b, < ps < by, 41 for s > 59 > 1. Consequently, ko(hs) = b,, — 1 (cf. Remark 9.3.8(d))
and

Dko(s) = 2Ok0(hs) - ko(hs) = 27’L5 - bns - 1, s> S0-

Moreover, ps — ko(hs) =2 =bp, 41 —ms —bp, + 1 —2 =1, 11 — b, — ms — 1. Observe that
ep=¢,=1for k=ps+1,...,by, 41 — 1. Hence

o 1 bng+1—1 1 o 1
/
> gll-a—)<— > 5+ Z oF
k=ps+1 k=ps+1 k=bn 41
1 1 1

T ops + Qbng+1—1 T 2bnr1—-1
1 1 1
= _21(1 o 2bn3+1—2—p3) =—hs (1 o 2m5—2)'
Consequently, for s > sg, we get ths) (1 — 2m )(bns_l,_]_ — by, —ms — 1). Finally,

B(hs)
h

S

Diony + > 2y — by, — 1+ (1 _

1
gz (o1 = bn,) =2

2m—_2) (bn,+1 = bn, —ms — 1)

> bns—i-l - 2bnS + 277/5 —Mms —

(9.3.7) 1
> bng1 — 2bn, + 215 —10gy(bn, 41— bn,) — m(bn5+1 —bn,)—3
1 (9.3.7)
ZM_W(bns-Fl_bns)_g > M -19;

a contradiction.

e limsup,_, . D, > —occ. Take a subsequence (ng)52, such that limg_, oo Dy, = g >
—oo. Let py := max{n < ny : g, = 0}, hy := QPk. Then D,, > D,, and ko(hg) = pr — 1
(cf. Remark 9.3.8(b)(c)). Consequently, Dy, (n,) = Dp, —1 > Dy, — 1, and therefore,

B(hy)
h

Dio(ny) + > Dyyhyy =6 = Dpny — 75

a contradiction. O

9.5 The Case of Normal Numbers
By Proposition A.9.3 and Theorems 9.3.4 and 4.3.2, we get the following theorem.
Theorem 9.5.1. The set

{z €(0,1): T/ (z), T_(x) do not exist (in the finite or infinite sense)}

is of full measure.
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oo

Example 9.5.2. (a) If a, := 2n + [\/n),  := Y7, 7-—, then z is a normal number

(cf. § A.9) with =,,(x) — —oo (and hence, by Theorem 9.3.4(5), T'(z) = +o0).
Indeed, it is clear that lim,_, 4 % = % Hence, d;(x) = % Moreover,

En(@)=2(n+1)+ [Vn+1] —2n—2|/n] +2n
—logy(2(n+ 1)+ [Vn+1] —2n — |/n))
—vn] + (Vn+1] = [Vn] +2) = logy([vVn +1] = [Vn] +2)

— —oo0.

Similarly for a, := 2n + |logn| (EXERCISE).

There exists a normal number z such that a, — 2n — +oo (and hence, by Theo-
rem 9.3.4(1), T', (z) = 400), but Z,(z) 4+ —oo (and hence, by Theorems 9.3.4(2)
and 4.3.2, T'_(z) does not exist).

Indeed, let aq := 3 and

_ {2n+3L\/ﬁJ7 i an < 20+ VA1)
Un41 =

. , neN.
an + 1, otherwise

Directly from the definition we get 2n + |v/n] — 1 < a, < 2n+ 3|/n].
In fact, for n = 1, the inequalities are trivial. Suppose that they hold for some n.
In the case a,, < 2n+ [/n], we have
ani1 =2n+3|vn] <2n+1)+3|vVn+1],
any1 =2n+3|vn| >2(n+1)+ |[Vn+1] —1.

In the case a, > 2n + [/n] + 1, we have
Uni1=an +1<2n+3|Vn| +1<2(n+1)+3|vn,
ny1=an+1>2n+ |Vn|+2>2(n+1)+ [Vn+1] —1.

Hence ap, —2n > |\/n] —1 — +oo and %= — 1 (thus di(z) = ). If n is such that
an < 2n+ [y/n], then

w(z) = 2n + 3|V/n] — 2a, + 2n — log,(2n + 3|V/n] — ay,)

> dn 4 3[VT) — 2(2n + [ViT]) — logy(2n 4+ 3LvA1] — (2n 4 [ViT] — 1)

> [vn] —log,(2[v/n] +1) > [Vn] —logy(lvn]) —

It remains to observe that it is impossible that for some n € N, we have a, + k£ >

2(n+k)+ |vVn+E|, k € No.

[1]



Chapter 10
Bolzano-Type Functions 11

Summary. In this chapter, using more advanced tools, we extend results stated in Chap. 5.

10.1 Bolzano-Type Functions

1 _ T _ 5
35 P _§7¢1_§7

If we apply the general construction from § 5.1 to N =4, ¢ = %, P2 = 3
: I — R. Recall that we
):

Dy = %, b3 = %, then we get the classical Bolzano function B
already know that B € ND(I) (cf. Theorem 5.1.2). We have (cf. § 5.1

(3) <1as0< (2)" (5) <sto<(3)"

1< [5(Sp)| < (g)” i=1,....4"
122?|Ln+1(x) — Lp(z)| < jImax{|A(Sn,i)| vi= 1,...74”} < i(g)n

We point out that the name Bolzano function is sometimes assigned to a different function;
cf., e.g., [Brz49, Kow23, Sin28].

Let M be the set of all local extrema of the function B. Moreover, let P denote the set of
all points z¢ € (0, 1) such that the determining sequence (S,)52; for zy (cf. Remark 5.1.1(d))
satisfies the following condition:

vSGN Eans :
type(Jn+1) = 3, type(Jntz2) = 2, type(Jnys) = 1, type(Jnta) = 4.

One can prove (EXERCISE) that the set P is uncountable (cf. [Jar81]).

Theorem 10.1.1 (cf. [Jar22, Jar81]; see also [Brz49, Kow23]). B € ND>((0,1))"ND_(I).
Moreover:

e ifz e MnN(0,1) is a local mazimum, then B' (z) = 400 and B’ (z) = —oo;

o ifzeMnN(0,1) is a local minimum, then B' (z) = —oco and B’ (z) = +o0;

o ifx =2, then D_f(x), D™ f(x),Dyf(x), D f(z) € R;

o ifxe P, then D_f(x) = Dif(z) = —0o,D™ f(x) = DT f(x) = +o0, i.e., x is a knot
point (cf. Remark 3.5.6).

(© Springer International Publishing Switzerland 2015 203
M. Jarnicki, P. Pflug, Continuous Nowhere Differentiable Functions, Springer
Monographs in Mathematics, DOI 10.1007/978-3-319-12670-8_10
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It is an open problem whether other Bolzano-type functions from Sect. 5.3 have similar
properties
Proof of Theorem 10.1.1. Put f := B. If (5,)22,, Jn := J(S,) is a determining sequence,

n=1>
then to simplify notation, we will write d,, := A(J,,), Ay, = A(Sy), 56, := »(S,,). Recall that
N denotes the set of nodes (§ 5.1). The proof, based entirely on [Jar81], will be divided into

11 steps.

Step 1°. If zg ¢ N, then a finite derivative f'(xo) does not exist.
Recall (Remark 5.1.3(b)) that Ma = 2, X = {1,3}, and condition (5.1.1) is satisfied. Thus
the result follows directly from Theorem 5.1.2.

Step 2°. If zg € Ny, \ {1}, then a finite right-sided derivative f', (xo) does not exist.
Suppose that f! (zg) € R exists. Let (S,)52, be the determining sequence of type (L) for
xzo. Then for n > p, we get

Hp = ALn(anabn) = Af(l‘Oa bn) n—>—+>oo f-/s-(xo)

Observe that if type(Jn,) € {2,4} for some ng > p, then type(J,,) = 1 for all n > ng. Thus,
we are always in case (A) (cf. the proof of Theorem 5.1.2); a contradiction.

Step 3°. If g € Ny \ {0}, then a finite or infinite left-sided derivative f’ (zo) does not
exist.

Suppose that f’ (7o) € R exists. Let (5,,)2%; be the determining sequence of type (R) for
2zo. Then for n > p, we get

Ay = ALn(CLnJ)n) = Af(.’EQ, an) n—)—+>oo fL(.’EQ)

Observe that if type(Jy,,) € {1,3} for some ng > p, then type(J,) = 4 for all n > ng. Thus,
we are always in case (B); a contradiction.

Step 4°. (N\{0})NnM = 2.

Suppose that o € (N'\ {0}) "M and let S,,, J,, = [an, by] be as in Step 3°. Then we are
in case (B), and hence Af(zg,an,—1) = —Af(xo,a,,) for all s € N. This means that the
differential quotient oscillates in every neighborhood of z(; a contradiction.

Step 5°. Let S € &, J := J(S) = [a,b], 0 := a+ 36(J). Then f(x0) = f(a) + 3A(S). If
#(S) > 0, then the minimum of f in J is realized at © = a and the mazimum at © = xo. If
#(S) < 0, then the mazimum of f in J is realized at x = a and the minimum at x = x¢.

Consequently, by Step 4°,

M\ {0} = {a—i—gé(J) cJ=J(S) =a,b], S €6y, pEN}.

In particular, M is countable and dense in 1.

Indeed, suppose that »(S) > 0 (the case »#(S) < 0 is left to the reader as an EXERCISE).
Let z,,z* € J be such that miny f = f(z.), maxy f = f(2*). We wish to prove that z, = a
and z* = xg. It is clear (EXERCISE) that z, = a.

Let (Sn)22; be a determining sequence for z* with S, = S, J, = J, Jpt1 = [a+ 36(J),b—
£6(J)]. Obviously, z* also realizes the maximum in the interval J,41 and 5g,41 > 0. Thus

3

1 1 1
apy2 = Qpt1 + §6p+l =a+ 56(,]) +5
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1 3
bpt2 = bpy1 — §5p+1 =b- §5(J) ~3 §5(J).

After a finite number of steps, we get

k—1
4
ap+k—a+ 5 Z( ) k_:)QQCL-Fg(S(J):xQ,
7=0
k—1 .
1 3\J 1 4
bk =050 2 () 15 b= 50 =a+ 58D =

Moreover,

k—1
Flow) = 1@ + 536 X (§) 2, S0+ 5AS) = fa)

kv

Step 6°. If zo ¢ N, then an infinite derivative f'(xqg) does not exist.

Suppose that f'(x¢) € {—o00, +00} exists. Let (5,)52 ; be the determining sequence for zg.
If (B) is satisfied, then we are done. Thus we may assume that there exists an ng € N such
that type(J,,) € {1,3} for n > ng. Recall that s, = (2)" 03¢, for n > ng. Thus

"~ feo)= lm ——Af(anb) = tm (2) = oo,

no n—+00 My, n—+oo \ 3

We may exclude the case that type(J,,) = 1 for n > 1, because in such a case, we must have
zo € N. We consider the following three possibilities:

(C) There exists a sequence (ny)22 4, n1 > ng, such that type(Jp,+1) = type(Jn,+2) = 3 for
all s € N.

Fix an s € N and let m := ngs. Let J be the next interval from the right to J,, and let
S := S(J). Observe that 6(J) = £0m, (S) = =2, and A(S) = -1 A,
Suppose that »,, > 0 (the case s, < 0 is left to the reader as an EXERCISE). Since

type(Jm+1) = type(Jm+2) = 3, we conclude that

1 1 5 3 13
> fla )L A .22 — -~
f(xo) > flam) + 2Am + 53 8Am f(am> + 16Am
Define
4 4

4 1 11

4
f@m) = f(bm) + gA(S) = flam) + Ap — § 5A = flam) + 4.

Hence

f(@m) — f(x0)

Tm — L0

Af(xo, xm) =

< (11 13) 15

5 16/ ™19



206 10 Bolzano-Type Functions II

Thus

1 SHOM

AT, m) < =155 19

Hng

Consequently,

L t(20) = lim —

Hno s—=+00 31y,

Af(x07xﬂs) = —00;

a contradiction.

(D) There exists a sequence (ns)2,, n1 > ng, such that type(J,,1+1) = type(Jn.+2) = 1 for
all s € N.
This case is left to the reader as an EXERCISE.

(E) There exists an n; € N such that type(J,,+2,) = 3 and type(Jn,+2n4+1) = 1 for all
n € Np.

Fix an n € Ny and let m := nqy 4+ 2n. Then we have

- SRS S-S
Am+1 = Am, Am+2 = Am+1 2 m+1 = Am 2 8 m-
Hence
5 1 N 12
am+2k—am+ mgjzl(g) k—)_+>oo am""% my
k .
1 5\2i—1 20
flamsan) = f(om) + An3 3 () = flam) + 354,
Thus
12 20
= Gm e I9m> = m _Am'
To=a +555 f(zo) = f(a )+39
Let o, := ayy + %5m. Then f(xm) = flam) + %Am. Hence
f(am) + %Am - (f(am) + %Am) % - %
Af(xo, Tm) = 1 12 =1 _12%m
am—|—§5m—(am+%5m) 5~ 55
__ 1 50
31 397

and we get a contradiction as in case (C).

Step 7°. Let g € M N (0,1). If xg is a local mazimum, then f' (x¢) = +oo and f! (xo) =
—o0. If g is a local minimum, then f’ (xo) = —oo and f! (x¢) = +oo.

Let 29 = a + 26(J) be as in Step 5° and let (5,)52; be a determining sequence for z.
Observe that a, = a, b, = b, apy1 = an + %(5717 bpt1 = by — %5,“ and ¢, = (%)"‘p%p for all
n > p. Assume that s, > 0 (the case 35, < 0 is left for the reader as an EXERCISE).

If 2’ € [an, ant1], then f(z') < f(zo) — $An. If 2 € [byq1,by), then f(2”) < f(an)+ 3A,.
Note that 0 < g — 2’ < §,, and 0 < 2" — 29 < §,,. Hence

Af(xg,2") = M S %%n _ 1(§)n—l7%p'

To — '
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Consequently, f’ (xg) = +00. On the other hand,
f(@") = f(=o)
z" — xg

L flan) + 34 ;n(f(an) +34n) _ (-9 "

Af(x07 .’L'/I> =

Hence f, (zo) = —o0.

Step 8°. Let zp be such that for its determining sequence (J,)5% 1, we have type(J,) = 2
Jor every n € N. Then xo = 2 and D_ f(x0), D™ f(x0), D1 f(w0), D f(x0) are finite.

We have a,4+1 = a, + %571 and 6, = (%)", n € N. Consequently, x¢o = %ZZOZO(%)" = %
Moreover, s, = (—1)" and

Flanss) = flan) + (—1)n§5n, nen.

Hence, f(z0) = 237 ((—%)" = 2. Observe that anir = an + %Zgis_l(%)s, so xy =
an + 20, Similarly, f(zo) = f(an) + (=1)"26,, n € N. Fix an n € N and take an arbitrary
x € lagn, aant1]. Then (% — %)5211 < xo—x < 09y and f(ag,) < f(x) < flag,) + %Agn. Thus
|Af(zg,x)] < C = const, where C is independent of n and z. In a similar way (EXERCISE),
one gets |Af(zo,x)| < const for x € [azn+1, az2nt2]. Consequently, D_ f (o) and D~ f(x¢) are

finite. An analogous argument (EXERCISE) shows that D, f(xg) and D% f(z) are finite.

Step 9°. If zg € P, then D_ f(x0) = D4 f(xo) = —00, D™ f(x0) = DV f(x0) = +o00.

Let S = [(a, A), (b, B)] be an arbitrary segment, J := [a,b], L(z) = A+ »(S)(z—a), z € J.
Then for every point z¢ € J, there exists a point 2§ € J such that |zg — z§| = %5(J) and
AL(zg,xy) = 2(S). We say that zf is conjugate to xo with respect to S.

Take an zp € P and let (S,)22; be a determining sequence for xy. Let x} be conjugate to
ro with respect to S,,, n € N.

Take an s € N and let n = n(s) > s be as in the definition of the set P. We have

Ml = 33tn, Hnga = — 5500, sty = —(3)?56,. Observe that a, < @, x},41 > o, T} 5 > 0,
a3 < xo. Moreover, Af(xo,x}) = sn, Af(0,25,1) = 23, Af(T0,2}40) = —550,
Af(xo, 2} 43) = —(2)?5¢,. Observe that if s — +o0, then n(s) — +00, |5,(5| — +o0,

*

— zo+, and Ty (s)+2

43 — 7 To—, x:;(s) — xo+, which directly

ies the required result.

n(s +1

x* — To—, T 5)
impf

Step 10°. For every xo € (0,1], a finite left-sided derivative f’ (xq) does not exist.

By Step 3°, we may assume that xo ¢ N. Let (S,)52; be a determining sequence for z.

Suppose that there exists a sequence (ns)22; such that type(J,,) = 2, s € N. Assume
that ng = m + 1 for some m. Assume that s, > 0 (the case s, < 0 is left to the reader
as an EXERCISE). Then f(an) 4+ 34m — 5 - $4m < f(zo) < f(am) + 3Am, and hence
Af(zo,am) > (5 — 57)%m. Let & == am + 5 - 36m < 2. Then f(2m) = flam) + 7 - 3Am.
Hence Af(zo,2m) < —(3 — 2)54,. Thus a finite left-sided derivative f’ (x) does not exist.

A similar argument works if type(J,,) =4, s € N (EXERCISE).

Thus we may assume that type(J,,) € {1,3} for n > 1, but it is excluded that type(J,) =1
for n > 1. Then there exists a sequence (n,)32, such that type(J,.+1) =3, s € N. Let },
be conjugate to z¢ with respect to S,,. Then z, < x¢ and A f(xo,x;, ) = »py,. Thus a finite
f1 (o) does not exist.
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Step 11°. For every xo € [0,1), a finite right-sided derivative f! (xo) does not exist.

Suppose that there exists a sequence (n,)52; such that type(Jn,11) = 1, s € N. Let x},_
be conjugate to x¢ with respect to S,,. Then zo < z;, and A f(xo,x}, ) = »p,,. Thus a finite
fi(x0) does not exist.

Hence we may assume that type(J,) € {2,3,4} for n > 1, but it is excluded that
type(Jn) = 4 for n > 1. Thus, suppose that type(Jn+1) = 2 or type(J,+1) = 3 for in-
finitely many n’s. Fix such an n. Then (xq, f(xo)) lies in the rectangle determined by the
lines z = a,, + %5,,,@,“ T =aqa,+ %(5717 y = flan) + %An, and y = f(an) + %An. Let

Pl = (bn7f(bn))7
P = (bn - 11_65”7 f(bn) + %An%
Py = (by — &0, F(ba) — & A).

For (¢,n) € R:=[3, %] %[5, 3], let P(&,1) 1= (b + &0, f(bn) +1Ay), and let s;(€,m) be the
slope of the segment [P(£,7n), P;]. We have
n—1 n—1-— % n—1+ 6%1
s1(§,m) = o s2(&,m) = ﬁ”ﬂ? s3(&,m) = Rl
Put ¢ := |(max{51,52,33} min{si, s2,83}). It clear that ¢ : R — R<( is continuous

and independent of n. Hence there exists a point (£, 79) € R such that

0<C = p(€,n0) = minp(R),

where C is independent of n. Let u, v € {1,2,3} be such that s,(&,n0) — 5. (0, 1m0) = C|n].
Put z}, := P,(x0,m0), l, := P,(§0,M0). Then Af(zo,x]) — Af(xo,x])) > C|s,|, which easily
implies that a finite rlght sided derivative f, (zo) does not exist. O



Chapter 11
Besicovitch Functions

Summary. In Chap. 7, it was shown that B(I) is of first category in C(I), i.e., most functions in C(I) have
somewhere on I an infinite one-sided derivative. In the first part of this chapter, the construction of concrete
functions belonging to B(I), resp. BM(I), is discussed. The remaining part deals with a categorial argument

proving that the set BM(I) is in some sense even a large set.

11.1 Morse’s Besicovitch Function

Recall first that according to a result of S. Saks (see Theorem 7.5.1), the set B(I) is of first
category in C(I). Therefore, most of the functions in C(I) have somewhere on I an infinite
one-sided derivative. Nevertheless, in 1924, A.S. Besicovitch found the first effective geomet-
ric construction of a function belonging to B(I). Later, in 1928, E.D. Pepper treated the
same function, trying to clarify certain details (see [Pep28]). Nevertheless, details of their
proofs remained unclear. In this section, we present a 1938 construction given by A.P. Morse
(see [Mor38]) of a Besicovitch-Morse function M on 1, i.e., a function M € BM(I) (see
Sect.11.1.4).

11.1.1 Preparation

Put
1 n
Ap ==+ nez
"2 2(n] +3)’
(© Springer International Publishing Switzerland 2015 209
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Then (EXERCISE):

e 0< i1 — M < A2 <)\, MutAn=1 nez
Indeed, if n € Z, then

0< )\n—i-l — Ay =

1 3 3 2 2(|n| +3)
2 (Jn| +3)(jn + 1] + 3) ( (|n|—|—3)) 3(jn+1|+3)
(3—|—n—|—|n|>22(|n—|—1|—|—3—|—1)

~ \ 2(|n| + 3) 3(jn+ 1|+ 3)

= ( |n—|—1|—|—3) = §A3<A2

A

e )\, — 1, N\, — 0.

n—-+oo n——oo

° /\2n+1 < v/ )\Qn, n € 7.
Indeed, if n € Ny, then

22 :(1+1 2n+1 )2:1<4n+5)2

T\ T 22n 4143 4\2n +4
<l (4n +5)? 14n+3
4@2n+3)2n+5) 22n+3 ™

If n=—m, m €N, then

2 :(1_'_ —2m+1 )2:1< 3 )2
AL \2 T 2| —2m+ 1] +3) 4\2m 42
1
4

9 <l 3
2m+3)2m+1)  22m+3

IN

= Aon.

Moreover, we have the following result.

Lemma 11.1.1. There exists a closed, nowhere dense subset E C I with
LEN[An, An+h]) >0, LEN[A,—h,\)])>0, neZ, h>0.
Proof. Step 1°. Fix a sequence (1,,)22; such that

1>2n >4 > > 28 > ...

(for example, take 7y 1= 5 555,
the following standard lines:
From I, we remove the open concentric interval I ; of length 1 —27;. What remains are two
closed intervals Ji 1 and Ji 2, each of length ;. Now we remove a concentric open interval I ;
of length 71 — 22 of the intervals Jy ;, j = 1,2. Then four closed intervals J> ;, 7 = 1,2, 3,4,

remain, each of length 7,. Now we continue this construction. At the nth step, we end up with
2" intervals J, i, k = 1,...,2", each of length n,. Put C := 2, (Uill Jmk). Obviously,

C' is a closed subset of I without inner points. Moreover, we get L(C) = lim, o0 2™, (in
the special case from above we have £(C) = s). Moreover, £([0,7,] NC) = limg_ 00 281,44 =
L(C)/2™. Because of the symmetry with respect to 1/2, we have also the following identity:

LC AL =1, 1]) = £(C) /2"

where s € (0,1)). Then we construct a Cantor-like set along
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Step 2°. Fix a Cantor-like set C' as above with 2Fy;, = 2L Then £(C) = 5 > 0. So it

remains to put E :=J,c; (An + (Ang1 — An)C). O
Definition 11.1.2. Let 6 : [0,2] — R be defined as

L(EN[An,z])

Yo+ (ms1 = M)z E 2 € [An, Anga], n€Z
0(z) = 1, ifx=1 ’

0, ifxz=0

02 —z), fl<z<2

where F is a set satisfying the properties of Lemma 11.1.1 and

A, ifne2z+1
TN U ifn €2z

Remark 11.1.3. We collect some simple properties of the function 6.

(a) 6 is well defined and continuous on (0, 1).

(b) If Aap—1 < 2 < Aap, then Aop—1 < 0(z) < VA2, (use that Aop—1 < VA2p); if Ao < 0 <
Aoni1, then Aopi1 < 0(x) < Aoy (use that Ao < Van), n € Z; in particular, 6 is
continuous on I and therefore on [0, 2].

(c) If K(0) := int{x € [0,2] : 0 is differentiable at = with 6'(z) = 0}, then K(0) is an open
dense subset of (0,2) (use that the set E is nowhere dense).

(d) If z € (0,1), then £ < f(z) < ZE2 Indeed, if Aap—1 < & < A2y, then

T Aop
5 < % < Aon—1 =Y2n-1 < 0(z) < VAo
/\_2n+1 \/ 1 + )\Qn—l
— /T <y/1 - ( ) 1
an = 2 2
H)‘;”’l +1 342
— 2 — 4 9

where in the penultimate inequality, the standard relation between the geometric and

algebraic means is used.
If Aoy < @ < Agppr, then @ < Aoy < 0(2) < VAgn < Vo < 22

Lemma 11.1.4. (a) If zo € (0,2), then limsup_,, |A6(x,&)| < +oo.
(b) If n € Z, then X\, ¢ K(6). In particular, 1 ¢ K(0).
(¢) Let0 < o < B < 2 be such that (o, B) C K(0). Then (m) > (8—a)'/2, where m := 0‘2&

Proof. (a) Step 1°. Let xg = 1.If 0 < £ < 1, then one finds an n € Z such that \,, <& < Ap41.
Using Remark 11.1.3(b), it follows that:
if n = 2k for some k € Z, then

0(6) =0 =1-0() T —Agpp1 =1-X, <16,
and if n = 2k — 1 for some k € Z, then

10(6) = 0(1)] =1 —0(€) <1 —An = Ap <2\ = 2(1 — Ans1) < 2(1 — &)
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If1 <& <2, then 0 <2—¢ <1, and thus
0(8) —0(1)| =10(2—-¢) —6(1)| <2(1 - (2—-¢)) =2(§ - 1).

Then both inequalities give limsup;_,; |Af(1,&)| < 2.
Step 2°. Let z¢ € (0,1) be such that there exists an n € Z such that A\, < xg < Ap41. Take

a € € (/\77.7)\11—0—1), § 7é Q- Then
€ — o]

0(&) — 0(x0)| < Va1 — Vn <ClE—=x
| (5) ( 0>| = |Py +1 8t |[,(Eﬂ [)\n7A7L+1]) |£ 0|
(use that |yp+1 — vn| < 1).
Now let xg = A, for a suitable n. If £ € (A, Apy1), then
—x
06) — 0(20)| < Pyt — =Tl < Ol

‘C(E N [)‘n7 )\n-i-l])

for a possibly different constant C. An analogous estimate is true if £ € (A,—1,\,) with a
new constant C. Hence limsupg_, ., |A8(zo,§)| < +oo.
Step 3°. The case xg € (1,2) is left for the reader as an EXERCISE.

(b) Assume that there is an n € Z with \,, € K (). Then there is an interval J := (o/,8') C
K () with A, € J. Thus the function 8 has to be identically equal to 7,, on J, contradicting
the fact that £([A,,-)) is not identically 0 on J N [An, Apy1].

In particular, 1 ¢ K(6).

(¢) By (b), we may assume for the interval (o, ) that (a,8) C (0,1) and that («,5) C
(AN, An+1) for a suitable N. Recall that A1 — A, < A2, n € N.If N is odd, then

0(m) > An > (Ang1 — An)2 > (B — )2

If N is even, then 0(m) > Ay41 > Ay > (8 —a)'/2.

For future use, put H(6) :=[0,2] \ K(6). Note that 1 and all the )\,, belong to H ().

11.1.2 A Class of Continuous Functions and Its Properties

Definition 11.1.5. By 2 we denote the set of all functions f € C((—1,1)) satisfying the
following properties:

(a) 0< fx) = f(=2), we(-1,1)

(b) if K(f):=int{z € (—1,1): f/(z) exists and f’'(z) = 0}, then K(f) is dense in (—1,1);
(c) if P(f) :={xe(-1,1): f(x) > 0}, then P(f) is dense in (—1,1);
)

(d) if (o, B) C P(f), then there exists an h > ‘/B—Ta such that f(z) = h@(%), z € (a, B).

In particular, § € 2, where 6(z) := (1 + z), z € [-1,1].
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Lemma 11.1.6. Let f € A. Then:

(a) K(f) C P(f);
(b) if (a, B) C K(f) with —1 < a < B < 1, then f(m) > (8 — a)'/? for m := 8,

2
Proof. (a) Use the fact that K(f) and P(f) are dense in (—1,1).
(b) By assumption, there exist numbers o/, 8’ with —1 < ¢/ < o < 8 < 8’ < 1 such that
(o/,B") C P(f) (use the continuity of f). Put
’ o + " 2(a — O/> 2(8 — O/) " o + B

— — " —
mETy o Y E gy TE gy STy

By virtue of Definition 11.1.5(c) we obtain an h > (%)1/2 such that

in particular, one has h = f(m/).
Recall that (o, 8) C K(f), i.e., f is identically constant on (a, ). Therefore, 0 itself is
identically constant on the interval (22=22" 28=2a"y 5 j/ Therefore,

B—a’ ' F—a
fm) = Fn)0(Z5 =) = Fm')om") = flm') (5" — o)1
> (=Yg —aryrz = (g — oy, :

Remark 11.1.7. Let f € A and J = (o, ) C K(f). Then —1 < a and § < 1. Otherwise,
let, for example, & = —1. Then f|; = ¢ > 0. Simultaneously, f(z) = hG(QﬁI,__Qf), x € J, where
B > B and h > 0. Therefore,

. . 2z — 2«
C:z—1>11—r11+f($) B hz—lgr—nl—i-e( 6/ — ) - 07

a contradiction. A similar argument works for the remaining case.

11.1.3 A New Function f for Every f € A

Let us first fix the following convention to simplify formulas: if J = («, ) is any bounded
open interval, then we denote by m its midpoint. Moreover, if A C [—1,1] is some open
subset and if s > 0, then

AW = {1, 41} U{z e (-1,1): Fucp: z € (a,b) CA, b—a > s}.

_ Now choose a function f € 2. To such a function we associate a new function, denoted by
f, via the following definition.

Definition 11.1.8. For z € (—1,1), put

o) = 0, ifxe H(f) :=(-1,1)\ K(f)
o h@(%), ifzeJ=(a,pB) C K(f), Jis maximal ’
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where

"= min{ﬂL\/{): (inf K (NP~ 1 fmy, 1] = sup K (£ [—1,mJ])1/2},

In the following, we will discuss various properties of this new function.

Lemma 11.1.9. Let f € A, and let J = (o, ) C K(f) be mazimal. Then:

(a) f(my) > B_Ta;
(b) if x € J, then

Proof. Put ag := sup K(f)#=) N [~1,m ] and By := inf K(f)P=*) N [my,1].
(a) Then

2mJ—20é

Foma) = ho (=5

) =no(1) =h

= min{(ﬁo —ag)"/?, f(L\/{)} V2

for all z € (a,fB) (recall that f is identically constant on (a,)). Moreover, using
Lemma 11.1.6(b),

f(x)

IN

s e flmy) B—a
Flmg) = h=min {(Bo - a0) /%, S} 2 555 >0
In particular, f(z) = T(m1)0(2/§+io‘) >0 for all z € J.
(b) It remains to verify that f(z) = f(—x), z € J. Fix an € J. Then —J C K(f) is a
maximal subinterval with —x € —J. Therefore,

Y

f(—z)= ﬁ%%»

where h := min{f(m,)/v2, (Bo — &o)'/2} with (using the symmetry of f)

Bo :=inf K(f)P=) 0 [=my, 1] = —sup K(f)*~*) 0 [~1,m;] = —a,
do == sup K (f) 0 [~1, —=my] = —inf K(£)P~% 1 [my, 1] = —Fo.

Finally, applying 0(1 + &) =0(1 = &), £ € (0, 1), leads to

—2x+2ﬁ) _ 7

T f(m1)6<2x_2a):

7o flx). O

7(—95) = 7(”%1)9(
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Corollary 11.1.10. Let f € A. Then:

(a) 0< 7($) :_?(_x) < f(x)/\/ﬁl_x € (_17 1>; _
(b) K(f) = P(f) and H(f) = Z(f) :=={z € (=1,1) : f(z) = 0}.

Proof. (a) Using the former lemma it suffices to verify the claim for all € H(f). Because
of the symmetry, we have x € H(f) if and only if —z € H(f). Thus, f(z) = f(—x) =0.

(b) By virtue of Lemma 11.1.9(b), we have K(f) C P(f). Directly from the definition it
follows that H(f) C Z(f). To get the equalities, use the fact that P(f)UZ(f) = (-1,1) =
K(f)UH(f) and that in each case, both sets are disjoint.

O

Theorem 11.1.11. Let f € A. Then:

(a) if the interval J = (a, ) C K(f) is mazimal, then a,my € H(f) and
Flo) = lim F(e) =0

< liminf Af(a, &) < limsup Af(a,&) = +oo;
H(f)>6—a+ H(F)2¢—at

(b) ifx € H(f)NP(f), then
flz) = El_iggj(i) =0

< liminf Af(z,&) < limsup Af(z,€) = +oo.
H(f)3é—a+ H(f)3é—a+

Proof . (a) We know that by definition, f(z) = f(m.,)f(3=22), x € J, and that \, € H(6)
(see Lemma 11.1.4(b)). Therefore, « € H (f). The same argument, using the fact that

1 € H(0), leads to m; € H(f).
Knowing that f(«) = 0 leads to

tim T0m)0( 222 = Flm)0(0) = 0 = T(a).

E—a+ ﬁ —

Moreover, we know that f(£) — f(a) > 0, which implies the first inequality. _
Finally, put &, := o+ A\, (8 — «)/2, n € Z. Recall that A, € H(0). Thus &, € H(f). Then

TE) —Tla) _hon) 2 7%, ifne2Z+1
fn—a A B o b ifne2Z

Letting n — —oo implies the final claim in (a).

(b) Applying (a), we may assume, without loss of generality, that = € P(f) N H(f) N
H(f)n (2, 1].

Step 1°. Put

M(r):= sup (ian(f)(T) N[t 1] —sup K(£)™ N [—Lt]).
te(—1,1)

Recall that K(f) is open. Therefore, K(f)(") is an increasing sequence of sets with

K(f)" A K(f). Moreover, M(r) — 0. In fact, let € be a given positive number.
r—0+ r—0+
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Then choose points —1 = ay < a1 < --- < ay = 1 such that a; — a;_1 < €/2,
1,...,N. Since all these intervals intersect K (f), we obtain a positive J such that
¥ Naj-1,a;] #2,j=1,...,N. Hence, M(r) < ¢ for all positive r < .
et (£,)22; be asequence in K (f) with &, Y\, z. Choose maximal intervals J,, = (ap, 8r) C
(f) containing &,. Then

K(
K

0=T() < Fl6n) < Foms) < (M5 — ) = 0.
where the first inequality follows from Corollary 11.1.10 and the last one from Defini-
tion 11.1.8.

Step 2°. Since z € P(f), i.e., f(x) > 0, there exists a positive £ such that f > f(z)/2 on
(x —e,x+¢€) C (—1,1). Then we find an 7o > 0 such that /2M(r) < f(z)/2, r € (0,70).
Finally, recall that x is an accumulation point of H(f) from the right. Therefore, we can
choose a sequence (z;)52; C H(f) N (z,z +¢) such that z; ~\, .

J—00

Let (a1, 81) C K(f)N(x2, 1) be a maximal subinterval with length ;. Then there are only
a finite number of maximal intervals of K (f)N(z, 81) with length greater or equal to d1. Denote
the one of these intervals with maximal length d; by (a1, b;). Then [z, m]NK(f)®1—%) = &,
where my := (a1 + b1)/2. Fix a j; with 2;, < a1 and zj, — xj,41 < d1/2 and then take
a maximal interval (a2, B2) C K(f) N (zj,41,2; ). Repeating the above construction leads
to an interval (ag,bs) with by < B2 of maximal length dy with respect to 82 — as. Thus,
[z, ma] N K (f)*2792) = & where my := (ag + by)/2.

Continuing the construction leads to a sequence of maximal intervals (an,b,) C K(f) and
midpoints m,, := (a, + by)/2 satisfying the following properties:

& M, — T+;
o [z,ma] NK(f)rm) = o
o 2M (b, — an) < f(my).

Therefore, f(m,) < (M(B, — ozn))l/2 < f(mn)/V?2, n € N. Thus Definition 11.1.8 implies
that

Fma) = (g K(F)P= 0 fm 1] - sup K ()P0 A [1,m,])

v

(my, —sup K (f)Pr=) 0 [-1,2])Y2 > (m, — 2)'/2,

which gives _ _
Fma) = (@) _ (g — )2
My — I - My — I

— 400,
n——+o0o

while 0 = w — 0. Recalling that o, m, € H(f) completes the proof of the last

n—% n—-+o0o
two inequalities in (b). O

Applying all the previous results finally gives the following theorem.
Theorem 11.1.12. If f € A, then f € .

Proof. Take an f € 2.

Step 1°. So far, we know that f is right continuous at every point from H(f) N P(f)
(see Theorem 11.1.11(b)), at every point of H(f) N Z(f) (use Corollary 11.1.10(a) and the
continuity of f), and at all points of K(f) (use Lemma 11.1.9 and the continuity of §). The



11.1 Morse’s Besicovitch Function 217

symmetry of £ is a consequence of Corollary 11.1.10(a), and it gives the continuity of f. Thus
f fulfills the condition in Definition 11.1.5(a).
Step 2°. By definition, we know that K(f) is dense in (0,2). Therefore, using

Lemma 11.1.9(b), we have that K(f) is dense in K(f), which itself is dense in (—1,1).

Hence, K(f) is dense in (—1,1). _
Moreover, P(f) = K(f) (see Corollary 11.1.10(b)) and therefore, P(f) is dense in (—1,1).
Step 3°. To see that f fulfills also the last condition in Definition 11.1.5, apply Corol-

lary 11.1.10(b) and Lemma 11.1.9(a). O

11.1.4 A Besicovitch—Morse Function

Let Fo(x) == O(x + 1), x € (—1,1), and if n € Ny, then F,;; := F,. Recall that Fy € 2
and therefore, using Theorem 11.1.12, F;,, € A, n € N. In particular, the functions F,, are
symmetric, nonnegative, and continuous on (—1,1). Moreover, Corollary 11.1.10(a) implies
that

Frii(@) < Fu()/V2 <o < Fy(2)/ (V2" < 1/(V2)"*, neN,

Hence, the series
o0

M(z) =Y (-1)"F,(z), =z€(-1,1),
v=0
is uniformly convergent, i.e., M is a symmetric continuous function on the interval (—1,1).
We will see that M is an example of a Besicovitch—Morse function.

Theorem 11.1.13. The function M is symmetric and continuous on (—1,1), and it satisfies

liminf |AM (x,&)| < limsup |AM (z,€)| = +o0, x € (—1,1).
§—a+ E—x+

Ifx € N,y P(F,), then
liminf |AM (x,&)| = 0.
E—ax+

Remark 11.1.14. (a) Since M is symmetric, the corresponding statements for the left-sided
limits are also true.

(b) Recall that the sets P(F),) are open dense subsets of the interval (—1,1). Hence their
intersection is a residual subset of (—1,1).

(c) It remains to observe that if f(z) :== M(—4% + ), € I, then f € BM(I).

Proof of Theorem 11.1.13. Step 1°. Let zo € U,y Z(F,). Because of Corollary 11.1.10(b),
we know that Z(Fy) C Z(Fr+1), k € Ny. Therefore, there exists an N € N such that
Ty € Z(FN) \ Z(FN_l). Thus, o € P(FN_l) C P(FN_Q) cC - C P(Fo) Now applying
the property (c) in Definition 11.1.5 and Lemma 11.1.4(a), it follows that

lim sup | AFy(x0,&)| < 400, k=0,...,N—1.

E—xo+
Hence
lim sup |[ASN_1(z0, &)| < +o0,
E—xo+
where Sy := Zﬁio(—l)“Fﬂ and Ry := M — Sy, M € Ny.
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Moreover, if £ € Z(Fn+1), then ARn (o, &) = 0. Applying that H(Fy) = Z(Fi+1), k € No
(see Corollary 11.1.10(b)), and Theorem 11.1.11(b), we obtain

0< lim inf AFN(z9,§) = liminf  AFy (o,
T Z(Fng1)36—mo+ N( 0 f) H(Fn)3é—zo+ N( 0 f)
< hm sup AFN(xo,f) = hm sup AFN (1,076) = 400.
H(Fn)3€—zot Z(FNy1)3&é—x0o+
Thus,
liminf |AM (xq, )| < lim inf AM (xg,
élinxlorh_| (w0, 8)] < Z(szfgélslazw' (70, 8)]
— lim inf ASn_1(z0,&) + AFN (0,
Z(FN+1)9£—>960+| N-1(o €> N (20, &)l
< limsup  [ASn_1(z0,6)|+ liminf  [AFy(w,€)| < +oo
Z(Fn+1)3¢—zo+ Z(Fni1)dE—zo+
and

lim sup |AM (¢, )| > lim inf |ASN_1(z0,&) + AFN (0, &)]

£ a0t Z(FN+1)3€—T0+

> limsup [AFy(w0,§) + AFN(20,)| — liminf  |ASy_;(20,8)
Z(Fyn41)3¢—z0+ Z(Fy+41)3§—zo+

= +00.

Summarizing, we have proved that if z € (J,-, Z(F},), then

liminf |AM (xo, )| < limsup |AM (zg, £)| = +oo.

E—xo+ E—xo+

Step 2°. Let zg € ﬂ:f:o P(F,).Fixann € N and choose a maximal interval J,, = (@, 8,) C
P(F,) with z¢ € J,. Then 8,, € Z(F,), and therefore Fj(3,) = 0 for all k € N,,. As before,
let m,, denote the midpoint of J,.

Then by virtue of Corollary 11.1.10(a), we have Jy, C P(Fy) C P(Fg41) = K(F), 0 <k <
n — 1. Thus F}, is constant on J,,, and therefore, Fi,(m,,) = Fix(xo) = F(8,), k=0,...,n—1.
Hence, Sn_l(ﬁn) = Sn_l(l‘o).

If n is an even number, then

M(Bn) - M(xO)
= n—l(ﬁn) - Sn—1($0) + Fn(ﬁn) - Fn($0) + Rn(ﬁn) - Rn(x0>
= —Fu(20) = Rn(x0) < —Fo(z0) — > _ (=1)"Fi(x0)
k>n

< (— 1+ \%) ki:anHk(xO) <O0.

When n is odd, we get

M(Br) — M (z0)
= n—l(ﬁn) - Sn—l(xO) - Fn(ﬁn) + Fn(l‘o) + Rn(ﬁn) - Rn(xo)
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= Fo(20) — Ru(z0) > Fu(z0) — > (—1)*Fi (o)
k>n

> (1 - %) ganwk(xo) > 0.

Since the J,’s are chosen to be maximal, we have J,y; C J,. We saw just above that
M — M (x) has values of different signs at the points 8,41 and §,. Hence, there are zeros
&n C [Bn+1, Bn] of this function, i.e., M(&,) = 0. Moreover,

0<& —20 < Bn—E&n < Nn — ay <2(F,(my))? <2/2" — 0; (11.1.1)

n—r oo

in particular, the &, converge from the right to xy. Hence we obtain the following inequality:

liminf |AM (x0, )| < liminf |AM (z9,&,)| = 0.
n—r oo

§—zo+
Summarizing, we have proved that if z € (., P(F,), then

liminf |AM (x0,£)| = 0.

§—zo+

Step 3°. Let g € ﬂ,fozl P(F,). Moreover, for n € N we choose the interval J,, = (a,, 8,) C
P(F,) as in Step 2°. Recall that with the same reasoning as in Step 2°, we have Fy(m,,) —
Fr(xo) = 0, k = 0,...,n — 1. Thus, S,,—1(my,) — Sp—1(zg) = 0. Moreover, by virtue of
Corollary 11.1.10(b) and Theorem 11.1.11(a), we know that m,, € H(F}) = Z(Fj+1). Hence,
Fi(my) =0, k >n, or R,(my) =0.

From now on, we assume n to be even.

First assume that a,, < g < m,,. Then by the remarks above, we conclude that

|M (my,) — M (20)| = |F(my) — Fn(z0) + Rn(my) — R (20)]
> Fp(my) — Fp(xo) — Rp(z0) =: A.

Note that R, is an alternating series, implying that 0 > —F,1(x9) > R,(x0). Hence,
A > F,(my,) — M (z0). Then applying property (c) of Definition 11.1.5 leads to F,,(zg) =
Fn(mn)e(zgi’ffi‘?) Therefore,

A> Fy(my) — Fn(mn)o(ng:—iZ”) > F(mn)(l - %(2;::—22‘” n 3)) —: B,

where the last inequality is a consequence of the inequality 6(z) < (x +3)/4,0 <z < 1 (see
Remark 11.1.3(d)).

A little calculation, Lemma 11.1.9(a), and the estimate (11.1.1) from the beginning of
Step 2° lead to

Bn + an — 270 My, — To
B>F,(m,)——————— = F,(my) ——————
N (m ) 4(Bn — an) (m )2611 - 20,
2 Bn — Q&p My — T _ my — To > 2(n—4)/2(mn _ xo)'

2 2B, — 20, (V2PVB.—an

Hence, if there is a strongly increasing subsequence (”j)?il C 2N such that xg < my,,
then my,; tends from the right to xo, and therefore,
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limsup |AM (x, §)| > lim sup |AM (xg, M, )| = +o0.

E—xo j—oo

Now we assume that m, < ¢y < (,. We will proceed in a way similar to that in the
previous case. Recall that (a,, 8,) is a maximal subinterval of P(F,), i.e., F,,(8,) = 0. Thus,
Fy(8,) = 0 for all k& > n. Moreover, according to Step 2° we have S,,_1(8,) = Sn—1(z0)-
Therefore, using also (11.1.1) leads to

[M (1) = M (z0)| = [Rn(z0) — Fu(zo)| = Fu(zo) — [Rn(z0)]

> Fo(wo)(1— 1/v32) > 12 fO)
1 21‘0 — 2an 1 2ﬁn 21‘0 .

where the second equality is a consequence of Definition 11.1.5(d), and the last one follows
from the fact that 6(z) = (2 — z) for z € (1,2).
To continue, recall Remark 11.1.3(d) and (11.1.1). Therefore,

ﬁn - 1 ﬁn - (n—6)/2 _
A2 TR G 2 e > 1 ),

where the last inequality follows again from (11.1.1).

In the case that there is only a finite number of even n’s with x¢y < m,,, there is a sequence
(nj);?‘;l C 2N with n; — +o00 such that for all j, we have m,; < xo < B,,. Then 3,
converges from the right to xy. Therefore, as before, we end up with

lim sup AM (z¢, &) > limsup AM (xo, 3p,,;) = +00.

E—xo+ Jj—+o0
Summarizing, we have proved that if zg € (., P(F,), then

lim sup |AM (o, &)| = +o0. O

E—z0+

11.2 Singh’s Besicovitch Function

Besides the function presented in [Bes24] and the one discussed in the previous section (see
[Mor38]), there are two other examples, found by A.N. Singh (see [Sin41, Sin43]). The main
aim of this section is to discuss one of the latter examples.

11.2.1 A Representation of Numbers

Fix a sequence k := (k;)jen C 2N + 1 such that Z;ol kl < +o00. Observe that k; > 5 for
n1

sufficiently large values of j. Moreover, let ¢, := and p,, := k1 --- kp, n € N. Moreover,
put I :={0,1,..., ks — 1} \ {¢s}, s € N. We define the generalized Cantor set with respect to

k as -
@;:{Zg ()31 € Ma }

j=1
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where Moo 1= {(¢;)32; : ¢; € Ij, j € N}. Note that

I\e= (41 €1+1> U U ( cs+_JZ

j=2ceM;_ s= 1

),

where M; := I; x---x I;, j € N, and My := &. Note that € covers the whole interval I except
the “holes” given in the previous formula. In particular, its Lebesgue measure is given by

L(e) =1 —pi ipili[k_l H(l——) (0,1).

Remark 11.2.1. Recall that Z;’il b ? =1 (see Proposition A.1.1(c)). Therefore, 0,1 € €.

Now take an arbitrary y € I\ €. There is a uniquely determined hole

Jj—
( +1
(Z + 2 Z =)
s=1 Ps pJ s= 1
which contains y. Recall that the empty sum is equal to zero. Therefore, y = Zi;i g—z+ ﬁ—i%—yl,
where 0 < y; < %. Note that j and the c¢,’s are uniquely determined by y.

J

After this remark, we begin to construct a representation for an arbitrary x € (0,1):
may be written as z = 3(c1,0 + y1) with uniquely determined ¢19 € {0,1} and y; € [0,1),
where y; > 0 if ¢1,0 = 0. Then either y; belongs to € or y; ¢ €. In the first case, we have
T = %(0170 +&1) with & € €N[0,1) and (& > 0 if ¢1,0 = 0). In the second case, we write

Tl b,
Y1 = Z L + =L 42
= P; Pny

with n; € N, ¢1; € I, and 0 < 2 <o (see Remark 11.2.1).
In the second case, we continue as follows First, we rewrite p,,x2 as above as pn,z2 =
(0270 + y2) with cg 0 € {0,1} and y2 € [0,1) and (yg > 0 if ¢p,0 = 0). Again there are two
cases: either yo € € (and then put & :=ys2) or y2 € €, ie.,

2l 4
Y2 = Z = + 2y xs
j=1 pj Pns

with no €N, ¢co; € I, and 0 < x3 < pL (see Remark 11.2.1). Hence we obtain the following
n2
two possible situations:

(01 o+ Z a4 Pm) + 2P1n1 %(02,0 +§2)

J

with & € €N [O, 1), (fg >0if ey = O),
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’I’L11 ’I’L21

1 by
25(0104-2 7J+ 1)+2p (czo-i-z ’J-i- +$3)
ni

And then the process has to be repeated.
To be able to formulate the final representation in a simple way, let us first introduce some
notation:

e for s € N, an (s — 1)-tuple ¢ = (¢1,...,¢5s-1) € Ms_1, and ¢o € {0,1} put

note that the case s = 1 gives only the following two numbers:
1 14

Xi1(co) = —(co + —1>, co €{0,1};
2 p1

e for ¢ = (¢j)jen € M and ¢ € {0, 1}, put

oo

X o(co, ) := %(co + &), where € := Z:—j €[0,1).

j=1"7

The expression X (co, ¢) (resp. X oo (co, €)) is called a term of finite (resp. of infinite) type.
Moreover, X (co, €) is a special term of infinite type if it satisfies the following additional
conditions: if ¢g = 0, then ¢ # (0);en, and if ¢o € {0,1}, then ¢ # (k; — 1) en.

Then z can be written (EXERCISE) either as

k
Xn 5,05, Cs XOO )
2= (050,€5) | Xoolont10,€) (11.2.1)

s=1 28_1]3111 o Pnay 2kpn1 © Py, 7

where k € No, ¢50 € {0,1}, ns €N, ¢s € My,,—1, s =1,...,k, and cxy10 € {0,1}, c € M
such that:

— if ¢py1,0 =0, then ¢ # 0 := (0) en,

— if cpq1,0 is arbitrary, then ¢ # (kj—1)en (i.e., the term of infinite type in this representation
is a special one),

or

o0

Xn (Cs 0705)
x= 2105, , (11.2.2)
2 T

where ¢s0 € {0,1}, ns € N, and ¢; € M,,,_1, s € N.

Thus x can be represented either by a finite sum of terms of finite type and one special
term of infinite type (see (11.2.1)) or by an infinite sum of terms of finite type (see (11.2.2)).
The representation (11.2.1) is said to be a special representation of z. When we do not make
the special assumption in (11.2.1), we will speak of a general representation of x. Note that
the representation (11.2.2) is uniquely determined.
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Now let x be given by a general representation of the first type (i.e., the term of infinite
type is not assumed to be special), where the last term X o (¢x+1,0, €) contains infinitely many
successive zeros, i.e., ¢; = 0 for all j > jo. Then there are four cases to be discussed:

o Ifjo=1(ie,c= (0)?‘;1), ck+1,0 =0, and e = (¢k,1,- -+, Chynp—1), then

+
Pny o Pngy 2kpn1 Py

nS Cs 07cs) %(O + Z;x;l %)
= Z 92s—1

’rLs Cs Ovcs) Xnk (Ck,()?ck) %(0 + Z;)il %>
- Z s—1 T oE1 T %
2 pn1 : pnsfl 2 p’l’bl ”'pnk_1 2 p’l’bl p’nk

1 nE—1 Ck,j kj—l
n.(€s,0, Cs) 2ero + 2255 b pnk +Z] et gy )
225 1 + 2k—1
pn1 pnsfl pn1 : p’nk_l

i.e., the general representation with k& + 1 terms, where the last term is trivial, is changed
into a representation with k terms, where now the last term is not trivial. Note that the first
term of infinite type is not special, while the second term of infinite type is.

o If jo=1and cxy10 =1, then

k 1 co 0
xr = Z an (Cs,Oacs) + 5(1 + Zj:l E)
s=1 28—1pn1 "'pnsfl 2kpn1 pnk

oo kj—1
Z ns Cs chs) + %(O—i_z Pj )
28 1pn1 pnsfl 2 p’l’bl o p’nk ’

i.e., the representation with k + 1 terms is changed into one with k£ + 1 terms, where only the
special term of infinite type has been changed into a nonspecial term of infinite type. See also
the next case, which is similar.

o Ifjo>1,ie,¢c;=0forall j> jo, and £;,_1 + 1% ¢j,—1 > 0, then

k 1 Jjo—1 ¢j 00 0
€T = Z an (CS,Ov Cs) + §(Ck+1,0 + ZjOZl # + Zj:jo E>
o—1 28_1pn1 Py 2kpn1 Py

1 Jo—2 <5 CJO 1—1 —1
Z ’ﬂs Cs O,Cs) 4 2(Ck+1y0+2j:1 pj + +ZJ =jo pJ )
28 1pn1 : pnsfl 2kpn1 o p’nk ’

i.e., the last special term X o (cx+1,0, €) can be substituted by a new special term of infinite

type containing infinitely many positive summands, which are defined via the new sequence

Cly. vy Cjo—2,Cjo—1 — L kjo —1,...,kj —1,... (see the remark above).

o If Jjo>1 and 0 < Cjo—1 = éjo_l +1, then
1 jo—1 ¢; 0
i X, (cs.0,C5) N 3(Crr10 + 2075 ;—j + 300 o)
xr =
28_1]3111 o Pnea 2kpn1 © Py,

1 jo—2 ¢j JQ_1+1 o 0
_ Z ns Cs 05 cs) + 2 (Ck+1’0 + ijl P + Pjg—1 Zj:jl) pj)
92s—1 2k -
pn1 pnsfl pn1 pnk
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k l(c + 210—2 [ %71)

Z ns cs Oacs) 2 \Ck+1,0 Jj=1 pj Pjo—1

1 k

STy Py 2 Pny v Pny

5(1+Z]:1 pj )
2k+1p’l’b1 o 'pnkpjo—l ’

i.e., the former last special term X o (cx+1,0, €) of infinite type splits into a new term of finite
type with ngy11 = jo — 1 and a new term of infinite type that is not special.

e To summarize: only in the third case does x have a double representation with special
terms of infinite type. In all other cases, the representation (11.2.1) is uniquely determined
(EXERCISE). Therefore, if a function f : (0,1) — R is introduced via the above representa-
tion, then to have a well-defined function on (0, 1) one has only to check whether the definition
of f gives the same value for the double representations from above.

Remark 11.2.2. Let z € (0, 1) be given by one of the following (general) representations:

k 0o

XTL s,Uy =8 XOO I’ XTL s,Uy =8
=3 (s0:€5) | Xoo(Cht10.€) =3 .(€s.0,€5)

or .
1 28—1pn1 .. .pn571 2/€pn1 .. .pnk pet 95— 1pn1 ) 'pn371

Then the above construction leads to (EXERCISE)

1_$_i an(és 0768) Xoo(ék+1,07&)

o—1 29~ 1pn1 o Pna 2kpﬂ1 “ Py

with:
o {¢s50,C50 ={0,1},s=1,...,k+1,
o ifcg = (cs,1,.--,Csmy—1), then'cs = (k1 — 1 —cs1,. - knym1 — 1 —Csno—1), s=1,..., k,

o if ¢ = (¢;)%2,, then ¢ = (kj — 1 — ¢;)jen,

J=b

or

1 o > Xn3(65,0755>
_x_z2s—lp S p
s=1 ni MNs—1
with:
o {05,0765,0} = {07 1}7
o ifco = (cs1y.--5Csm.—1), then€s = (k1 =1 —cs51,. .- kn—1 — 1 —Csno—1), S €N

Note that the term of infinite type in the first representation of z is special if and only if
the corresponding term in the representation of 1 — x is special. Thus the representations for
x and 1 — z are very similar. This information will be needed when we discuss properties of
the Besicovitch—Singh function that we intend to introduce.

11.2.2 Definition of Singh’s Besicovitch Function

Recall that a given x € (0,1) has a special representation as in (11.2.1) or (11.2.2) given by
the following data:
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(a) (k € No, (¢, 0)“11 c {0,1}, (n)_y C N, e1 = (c11,---,C1ng—1) € Mp,—1,...,cp =
(Ck,h .. -7Ck,nk—l) (S Mﬂk—l; Cc = (Cj)?il (S Moo) or
(b) (cs,o € {0,1}, ns €N, ¢s = (€s1,--+Csm.—1) € M, 1, S E N).

If « be given via (a), then put

1Y, (cs0,Cs Yoo (ck+1,0,€
Su(z) =Yy, (cr0, 1) + > _(-1)° 1 Y0, (¢s.0,¢5) >+(—1)k—( k+1,0 >,
5—2 ny = lney Any * " Uny,

where

® (s = 28’55—17 s € N27 q1 = 27 with ’ﬁs = ‘€1 ""€57 ERS N7

L ns—1 bs 1 o .
o Y, (cs0,Cs) 1= Zjil 2;;gj+m7 s=1,...,k, with

Cs,j, if Cs,0 = 0, Cs,j < éj
Ccsi— 1 if cs0=0, cs.; >, .
bsj =1 ’ o T Tos=1,...0k j=1,...,ns—1;
kj —2— Cs,j5 if Cs,0 = 1, Cs,j < éj
kj —1- Cs,j5 if Cs,0 = 1, Cs,j > éj

o Yo (Ckt10,€):i=> 00 b—i with

J=1 27p;
Cj, if C].H_LQZO, Cj <€j
ci —1 if ¢ =0, ¢;>¥; )
bj — 5 ) k+1,0 > &g 37 jeN.

kj —-2- Cj, if Ck+1,0 = 1, c; < éj
kj —1- Cj, if Ck+1,0 = 1, cj > éj

On the other hand, if  is given via (b), then put

YTL CS 7CS
S4(x) := Y, (c10,€1) +Z ) 1—0)7

ﬂ1 qns 1
where the Y;,_(cs0,¢s), s € N, are defined as above. Note that the series inside of the above
definition of S4 converges, i.e., the right-hand side is always defined.

Remark 11.2.3. Observe that the b;’s in the definition above are at most k; — 2. Moreover,
2p;j = (k1 —1)--- (k; — 1). Thus in fact, the series °72 2J;
to the sequence (k; — 1)52,. Therefore, using Proposition A.1.1(c), one gets

is a Cantor series with respect

n5—1 kj—2 1 1 1 1 _ 1 _
® qn <Y, (6s0,65) < Z 27%, + Qrs =1 2ns —1p, 4 + Qs =1 Qrs

o Y (cht1,0,¢) <1

< 1

It remains to show that Sy is well defined, i.e., S4(x) does not depend on the chosen
representation for any x.

Lemma 11.2.4. The function Sy is well defined on the interval (0,1).

Proof. Recall that there is only one double representation (11.2.1) of a point 2 € (0,1),
namely
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k
Xn 5,05 Cs XOO )
= Z (€50, ¢5) 4 (ck+1,0,€)

_ 25_1pﬂ1 o Png 2kpn1 “ Py

ns Cs chs) Xoo(ck—i-l,O;E)

Z = + 5 :
2 pn1 : p’I’L371 2 p’l’n o p’nk

where ¢ = (Cl7 ey Cjo—25Cjo—1,0,...,0... )7 Jo > 1,0 < ¢jp-1 #* ‘€jo—l + 1, and ¢ =

€1y vy Cjg—2,Cjo—1 — 1, kjo — 1,kjo41 — 1,...). Exploiting the definition of the b;’s in the

associated terms Yoo (ckt1,0,€¢) and Yoo (cr41,0, €) leads to the equality of these terms. Hence

the value S4 at z is independent of the above representations of x. a

Remark 11.2.5. If we also allow double general representations of x, then a simple calcula-
tion also gives that the value of Sy is independent of the representation used (EXERCISE).

Later, in discussing the nonexistence of one-sided derivatives of Sy, the following observa-
tion will become important. It shows that it is enough to consider only right-sided derivatives.

Lemma 11.2.6. Let x € (0,1). Then S4(z) = S4(1 — x).

Proof. The proof is left as an EXERCISE for the reader to become more familiar with the
definition of Sy. 0

11.2.3 Continuity of Sy

Theorem 11.2.7. The function Sy is continuous on (0,1).

Proof . First we discuss continuity at a point x € (0, 1) given via the representation (11.2.2),

ie.,
oo

T = Z an (05707 cs)
o—1 25_1pn1 o Pnay

Fix an ¢ > 0. Choose a k € N sufficiently large. The precise value of k will be given later.
Then

k

x:Z Xn3(0507cs + Z ns CSQ,CS)

—1 1
S P S 2 e P

o0

::54-;( Z an(CS,OvCS) )

k —k—1
2 Png - Py s=k+1 28 p’n«k+1 o Png

1

(0,1) =: J. We may assume
Pny - Pny

Note that z is an interior point of the open interval § + 5z
that & is so large that z € J C (0,1).

Take now an arbitrary n € J, l.e., n = §{ + gy~
ny N

where z € (0,1). Then there are two
possibilities:
~ o0 )(ﬁs(‘cvSY ,Es) .
(a) =2 00 5 e
(b) - Zm X, (Cs,05Cs) + X o0 (Cm+1,0,€) )

s=1 2871'3771'”]3773—1 QM'Pﬁf”pﬁm
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In case (a), we rewrite 7 as

k

n= Z X, (Cs,Oa Cs) + i Xﬁs (55,0755)
s=1 25_1pn1 e pnsfl s=1 2k+s_1pn1 o pnkpﬁ1 o pﬁs_l

o0

_ Z ns cs 07cs) + Z Xﬁg_k(go—k,Oyzo—k)

25- 1]3 1 Pngy 20_1pn1 P PR PR, e '

o=k+1

Thus 7 is given by the representation (11.2.2). Therefore,

|Sa(x) — Sa(n)|

- SYnS(cs,Oocs) = - Yﬁg, (Ea—k,07zo’—k)
= X s Y (e
s=k+1 qn1 qns—l o=k+1 q qﬂqun qna_k—l

1 1 1 4
S ol Z( t T )Sﬁ“

Ony = lne S0 Mg " Aoy Gan " Giag

if k£ is sufficiently large.
The remaining very similar case is left as an EXERCISE.
Finally, assume that x is given via the representation (11.2.1), i.e.,
. Xk: X, (cs0,€Cs) Xoo(cry1,0,€) €+ 310 + ZJ 1 pj)
s=1 25_1pn1 o Pngy 2kpn1 “ Py, . 2kpn1 Py,

According to the above discussion on the double representation, we may assume that c¢; # 0
for infinitely many j’s. Fix a jo > 1 with ¢;, > 0. Then

1 Cio=1 o 0 4 Lig+1
Q(Ck"’l 0 + + i Pio—1 + Pio + pj0+1)

r=§+
25p,, - Py,
S o Cio+t _ Ligtt S a
Pio  Pio+1  Pig+1 J=jo+2 p;
+ k+1
25, Py,
Cio | Ciot1 _ Lig+t o <
— Xnk+1(ck+1,07 (c1,- - y Cjo—15 0)) I Pio  Pig+1  Pjo+1 EJ:J0+2 P
2kpn1 T p’l’bk 2k+1pn1 T p’nk
(Cﬂ cio+1  _ _Ljg+1 e ¢ )
— et kjo ' kijokjo+r  kijgkjo+1 ' Kj km+1 J=Jo+2 kjot+1--kj
- 1 k41 9’
2R+ Py PngPjo—1
where ny41 := jo+1 and cp1 = (c1,...,¢jy—1,0). Note that the term inside the parantheses

in the line before lies in (0, 1). Therefore,

reé+& + (0,1) =: J,

2k+1pn1 o PrgPio—1

i.e., z is an interior point of J N (0,1). Then every ¢ € J N (0,1) can be written as { =
§+&+ gy 55— WithZ € (0,1). From now on, we may repeat the argument from
nyPng Phig—

above to verify continuity of S at the point x. Details are left as an EXERCISE. O
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11.2.4 Nowhere D:ifferentiability of S,

Theorem 11.2.8. The Singh function S4 allows nowhere on (0,1) a finite or infinite one-
sided derivative, i.e., it is a Besicovitch function.

Proof . By virtue of Lemma 11.2.6, it suffices to prove that Sy possesses nowhere on (0, 1) an
R-valued right derivative.

There are different cases of z € (0,1) to be discussed.

Case 1°. Let x be given via the representation (11.2.1), i.e.,

k
Tz = Z an (0570765) XOO(Ck+1,07C>
o—1 25_1pn1 o Pnay 2kpﬂ1 Py

with the corresponding data.

(a) Assume in addition that there is an infinite subset 9t C N such that ¢,, < k,, —1, m € 9.
For an m € 9, put

n,(:_i)l =m+1, E,(:_Z)l = (C1y-+ s Cm—1,Cm + $m) € M”Si)rl = M,,,

1, ifem by —1

where s, := . .
2, ife,=4,—1

To continue, define for each m € 9t two new points to the right of x:

~(m)
/ i X, (cs,0,Cs) N Xﬂﬁfii (Ck+1,070k+1) N X (1,0)
Xy 1= — ,
s=1 2 1p”1 o Png 2kpn1 o pnk 2k+1P1 ©e Pmpnﬁ{
~(m)
" Xk: X, (€s,0,€5) X”Sﬂ (Ck+1,0,Chy1) N X (1,2
Xy = — :
e 92s 1pn1 Py 2kpn1 P 2k+1pn1 .. pnkpn;:;)l
where ¢ := (k; — 1) jen. Note that
-
-1 (X o (cir.0, 00 + L X (1,0)- X o))
- 2k Py n Ck+1,0, C41 2 o (1, 0o (Ck+1,05
k+1
1 1 ( i1 —1 1 - Cm+j
- R L D =
2kpn1 Py 2Pm41 +1 2 2 +1 ; Ky - km+j
1 1 kgt
> (25, —1) > 0.
2kpn1 T pnk 2pm+1 2
Moreover,
z, —x < - 1 1 5km+1§i 0,
2 Py Pny 2Pm+1 2 Pm Mo3m—o0

i.e., the points 2}, converge from the right to z.
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Let us first recall the value of S4(z) and then calculate Sy(a7,):

k

Y’VLS Cs,0yCs YOOC , ,C
Sy(z) =Yy, (c10,¢1) + Z(_1)5—1# + (_1)16M
s—2 Any = Qne_y Ini * " qny
and
ns(Cs,0y Cs
Sa()) = Yo, (cro, e +z —q>
MNs—1
Y (m) (Ck+1707 (017 ceyCm+8m)) Y. (1.0
+ (=) (e Y=LO)
Any = qny Iny **  9ng Gm+1
Therefore,
Y (m) (Ckt1,0, (C1y -y Cm + Sm))
Sa(xy,) = Sa(z) = (-1)F—=
Ony =" Iny,
+ (_1>k+1 YOO(LO) . _1>k Yoo(ck—i-l,O;C)
Any = npGm+1 Ini " Iny

m o0

1 b; 11 k=2 = b
_( 1) Clnlan<; 2jﬁj +2m+1ﬁm q Z 2_7‘5], ;2jﬁj)7

m+1 j=1
Wheregj =b;,j=1,...,m—1, and by, = by, + s’ with

8/ — 1, if Ck+1,0 = 0
' —1, if Ck+1,0 = 1

(use the definition of the b;’s). Observe that m(l — > %)

Proposition A.1.1(c)). Therefore, we end up with

1 s’ b,
ry = (=1)k — E , I
S4(xm) S4(x) ( 1> Any = Any (2m5m j=m+1 2jgj ) '

Now we discuss the associated differential quotient

oo bt
A Okpy e 2 P S T il T
S4(;U7x/7n> — (_1>k p 1 p k p G=1 27 Cmt1-lm1;

. omy  2smtl o Cmd4s
An, qny, Pm 2 Z]:l kmi1kmij

Put

k 2kpn1 '”pnk2

o mp o= (1)

)

229

= 0 (use
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Thus
s — ZOO bm+
ry J=1 20l 1 by j
ASy(z, ) = mpan, S o
2 G=1 Fng1-emts
r_bmgr 1 oo by
_ § 201 L1 Ej:2 29l my2lmyj
= Mpam 25+l Cmy1 1 EOO Cm+j
2 Km+1 Km+1 J=2 kmi2-kmij
Note that my, is independent of m and that a, — =—=—1» =: P with P := .
m—roo H]‘—1(1—*j) (€)

Since the sequences (;é"—++11)mem and (g~ et )megm are bounded, we may assume that there
is a common subsequence, given by sm’ C M, such that (77~ Ot )megm/ resp. ( :ﬁi
converges to —A, resp. —B.

Put M := {m € M : ¢y, # L, — 1}. Assume that 9" is infinite. Then, since 2 + B # 0,
we get

)mémlv

!
A
ASy(x,2l)  — mkPiL.
M Sm—o00 5 —+ B
If 9" is finite, then since g + B # 0, we get
+ A

S
AS ! — myP——.
4($7 Z‘m) M/ \IM"" Sm—o00 k g + B

To study ASy4(x,x!,), we proceed similarly to the above. Let us first calculate x!/, — z:

~(m) _
_ X (G0, 850) Xooll®)  Xoelckr10,0)

+
Qkpm Py 2k+1pn1 o 'pnkpngi)l Qkpm © Py,

)3 )

m—+1 m+]

1 longr 1 Kk
= (sm+ + (1 +
2kpn1 o pnkpm <8 km—i—l 4krn—i—l J;

Since the last summand inside of the outer parantheses is at most equal to 1, it follows that

all —x > 0. Moreover,

5
1"
z, —r< ———— — 0.
" 2kpn1 “ PngPm m—roo
Thus the points z!/, converge from the right to x.
Moreover, using the definition of S, we get

Ns Cs 7Cs
S4(xm) :Ynl(cl 0yCny—1 +Z —;)
MNs—1

Y o (c 707"'7cm—70m+8m -

+ (_1>k "1<c+)1( k+1,0 ( 1 1 )) . (_1>k+1 Y. (17C>

ny = Any ny = ng Gm+1 '
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Note that the last summand equals 0. Therefore,

k

Yns Cs,05Cs
Su(el) = S4(a) = Yo 1o, en,) 4 Do~ eelnn)
s=1 ni MNs—1

Yn(m) (ck+l,07 (017 ce ey Cm—1,Cm + Sm))
T (—1)e

qnl ce. an
k
— }/v'n8 Cs,0,Cs YOOC 0,C
Y (engem 1) = S (1) YuelCn0:€) gy FoolOhen0.0)
s=2 qn1 e Clns_l qm ‘e an
_ (e (cher0: (e emmtem +8m)) (_1ye YoolCir10,€)
qnl-.-an qnl...an

o0

1 ém—l—l bm+1
(o S (O CTR o S
qn1 e an2mpm 2ém+1 j=mt1 2jém+1 e ém-‘,—j

Hence the differential quotient is given by

ro 1 bmyr 1 00 bt
s+ 2 2lm 41 Lt Zj:m"’? 29 lmy2 g

28m+1 _ Cmi1 1 EOO Cmtj

2 Emt+1  kmt1 J=2 kmt2-kmtj

ASy(z,2)l) = mpan,

If 9" is infinite, then, taking a subsequence via 9", it follows that

1+5+A
ASy(z, )  —  mpP—mE——.
M 3m—00 5 + B

For the remaining case, we have

AS,(z,x” — m P
4( m) M \IM"" Sm— o0 k %—FB

What we have seen is that the two sequences of differential quotients (via a subsequence)
have finite limits from the right, but these are different. Thus S4 has no right-sided finite or
infinite derivative at the point x.

(b) In the remaining case, we have ¢, = ky, — 1 for all m > mg > 1 and ¢ng—1 < kmg—1 — 1.
Recall what was said above with respect to the double representation. Thus we may
rewrite x as

k
XTL S,Us &8 XOO )
=3 (cs0:€s) | Xoo(eht10,€)

o—1 28_1]3111 o Pnay Qkpfu Py

1 mo—1 ¢ 1 00 ki—1
Z nS cs 07CS> §(Ck+1 0+ Z 0 PJJ + Pmg—1 Zj:mo kmg"'kj)
- 95— 1

+
Pny s Pnea 2k Png v Py
1 mg 2 c; Cmg—1+1 oo 0
_ Z nS cs 07CS> + §(Ck+1 0 + Z ] -+ p7071.0—1 + Zj:mo E)
25- 1pn1 o Pnga Qkpfu “ Py

So we are back in the situation of (a) and can proceed as we did there.
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Thus S4 has no right-sided finite or infinite derivative at any point z with the first repre-
sentation.

Case 2°. Now we discuss a point = € (0,1) having the second representation (11.2.2), i.e.,

o0

T = Z XnS (Cs,Oacs)

—1 )
2 T,

where ¢s0 € {0,1}, ns € N, and ¢s € M,,,_1, s € N.
There are two cases to discuss.

(a) Assume that there is an infinite subset 2t C N such that ¢, 0 = 0, m € M. As above,
two sequences (], )meom and (2! )meom will be discussed converging from the right to x.
Namely, for m € 9, we put

1cm]

-} 1 rm Ly +8m [e%s) 0
T 1= mZ Xrno(Co06) | 204 255 et i )
m - 2s_lpn1 o Pnay 2m 1pn1 - ,

s=1 pn»,,171

where s, € N, £, + s, < kp,, — 1. The precise values of the s,,’s will be chosen later.
Observe that =/, is given via the first representation. Moreover, let

1 nm—l ki—l—cm Lo,
an(cs,(hcs) 5(1+Z + + _)

" Pn; Prom
X, 1= +
" sel\;s#m 25_1pn1 Py 2m—1pn1 P
Then x < . Indeed, put
1 s—1 ¢s Ens
A, = i 5(050+2n Cj] Pns)
mo-T 2s—m— lpn P ’
s=m+1 m—+1 s—1
Note that
= o > 3—k
Png - hng .
Am < Z 25—m—1p <1+ Z 25—m+1p cep <L
s=m+1 Mm41 Ns—1 s=m+1 Mm41 Ns
recall that k; > 3 for large j € N. Hence, we end up with
S — A
Ty, — = > 0.
2 Pny Prgoi P,
Moreover,
1 Nm—1 kj—1—2cpm ; _ Sm
"o >2(1+Z pj an)
Tm = Tm = am— 1p . p
ni Nm—1
-1 kj—1—c —1-s
Zn: ki : m,j _|_ m
Jj=1 pj Prm > 0.

2m_1pn1 P

Thus z < af, < !,
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A short calculation leads to the additional fact that 2]/, — z (EXERCISE), i.e., the

Sm—o0
two sequences (2], )mem and (x!/ )mem approach the point x from the right.

Using the definition of Sy, we obtain for m € 9 that

54(./,5,/';1) _ S4(x> — (_1)m—lYn'm(17cn'm_1> — }/v"’h*rl(()’c"’brrb_]-)7

ny ** Onpm—1

where ¢, -1 = (k1 =1 —c¢m,1,-- - kn,,—1 — 1 — Cmony—1). Thus,

an—l gj—bj
J=1 27y,

ny = Onp_a

Sa(zy,) = Sa(z) = (-1)"~" =0;

here we have used the definition of the new factors Zj and b;. Hence, ASy(z,z!),) = 0. Since
m € 9M was arbitrarily chosen, it follows that limmsm— e ASs(z, 2!7) = 0.
It remains to investigate ASy(z,x},), m € M:

Sy(x,) — Sa(x)

Lo tsm—1 1 00 v
— (_1)m—1 2nmpy,, 27m Py, —1 _ Z (_1)5_1 Nng (CS,O7CS)
Jni " Ynem_1 s=m-+1 Inq " " Yns_1
1 m —1 = Yn 5,05 Cs
e (_1)m—1 (8 _ Z (_1>s—m s(c ,0,C ) )
Gny = npm—19n, enm s=m+1 Anmtr " Qno_n
1 1 Sm — 1 1
— (-1 m—1 — ( m + _9m>,
- Gy Gry 277 Py -1 NEp,, — 1 2
where
- — Yn (Cs 0 cs)
em = (_1)5 m—+1 s »Uo .
S:;H Anmgr = Uney
Hence, the differential quotient is given by
m— Sm—1 1
ASi(a,aly) = (1t 2P Py B Ay T 26m
o Ini " Gnem_1 2nm_1pnm—1 Sm — Am

The following estimate will show that 6, € (0,1). Indeed, applying Remark 11.2.3, we
obtain

00 _ 1 00 1
0. < Ins _ In s
m E T E
s=m+1 LS E PR [ P s=m+1 i1 " Aney
s—m odd s—m even
00 00 00
1 1 1
=0 Anmir = Anmyo: =0 Anmi1 =" nmyoera —1 Anmi1 =" Anmqoe
o0
1
=1- <1

=0 Armt1 " Anmgoesr
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and
00 1 %) 1— L
Ong Angs
2= - e
s=m+1 Jnmt1 =" Gns—1 s=m+1 Jnmt1 =" Ans—1
s—m odd s—m even
oo oo oo
1 1 1
-y > Y
=0 Unmt1 " Unmtoett —1 Jnmt1 " Unmgoi—1 —1 Jnmt1 " Unamtos
oo
1
Sy
—1 Unmt1 " Unamtos
Note that om
2 Pra Py — +4oo and —flnln > 1.
Onqy " Onpoq Mmoo 2nm =y, 1

We may take a subsequence 9’ such that \,, — Ae€0,1]andb,, — 6¢€]0,1].
M’ 3m—o00 M >m—00

When 6 > 0, then for the s,, we may choose s, = 1, m € 9. If § = 0, then we choose
Sm =Ly, , m € M. Thus in both cases, one obtains that limoy/sm—oeo |AS4(z, 20,,)| = +00.
Hence we have shown that S4 has no finite or infinite right-sided derivative at the point x.

(b) Assume that there exists an mg € N such that ¢, 0 = 1, m > mg. For m > my, put

—1 1 Nm—1 Cm j Loy +8m o 0
= Xa(esoies) | 3(EH 20 S R Y 1 ;)

/ Pram,
DS
" 28—1pn1 "'pnsfl 2m_1pn1 '”pnm,1

s=1

The exact values of the sp,, €n,, + Sm < kn, — 1 will be chosen later. As above, the
sequence (7, )men,,, tends from the right to z. Moreover,

Sm — Am

- 2m—lpn1 o 'p’l’bmflp’nm '

-
where A, € (0,1) as above. Moreover, the difference of the S4-values is given by

Sa(ar,) — Sa(z) = (-1)" !

ny " Unp_a 2nm_lﬁnm—1 knm -1 2 ")

Here we used the definition of the new coefficients b; and again Proposition A.1.1(c)
(EXERCISE). So for m > mg, we end up with
— m+1 1
o1 2P P P, b T 30m
PR P L | Sm — Am

AS4($7$;n) = (_1>

Again, two cases have to be discussed.
o Assume that sup,,cy, 0m =: 0 < 1. In this situation, put s,, := {5,,. Then the last
factor can be estimated by
—8m +1 3—ky 1-6 1 1-6

+16 < = +10— + < =a<0
kn, —1 2" =2k, —1) 2 2 kn,. 3 ’
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whenever m is sufficiently large. Recall that k,, — +00 as m — +00. Because of the sign
(—=1)™=1 one obtains limsup,,_, ., AS4(z,7),) = +oo and liminf,, ., AS4(z,z},) = —o0,
implying that S4 has no finite or infinite right-sided derivative at the point x under discussion.

o Assume now that sup,,ey,, 0m = 1. Then there exists a subsequence (O, ) ken, mg >

mo, such that 0,,, k—> 1. We proceed, discussing only the sequence (2, Jren. Put spm, = 1.
—00

Then ;f:}:’“jll + 40m, — 3. Therefore, |ASy(z, ], )| 2 too. If, in addition, the two sets

My :={k e N:my odd}, My :={kecN:my even}

are infinite, then because of the signs (—1)™~!, one gets
limsup ASy(z,2),) =00, liminf AS,(z,z),) = —oc.
M1 32k— o0 Mo dk—o00

Therefore, in this case, the function S, has also no finite or infinite right-sided derivative at
T.
It remains to discuss the situation in which

(i) mp € 2N, k> ky, or
(i) mr € 2N+ 1, k > k.

In case (i) (resp. (ii)), it follows that limg_ 00 AS4 (2, Ty, ) = —00 (resp. limy_y 00 AS4 (X, T, )
= +400). For the remaining m’s, m > my,, take s,, = 1. In case (i) (resp. (ii)), these m’s
are odd (resp. even), and the corresponding terms 2=t 4 10, in AS,y(z,2],) are in both

n

cases nonnegative. Therefore, if (i) (resp. (ii)), then D;S4(z) = —oc and DT S4(x) > 0
(resp. DT Sy(x) = +oo and Dy S4(x) > 0). Hence Sy has no finite or infinite derivative at
the point . a

11.3 BM(I) Is Residual in a Certain Subspace of C(I)

Recall that we already know that B(I) is of first category in C(I), which does not give auto-
matically the existence of a Besicovitch-type function. On the other hand, we have already
discussed concrete functions belonging to BM(I). In this section, a clever use of the categorial
approach leads to the fact that BM(I) is even a residual subset of a certain subspace of C(I)
(see [Mal84]).

Put
K:={fec(): f(0)= f(1) =0, Lip(f) <1},
where
Lip(f) = sup [Af(z,y)l
z,y€l, x#y

Note that K is a compact subset of the metric space C(I) (EXERCISE, use the theorem of
Arzela—Ascoli), where the metric is given by

d(f,9) = f = gll = sup{|f (z) = f(y)| : =,y € I}
Finally, let E be the set of all u = (u,,)2°; € K such that:

(a) up > Upt1 >0 (neN), (11.3.1)
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(b) if upy1 > 0 on a subinterval J C I, then u,|; is constant (n € N). (11.3.2)

Note that E is a closed subset of the compact metric space K endowed with the product
topology or the metric d(u,v) =Y 2, %%, where u = (u,)2%, v = (v,)%,; € KV
(EXERCISE).

In order to be able to continue, let us state the following lemma.

Lemma 11.3.1. Let u = (un)32, € E. Then |lu|| < £ for all k € N.

Proof . Assume that there is a k& € N with |[ug]| > +. Then there exists an zo € I with
u(wo) > 7. Taking into account that ug(0) = uk(1) = 0, we have zy € (0,1). Moreover,
% < ug(xo) = ug(zo) — uk(0) < xg — 0 = xp; in particular, k > 2.

Now choose a point 21 € [0,29) such that ug(x;) = 0 and wy, is strictly positive on the
interval Jy := (21, zo]. By assumption (11.3.2), it follows that

z1 =21 — 0> up—1(21) — up—1(0) = up—1(x1) = up—1(xo0) > ur(xo) >

)

=

and moreover,

. 1
< ug(xo) = |ug(z1) — ur(xo)| < o — 1, ie. Z <z <z — T

el

In particular, & > 3. Repeating this argument leads to points o > x3 > x4 > z, with
% < Upemn () < Ty, — % <wzp— T and m+1<k. Since this process does not stop, we end
up with a contradiction. a

Using the above lemma, we will introduce a continuous map from the compact space E
into C(I). Let ¢ € C(I) be an increasing function with ¢(0) = 0 and (1) > 1. Then we define
amap A, : E — C(I) via the following formula

(" p(ur(@), =€l u= (), € B.

M8

Ap(u)(x) =

>
Il
—

Note that ¢(ug(z)) > @(ur+1(x)) ¢ 0; thus, by the Leibniz criterion, this series is conver-
k—o0

gent for every « € I. So A, (u) is well defined on I.

Why is A, (u) continuous? Fix a point a € I and a positive . Now choose an m € N such
that ¢(L) < £ (use the fact that ¢(0) = 0). Moreover, by the uniform continuity of ¢, we may
find a positive § = . such that p(t) — p(7) < € whenever 0 < 7 < t < max{7 + J,1}. Take
an n > 0 such that for all x € I with |z — a| <1, we have |ug(z) —ur(a)| < d, k=1,...,m
(use the fact that the uy are continuous functions).

Now let z € I with |z — a|] < 7. Then:

[Ap(u)(2) = Ag(u)(a)l

< D0 plun(@) - plu@)] +] YD (D) ()
k=1 k=m+1

| 3 R ()] < me+ el () + plum () < (m+ 2)e.
k=m+1

Hence A, (u) € C(I).
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Moreover, we have the following property of A.

Lemma 11.3.2. Let ¢ be as above. Then the mapping A, : E — C(I) is continuous. In
particular, A,(E) is a compact subset of the metric space C(I) and therefore a complete metric
space.

Proof. Fix a u = (ug)$2, € E and an € > 0. The proof now is similar to the previous one.
Choose an m € N such that ¢(L) < ¢ and take a positive § such that ¢(t) — (1) < €
whenever 0 < 7 <t < max{7 + J, 1}.

Now let v € E be such that |jvx — ux| < §, k = 1,...,m. For z € I, by virtue of
Lemma 11.3.1, we get

[Ap(u)(z) = Ag (v) ()]

< [ DD (@) = wloe@)]| + | D (1 (@)
k=1 k=m+1
| CDE ()| < me t o () + @ (vma (@) < (m +2)e.
k=m+1
Hence Ag, 1s continuous. O

Proposition 11.3.3. Let ¢ be as above. Suppose, in addition, that ¢ is differentiable (with
finite derivatives) on (0,1) and that Dyp(0) = lim(iJI_ilrf“"(@ < oo. If f € A,(E), then f does
z—

x

not have an infinite right-sided derivative at any point in [0,1).

Proof. Let f = Ay (u), where u = (ux);2; € E, and fix a point a € [0,1). Three cases have
to be discussed.
Case 1°. ug(a) > 0 for all k € N.
Put
by := inf{z € (a,1] : ugx(x) = 0}.

Here by, is the first zero of uy to the right of a. Because of (11.3.1), it is clear that bgy1 < by,
k € N. Using (11.3.2), we know that ug_; is identically constant on [a, bg], k& > 2. Therefore,

F(@) 2 S (~DF p(un(@)) = 3 (- DM o (bansr)) = Fbantr),
- -

H@) < 3 (D (@) = 3 (1) p(ur(ben)) = f(baa). €N,
k=1 k=1

If b, — a, then
Dy f(a) = liminf Af (a,2) < liminf Af(a,bans1) <0,

D7 f(a) = limsupAf(a,z) > limsupAf(a, bay) > 0.

r—ra+ n—oo

Thus in this case, no infinite right-sided derivative of f at a exists.
If a < b := limy, o0 by, then all the u,, are constant on [a, b] (use condition (11.3.2)). Hence
D% f(a) = D4 f(a) =0, i.e., f has a finite right-sided derivative f/ (a) = 0 at the point a.
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Case 2°. ui(a) =+ = um—1(a) > 0, ug(a) = 0 for k > m, and uy, ..., uy,—1 are identically
constant on some interval J = [a,b] with a < b < 1. In fact, because of (11.3.2), we need to
assume only that u,,_; is identically constant on such an interval J.

Let « € J. Then, using the Lipschitz property of uj; and the monotonicity of ¢, we get

/()

)= | DD (@) = plun(a))

k=1
< p(um(2)) = pum(z) —um(a)) <z - a).

Therefore, we have

11m1nf|Af(a z)| < hmlnfsp(—a> D1¢(0) < 0.

—a+ T

Hence f has no infinite right-sided derivative at the point a.

Case 3°. ui(a) = -+ = um—1(a) > 0, ug(a) = 0 for k& > m, and u,,—1 is not identically
constant on any interval (a,b] with a < b < 1.

By (11.3.2), we conclude that there is a sequence of points z; < 1 with z; \, a such that

Jj—o0
Um(z;) =0 and u,(a) = un(z;), n =1,...,m — 2 (use that u,,—i(a) > 0). Then we get
b L@ = F@1 ol (1)) = o (@)
jooo T j—roo Tj—a
< @' ()t sup 21 3) — U (@)
j—o0 Tj—a
< ¢ (um—1(a)) < .
Thus also in this case, f has no infinite right-sided derivative at the point a. a

The main statement is formulated by the following theorem.

Theorem 11.3.4. Let ¢,1 be continuous strictly increasing functions on 1 with ¢(0) =

¥(0) = 0, min{p(1),¥(1)} > 1, and such that ¢ is a concave function. If hm supigIg 00,

then the set

is of first category in the complete metric space Ay (E).

Proof. For k € N, we put
My = {f € Ap(E) : Jaco1-1/8 ¢ [f(2) = f(a)] < ky(z — a)

1
for all x € [a,a + E]}

Obviously, the sets M, are closed in A, (E) and M C |Jg—; M. It remains to verify that each
of the sets M}, is nowhere dense in A, (E).
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Let k € N. Then take an f = A,(u) € My, u = (un)p2, € E, and choose an arbitrary
e € (0,1/2). We will show that the e-neighborhood of u contains a sequence of functions
u* = (u})>, € E such that A, (u*) does not belong to M. Hence, f cannot be an interior
point of Mj, (use that A, is continuous), which will prove that M;, is nowhere dense.

For this reason, choose an m € N with % <¢':= £ and put
vp = (1 —2¢") max{0,u, —nm=2}, neN.

Obviously, v := (v,)52, € E. Moreover, v, = 0 for n > m, since |Ju,| < -, and Lip(v,) <
1 —2¢’, n € N. For later use, we mention also that if n € N and = € I then

1—2¢
either vp41(z) =0 or v, (x) > vyyr(x) + mQE . (11.3.3)
Indeed, if vy41(z) > 0, then w,(z) > upir(x) > ZE > 2 Therefore,
, n
onl@) = (1 = 2 (un() ~ )
n+1 1
> (1 2" g () — ) 4 (1 2)
1-—2¢
= vpt1(z) + o
Let n > m. Then [[up, — vy = fJlun|| < 2 < L <& if n < m, then
[t (2) — vn ()] = |un(z) — (1 — 2¢") max{0, u, (x) — nm~2}|
[un(2)] <nm=2 <m~1 if un(x) <nm=2
126"un (z) + (1 — 26" )\nm=2| < 2&' +1/m, if up(x) >nm=2’
hence |Ju, — v, || < 2" +
Using the assumption that ¥ is concave, we get
gz 1 gz
hmsup(p( i) > ¢ hmsup(p( 1) =0
z—0-+ "/}( ) 4 x—0+ 1/1( )
In particular, there exists a positive dy such that if § < dp, then
p(5)
sup{ :O<x<5}>8k.
¥(x)
Choose qp € N with g9 > max{k, 2} £« m27 qo < b0, qo > 1/735,7 and ¢3 > 1 5 Then
U;O q0(21q ;) (0, ) Taking 6 = -, we fix a point = € (0, (5) with Z()( )) > 8k. Then there

exists a g > qqo such that o= < < = Thus gz + < < and x> 2 =- By virtue of the monotonicity
of ¢ and v, we end up Wlth Skw( ) ( ) Where q> max{27 k} and % < m2

Put b; := l ,Cj = L ,and a; 1= ,j =0,...,q. Thus we have the following partition:

O0=by<ar<c1 <bi<ar<cra<by<---<ag<cy<by=1
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Now we introduce the function h : I — I via the following rule:

0, ifx=0
h(z) = { b;, b if z € [aj,b;],1<j<gq
b1+ g by = bjm), e e b l<j<q

Note that

bj —bj—1 . 1
Liph) = ma {500y b L
ip(h) = max P 9 =190

Put w = (w,)22, via w, := v, o h, n € N. Then Lip(w,) < Lip(v,)Lip(h) < 1. Hence,
w € E (recall that w,(0) = w, (1) = 0). Moreover,

|wy(x) — vp(x)] < Lip(vp )|z — h(z)| < =, z €I, neN (EXERCISE).

Q|

Finally, we define the desired family of functions in E near to u, namely u* = (u})3°,, via
the following procedure. Let n; € N denote the smallest n with v, (b;) < %/7 ie., vy, (b)) <

% < wn;-1(bj), 5 = 1,...,q. Note that such an n; exists, since v,(b;) — 0. Moreover,
n—oo
we have that either vy, 41(bj11) = 0 or vp,(bjs1) = vn,+1(bj41) + 1;1225/ > %, i.e., either

’Unj+1(bj+1) =0or Nj41 > Ny
Then we define u’(x), n € N, z € I, by the following formulas:

o if n ¢ {n1,...,ng}, then u’(z) := wy(z);

e if there exists a j such that n = nj, x € [a;,b;], and p(vy, (b)) < 4kw(§), then u (x) =
va(bj) + = — |z — ¢j;

e if there exists a j such that n = nj, x € [a;,b;], and p(vy, (b)) > 4kw(§), then u (x) =
on(bg) — max{un, (b;), £ — |z — s}

e ifne{ni,....ng}, ¢ U} nn,laj, 0], then uj(z) := wn ().

Note that ;) is well defined, since the intervals [a;, b;] are pairwise disjoint. Obviously, w} (0) =
wy(0) =0 and w};, > 0. Moreover, for n = n; we have either

5/

uy, (b)) = vn(bj) + i bj — ¢j| = vn(bj) = va(h(b))) = wn(bj) or

w2 (b;) = vn(b;) — min{on(b;), ; by — 51} = valby) = walby)

(in particular, u) (1) = 0) and either

EI

uy(a;) = vn(by) + i la; — ¢j| = vn(b;) = vn(h(a;)) = wn(a;) or

Hence, the function ¥ is continuous in I. It is clear that Lip(u’) < 1.
Let n =n; and x € [a;, b;]. Assume that v, 41(z) > 0, then by virtue of (11.3.3), we have

1—2¢ 1-2¢ g’ 2¢’
< Vnt1(2) + —5— < oa(@) < oa(b) (b — @) < PR

m?2
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a contradiction (because ¢* > %) Thus, vpt1lf; 5, = 0. Since n + 1 # nj, we have
w1 (2) = wpg1 () = Vg1 (M(x)) = vug1(b;) = 0, « € [a;,b;]. Therefore, U 1l[a; 5] =0 <

U |[a,,b;)- Now let n > 1, n = n;, and = € [a;, b;] as above. Then we get either
Uy, 1 (%) = wn-1(x) = vn-1(bj) = vn(by)

> vn(x) — min{vn (b)), €'/q — |2 = ¢;|} = uy(x) or

1-—2¢ e
Un;—1(bj) > vn, (bs) + 3 > vp; (by) + i |z — ¢;| = un, (x)

(recall that ¢ > {5 ) Hence uf > uj > -+ > uf > -+ > 0 (recall that v} (z) differs from
wp(x) only if n =n; and z € [a;, b;]).
Since property (11.3.2) is also satisfied (EXERCISE), we have u* € E.
Finally, we discuss |u (z) — wy(z)], € I. Let n = n; and « € [a;, b;]. Then either
!/

() — wn(@)] = [vn (b)) + = — |z — ¢;] — wn(z =
|un($) ()] | n(bj)"’ q | j| n(2)] < 7

. . g 4
fun(@) = wn (@) = fon(b;) = mindvn(b;), - = [z = [} = v(b)l < -
All the other cases are trivial. Therefore, ||u} — wy,| < & " < ¢’ Finally, we have

”UZ — Ul < ”UZ — Wyl + lwn = val| + [lvn — un || < 5¢’ < e,

i.e., the sequence u* belongs to the e-neighborhood of w.
It remains to Verify that f* := Ay(u*) ¢ Mj. To prove this, fix an arbitrary point a €
[0, 1——] Since 1—— < 1—— = bq_1, there exists aj €{2,...,q} with b;_» < a < bj_1. Recall

that n; is the smallest 1ndex I such that v;(b;) < <. Then @(uy, (b)) = p(vn, (b)) < w(%).
If p(vn, (b)) < 4kw(q), then

s (e3)) = 0, ) = o (0m, () + ) = 0, 03)

- of2) -2 2 -

- 4k¢(§>.

If p(vn, (b)) > 4kw(§), then

[l (¢5)) = (us, (b;)] = 1(0) — (ur,, (b,))]
= ¢@(uy, (b5)) = p(vy, (b5)) > 4k¢(3),

Recall that for s # n;, we know that u§|[aj7bj] is identically constant. Therefore,

() = )] = 40().
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Hence we get
0 (2) <15 0) = @) < 1@ = F el + 1@ = 70,

implying that there is an « € {¢;,b;} such that |f*(z) — f*(a)| > 2kw(§). Moreover, we have
Y(x—a) < 1/’(%) (recall that 1 is an increasing function). Hence

[f*(a) = f*(2)]

> 2k.
Uz —a)
Since b; € [a, a+ 1], it follows that the condition of the definition of M is not fulfilled. Since
a was arbitrarily chosen, we see that f* ¢ Mj. O

Exercise 11.3.5. Verify the existence of a strictly increasing continuous function ¢ : I — I
with the following properties:

©(0) =0, 90(1> =1, D-HO(O) < 00, D+90(0> = o0,

such that (g 1) is differentiable.

Now we are able to prove the existence of a Besicovitch—-Morse function using Proposi-
tion 11.3.3 and Theorem 11.3.4.

Corollary 11.3.6. There exists a Besicovitch-Morse function on 1.

Proof. Take a continuous strictly increasing function ¢ : I — R as in Exercise 11.3.5.
Applying Proposition 11.3.3 yields that every function from A, (E) has nowhere an infinite
right-sided derivatives on [0, 1).

Note that the condition DT¢(0) = oo implies (take ¢ = idj) that the assumptions in
Theorem 11.3.4 are satisfied. Therefore, there is a subset ST C A, (F) of second category,
where

St = {g € Ay(E) : Yaepo,1) : limsup|Af(a,z)| = oo}.
r—ra+
By a similar argument, we see that also the set

ST = {g € A (E) : Voo, : limsup|Af(a,z)| = oo}

r—a—

is of second category in A,(E). Hence, @ # ST NS~ C BM(I), which says that there exists
a Besicovitch-Morse function in A, (E). O

Remark 11.3.7. Note that the proof of the former corollary tells us even more than stated
there, namely, that the typical function in Ay(E) is a Besicovitch-Morse function.

We conclude this section by adding some results on the existence of a Holder continuous
Besicovitch—Morse function.

Proposition 11.3.8. For every o € (0,1), there exists a Besicovitch-Morse function f €
H(I).

Proof. * Step 1°. Fix an a € (0,1) and put pu(t) := t*. Then there is a decreasing function
g such that p(z) = fogﬂ g(t)dt (note that this representation is always true if p is a concave

I We thank Professor Jan Maly for the idea of the proof.
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function). In our case, g(t) = at®~ !, t € (0,1]. Now we choose a strictly decreasing sequence
(xr)72, € (0,1], which converges to 0 (the precise shape of the z3’s will be given later). Fix
x1:=1, 29 := 1/2. Put, for ¢t € (0, 1],

h(t) - g(t), if xopy1 <t <wo, kEN
o 0, if o, <t <wop_1, kEN

and define o (¢ fo T)dr, t € (0,1], v1(0) := 0. Then ¢ < u, and ¢ is an increasing
continuous functlon on I, Wthh is identically equal to o1 (xo) on the intervals [zog, Tak—1],
keN.

Then (20) o o
1 (war, Top — Tog41 1
o > > =1 k% 400,
2k T2k Toy, — 400
1/«
where xop11 =25, < T2, k€ N.
Moreover, for k € N3, we have
o0
o1(rapr1) 1
- T E (29 — 2541) 1/a E zy = Ay.
2k+1 2kH1 p Tt To e=k+1

Now choose an s € N with s > 1/a and put zy(m41) = :rgin, m € Na. Note that zy(,,41) <
Tom1 for all m. On applying as? —s > (£ —1)s, £ € N, it follows that

o0 oo oo

1 2(0—k) 1 20 20
_ as _ as s— 1/04 as”  —s
A =75 > () = 1/a'z($2k) = a5 1Y (war)

Lok t=k+1 Lok =1 (=1

s—1/a - s \£ s—1/a 1

< Ty, E (25%)" =y, > 0.
1-— x;k k—4o00
£=0

Hence we end up with D¥p1(0) = 400 and D_¢4(0) = 0.
Step 2°. Now we will smooth the function ¢1 to get a new function, called @, in such a way

that o1 < @ < p, limg— 40 % = +o00, and limy_, 4 %ﬁl) = 0. To do so, we choose
€9 > 0 such that:
® 2e9 < Tok—1 — T2k,
o copg(war) < S,
o g(x) > glaaw) P22 ggp <o <oy + 21, k€N
For t € I, put

h(t), if zopy1 <t <ok, K EN,

i~l(t) . g($2k)%ask_t, ifte [ZEQk,ZEQk + Egk], keN,
= (52 . .

g(wap—1) =22 it € [mop1 — Eop, w21, K EN,

0, otherwise
Then the function ¢ defined as ¢(z fo T)dr, x € 1, is an increasing continuous function

on I, differentiable on (0, 1), that satlsﬁes 01 <@ < p. Thus £ (IQ") > elen) 4o

T2k ks4oo
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Note that
oo oo
Plaokrr) = Y (@5 —a5p1) + > glwar)ea
t=k+1 t=k+1
o0 o0
< Z (23 — 25p41) + Z w2041/2"
t=k+1 t=k+1
Therefore,
P(or+1)

<Ap+1/28 — 0.
T2k+1 k—+o0
Step 3°. Put ¢(t) := @(t) +t2, t € L. Then ¢ is strictly increasing with (1) > 1. Moreover,
D1 ¢(0) = 400 and D_¢(0) = 0.
Step 4°. Finally, if 0 < 2 < y <1, then

ply) —pla) _ [Yhtydt o2 - a2?

wly—z) — wuly—=x)  (y—x)*
S g(t)at e < BY) = p()
Su(y—x)JJ(y s wy—az) =Y

because  is a strictly increasing concave function with p(0) = 0 and therefore subadditive.

Hence,

To finish the proof, we need the following lemma.

H,(p) = sup{

Lemma 11.3.9. Let p be as above and let ¢ € C(I) be an increasing function with p(0) = 0.
If H,(¢) < M, then H,(f) < 2M for every function f € A,(E).

Proof. Let f € Ay (E), ie., f = Agy(u), where u € E. Fix points ¢ < y in I and put
m :=min{n € N: u,(x) # u,(y)}. By virtue of the definition of E, we find (since u,, is not
identically constant on the interval J := [x,y]) a point z € J with wuy,4+1(2) = 0.

Assume that m is an odd number. Then

FW)=> (1" poun(y) <Y (1) poun(y),
1;;_11 n=1
F@) =) (1) o u ().

n=1

Recalling that u,(z) = un,(y) for n < m and the Lipschitz property of the u,’s, we get

|
<
3

) = (@) < o(um(y)) — o(um (@) + e(um+1(2)) — (Umi1(2))
< Hu(@)pllum (@) = um)]) + Hu(@)pl[um1(2) = wmi1(2)])
< 2Mp(|z — yl).
Similarly, if m is even, then f(z) — f(y) < 2Mu(ly — z|) (EXERCISE). O

Hence, by virtue of Proposition 11.3.3 and Theorem 11.3.4, we get a-Holder continuous
Besicovitch—-Morse functions. O



Chapter 12

Linear Spaces of Nowhere Differentiable
Functions

Summary. This chapter gives some ideas for studying linear structures within the nonlinear set N'D(I).

12.1 Introduction

A theorem of S. Banach and S. Mazur (see [AK06a], Theorem 1.4.3) states that every separable
Banach space! X is isometrically embedded as a closed subspace of C(I). The theorem tells
us that C(I) is a “really big” space, big enough to contain every possible separable Banach
space. So one can ask whether we can require more properties of the functions in the image
of the embedding or when these properties place restrictions on the Banach space X to be
embedded. In this direction, the following results are known:

If E is a closed linear subspace of C(I) such that every function f € F has bounded variation,
then E is necessarily finite-dimensional [LM40].

If E is a closed linear subspace of C(I) such that every function f € E is differentiable at
every point of I, then E is finite-dimensional (cf. [Gur67]).

If F is infinite-dimensional and every function in F has a derivative at every point of
(0,1], then E must contain an isomorphic copy of ¢g.? (See [Gur67].) In fact, £ must be
isomorphic to a subspace of cg.

If /! can be embedded in C(I) as a linear subspace,® then there exists a function in the
image of the embedding that is nondifferentiable at every point of a perfect subset? of I
(see [PT84]).

In [Gur91], using trigonometric sums, an infinite-dimensional subspace E of C(I) is con-
structed such that every f € E \ {0} is nowhere differentiable on I.

In [FGK99], the authors used van der Waerden’s functions to give a closed subspace of C(I)
that is isomorphic to £*.

1 That is, the space contains a countable dense subset.

2 Recall that cg := {(an)2%; C R:an —> 0} with the supremum norm.
3 Recall that ¢! := {a = (an)%; CR: |la]pn =322, |an| < +oo}.

4 A closed set A C I is called perfect if each of its points is an accumulation point of A.

(© Springer International Publishing Switzerland 2015 245
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e There is a stronger version of the Banach—-Mazur result by Rodriguez-Piazza (see [RP95]),
namely that every separable Banach space can be isometrically embedded as a subspace F
of C(I) such that f € ND(I) whenever f € E\ {0}.

Our aim in this section is to study the m-lineability (resp. m-spaceability) of ND4 (I),
where m € {Rg,c} (¢ stands for the continuum). A set M C B of an infinite-dimensional
Banach space B is called m-lineable (resp. m-spaceable) if there is an m-dimensional (resp. a
closed m-dimensional) subspace E C B such that E \ {0} € M. These notions were first
introduced in an unpublished paper by Enflo and Gurariy (see [EG]) that circulated among
specialists at the beginning of this century (see also the final and extended version of this
preprint [EGSS14]).% In the sequel, the Banach space B will be given by C(I).

12.2 c-Lineability of ND>(R)

In [Gur91], Gurariy presented a nonconstructive proof of the fact that ND(R) is Rg-lineable.
The aim here is to give a constructive proof of the following stronger result due to Jiménez-
Rodriguez et al. (see [JRMFSS13]).

Theorem 12.2.1. The set ND>°(R) N N'D_(R) is c-lineable.

Proof . For a € (0,1), we put fo(z) := Cao(z) = > ", a" cos(2r9"z), € R. Now the proof
consists in proving the following two lemmas.

Lemma 12.2.2. Let 0 < ay <az <---<ag < 1. Then the functions f; := fo,, j=1,...,k,
are linearly independent.

Proof.. Let (A1,...,Ax) € R¥ be such that Z?Zl A;jf; = 0. To conclude that all the A; vanish,
it suffices (together with the Vandermonde determinant) to prove the following claim:

k k
Z/\Jaj Z)\J 1aj_ aj, n € Np.

Jj=1 J=1

We will use induction. If n = 0, then

k K
0S50S () + o)
:;/\j(cos (g) - 1ijaj>

and

k .
0= 3t (55) = on(eos(5) - 125

j=1

Therefore, 0 = (cos(§) — cos(g)) Z;ﬂ:l Aj, which immediately implies the claim in the case
n=0.

5 We thank Professor L. Bernal-Gonzdlez for informing us about the history of [EG].
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Assume now that the claim is true for all m € Ny, 0 < m < n. Similarly to the argument
above, we calculate

k k
Zf( o) e ()

j=1
™ ™ alt?
+ -+ +aj cos (—) + a"Jrl cos (—) E— )
2 9 1-— aj
. k - an+2 an+1
use twice 1 J J
I )\-( n cos(—)— )
induction assumption ; J aj 9 1-— Qj + 1-— Q;
k
Z/\Janﬂ(cos (9) + 1)
j=1
implying the first part of the claim and then the second part. O

Put E:=span({f, : 7/9 < a < 1}). Then dim E = c.

Lemma 12.2.3. Let 7/9 < ap < --- < a; < 1 and (\,...,\x) € RE\ {0} be given. Then
f=30 \if; € NDL(R) N ND>(R), where f; = fa,.

Proof. We may assume that A; > 0. Fix an « € R. The proof of the nonexistence of derivatives
at x will be based on the estimates from the proof of Theorem 3.5.1. Recall the essential part:

2
Vj,m,:l: + _Uj,m,:l:) ;

A5t = 200 s+

aj—l

where «,, € 7Z is such that

1
T =290 = am € (=3, 3], @ = Slam £1)97"

Uim+ 21, [Vimz| <1

Note that
7T 2 2 s 4—m
Hym o= (5——=Vimt + 5Ujmt) = 5 - = B.
o 9q, 1 0mET3%mE) 2375, 17 6 P
Therefore, sgn Afj(z, z}) = —sgn Afj(z, z;,).
Putting all this information together, we obtain
k
Af(x Z/\ Afi(z,ah) =Y N(=1)*12(9a;)" Hj m
j=1 j=1

= (=1 12(9a1)™ (M Him + Z A (Z—i)mﬂjm)

=2

where A\ Hq m—|—2 N (aJ )™ H, mm > A\18/2 for sufficiently large m. Therefore, max{|D* f(z)|,
|D_f(z)|} = max{|D f(z )| |D_f(z)|} = 4+00. Moreover, if, e.g., Af(x, mk) — #00, then
Af(x, 2, ) — Foo. Thus an infinite derivative f’(x) does not exist. O O
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12.3 Spaceability of ND_ (I)

The aim of this section is to construct a closed linear subspace E of C(I), norm-isomorphic
to ¢1, such that E\ {0} € ND(I).

Theorem 12.3.1 (Theorem of Berezhnoi (see [Ber03])). There exists a closed linear subspace
E of C(I), dim E = oo, such that E\ {0} C ND_L(I). Moreover, E is norm-isomorphic to the
sequence space (1.

Remark 12.3.2. A weaker result is contained in [FGK99], namely that there exist a closed
linear subspace E C C(I), dim E = oo, and a subset A C I with £'(A) = 1 such that if
f € E\{0}, then f € ND((0,1)), and moreover, f has neither a finite right-sided nor a finite
left-sided derivative at any point of A.

The proof of Theorem 12.3.1 will be done in several steps.

12.3.1 Two Matrices

Let D = (djx)jken (resp. H = (nji)jken) be an upper-triangular matrix, i.e., djx = 0
(resp. njr = 0) for k < j, such that d;r > 0 (resp. njr € N), &k > j € N. Moreover, we
assume that these matrices satisfy the following conditions:

if j € N,k € Njyq, then djx > 25T d ks (12.3.1)
if j € N,k € Ny, then dj k1 > 2%d; k; (12.3.2)
if keN, then DEELERL € N (12.3.3)
N1,k
if j e N,k € Njjq, then Sn’?ﬁ eN; (12.3.4)
if j € N, then 1< 2 < g (12.3.5)
if j e N,k e Nj, then dietr o ik (12.3.6)
Nj k41 Nj k

Proposition 12.3.3. There exist matrices D and H as above with properties (12.3.1)-
(12.3.6).

Proof. Fix an arbitrary n;; € N. Then choose a positive number d; ; such that (12.3.5)
is true. Next we find an ng2 € N such that (12.3.3) holds, and then we take a positive
da 2 satisfying (12.3.5). Now choose a positive di o with (12.3.1) and (12.3.2). Finally, fix an
ni12 € N such that (12.3.4) and (12.3.6) hold. Thus the 2 x 2 left upper parts of D and
H are constructed. What remains is to use an induction argument to complete the proof
(EXERCISE). O

Corollary 12.3.4. Let H and D be as in Proposition 12.3.3 and put hjp := ﬁ, jeN,
k € N;. Then: ’

8 hy g < hyks ifj €N, k€ Ny; (12.3.7)
hig > 8hit1 k41, if k € N; (12.3.8)
njx > 88 9d; ifj €N, keNy (12.3.9)

nje € Snj,k_HN, ij eN, ke Nj, le Nit1;
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Njk+1 € 2n1,kN, Zf] eN, ke Nj; (12310)
Njm (S nk+1,k+1N; Zf] S N, ke Nj, m e Nk+1 or

keN, j €Ny, meNy; (12.3.11)

dje > 85777%d; 4, ifj €N, keNj, s € No\Np_jp1;

k—1—j
d;j’:f <1, ifj €N, k€N (12.3.12)
5=0

Proof. The proof is left as an easy EXERCISE. O

12.3.2 Auziliary Functions

From now on, we fix matrices D and H as in Proposition 12.3.3. Recall the function ¥ (z) =
dist(z,Z) (see Chap.4). Put po(z) := —1 + 1(z), @ € R. Obviously, ¢o has period 1 and
satisfies |po(z) — wo(y)| < |z —y|, x,y € R. Define

(pj’k(t) = ﬁ(po(nj,kt), teR, jeN, ke N;.

Then the functions ¢;; are continuous and satisfy |¢; x(z) — ¢ x(y)| < |z —y|, z,y € R.
In the sequel, we will use the abbreviations h; j := Lk (see Corollary 12.3.4) and Tjkt 1=

M%, LeZ.
Lemma 12.3.5. Let s,t € R, je N, ke N;, and { € Z.

(@) If Tjpe < 5,8 < Tjnesr, then [jr(t) — jn(s)] = [t —s|.
(b) Ift < Tike <t+ Ri+1,k+1, then |30j71€(t + h171€/2) — goj7k(t)| > hl,k/4'

Proof. (a) Step 1°. If £ = 2m, m € Z, then m < njs,n; it < m+ 1/2. Recall that ¢q is a
linear function on [0,1/2]. Therefore,

ljk(s) — ik = hjrlpo(njrs —m) — o(njxt —m)| = |s —t|.

Step 2°. If £ = 2m + 1, then m + 1/2 < n; xs,n;xt < m + 1. Thus (a) follows with the
same argument as in Step 1°, since ¢ is also linear on [1/2,1].
(b) By the assumption and (12.3.7), we have

t+hik/2<Tjpe+hig/2<lhjp/24+hik/2 <+ 1)hjr/2="Tjket1-
On the other hand, using (12.3.8), we get
t+h1k/2 > hik/2 = Reg1 o1 + Tjkge = Tk
Thus t + hi1,x/2 € [Tj ke, Tjke+1)- Applying (a), it follows that

lojk(t 4+ h1x/2) — @jr(t)]
> [t + h1,k/2) = 05.6(Tk,0)| = 105k (T k,0) — 5.1 (1)]
> [t + hik/2 = Tjnel = |Tj ke — 1 = hak/2 = 2|7 0 — ]
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h
> hi1k/2 = 2hgs1 41 = hip(1 — 4%)/2 > h1 k(1 —4/8)/2

= hl,k/47

where we used (12.3.8).

12.3.3 The Closed Linear Subspace E C ND(I)

For j e N, put

)= dikpjr(t), teER.

By virtue of (12.3.9), note that

Zd]kh%k S%Zdjkhjk<428 k-‘:—]z%;

thus 1); is a continuous function on R.
Let now j, k,m € N with j < k < m. Then by virtue of (12.3.11), we get

©jom(t+ hr1,k41) = hjm@o(gmt + 1 mhikt1,k+1) = g m©o(njmt) = ©jm(t)-

Thus all the functions ¢;,, have period hpi1r+1 whenever j < k < m. In particular,
using (12.3.10) and (12.3.11), we see that ¢; ,, has also period hq x/2.

Lemma 12.3.6. Let j €N, k€ N; i, L€ Z, andt € R.
(@) If Tjrye <t <t hpg1 k1 < Tjket1, then
|90 (£ + Pry1 1) — 05 (8)] > S rhbsr kot
(b) Ift < Tj ke <t+ hiy1,kt1, then
|1 (t 4 hak/2) — V;(t)] > Sdjrha k.
Proof. (a) Recall that ¢, ., has period hgy1 k41 as long as m > k + 1, k € N;. Thus, using
Lemma 12.3.5 and (12.3.12), we obtain

k
[ (¢ + his1pe1) — ¥5(8)] = ‘ > djm(@jm(t + hisr k1) — 95 (1))

m=j
k—1
> dj k|t + hit1k+1) — 05O =)  djmlejmt + het1k+1) — @5,m ()]
m=j
k—1
> gy, k+1( d;, m> > Sd; st 1
m=j

(b) Using that ¢;¢, £ > k+ 1, k € Nj, has period hi /2 (apply (12.3.3)), we get, using the
same argument as before,
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k
(¢ +has/2) = 03] = | 3 dynlpsm -+ ha/2) = 5m (1))
- k-1
> dj kloj it + 1 k/2) — 0560 = D dimlojm(t+ h1k/2) = @jm(t)]

m=j

d
zidjkh1k<1—22djm) 47 jk‘hlk U
Put now e; := IIZJ?IHH’ j € N. These will be the functions generating the linear subspace E
J

we are looking for.
Lemma 12.3.7. For j € N, we have % < Zd; jh;; < ||¢;lli < 2d; ;h;; < 2.

Proof. Fixat € R and a j € N. Then

1 N dimhim 2
;)] < Z djmhgm = 3%l cjl;thJ < djih,

m=j

where we have used (12.3.6).
Moreover,

djjhjj

Rl

51l > %( hjj— i dj7mhj7m> > i(2 — g) =

m=j+1
which completes the proof. a

Note that if N € N and a4,...,an € R, then || Z;\;l ajejlln < Zj\]:l la;|. So it remains to

find an estimate of || Zj\]:l ajejllr from below.
Let j € Nand ¢ € Z. Put

DG, O+ = {t € [0, 7o) - Tpo(ny ;) = a/4},
where « € (1/7,1/4). Then by a simple estimate (EXERCISE), we have

iftGD(j,é)_._, then ¢j(t) Z T(O&—%),
ift € D(j,0)—, then q;(t) < —SLbi(a—1).

Note that if £ = 2m, then
te D(j,0)+ ifandonlyif 1(14a)<n;t—m<3,
teD(j,0)- ifandonlyif 0<t<n;t—m<i(1-a).
Moreover, if € := 4, then there exists an m = m(m, ) € Z such that
[Tj1,j41,25 Tj+1,5+1,2m+1) C D(F,2m)+
Indeed, let us discuss in detail the case € = +. Choose m such that

2m —1 14+ a+4m 2m 14+ a+4m 2
< < < + .
20j41,5+1 4ng,j 241,541 4nj,j 20j41,5+1
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Then by virtue of a < 1/4 and —L— < 877 we get

N4l T
2m+1 1 4 3 1 .
mtl lhatam < (1+a+4m+6m—’3)
20511511 4nj j 21441 T Ay Mj+1,5+1
ltat+dm+g _2+4m

4nj ; 4ny ;

The second case is left as an EXERCISE.

Putting together all the information obtained thus far, we get the following result.

Proposition 12.3.8. Let N € N, q; €R (j=1,...,N). Then

To— 1 N N N
— > lal < | aef| <D lal
j=1 j=1 j=1

Proof. We may assume that a; > 0. Put T} := D(1,0)+. If now as > 0, then choose mq € Z
such that Ts := D(2,2mq)4+ C T1. If ag < 0, take an mo € Z such that Ty := D(2,2ms)_ C T1,
etc.

Fixate ﬂ;\;l T;, and recall that a;;(t) > 0. Then

n n Ldhiia—1) 7ta-1&
[ aes®)] = 3 Jay AT = Y . 0
j=1 7%5,9"%5.5 j=1

j=1

Put E := span{e; : j € N}. Then the previous proposition says that the mapping ¢! >
(aj)jen = 3272, ajejlr is a norm-isomorphism between (' and the closed linear subspace F
of C(I). Finally, it remains to verify that E \ {0} C ND,(I).

Proposition 12.3.9. If f € E\ {0}, then f € ND_L(I).

Proof. Let f = 377°. aje; € E with aj, # 0, jo € N, and ty € [0,1). Recall that

[(a;)52qller < +oo and [[¢;flr > 2. Therefore, we may assume that f = Z?‘;jo a;v; with
>oi2j, la;] < 1. We will show that f has no finite right-sided derivative at t.
Recall that njiq g1 > 8F LT O Thus there exists a kg € N such that hy < 1 — to.
—+00

Step 1°. Fix a k > ko and assume that there is an ¢ € Z such that to,to + hgy1,k+1 €
[Tjo kb5 Tio k1] We are going to estimate Ay := |f(to + hrt1,641) — f(to)l:
Using (12.3.11), if j <k < m or k+ 1 < j < m, then

©jm(t + Pkt k+1) = Rjm@o(1mt + 1 mhiki1 k1) = @5.m ().

Therefore,

k
Ap = ‘ > a; (Wit + higrrsr) — ¥5(to))
J=Jjo
> lajy |10, (to + hig1,k1) — ¥jo (to)]
k k

- Z laj Z dj.mlejm(to + hkt1 k1) — @j.m(to)]

Jj=jo+1 m=j
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k k
Lemma 12.3.6
> Slagoldishsiker = D lagl Y djmhis ks
j=jo+1 m=j
k
6 7
>l <|a’jo|djo,k 5 D layl(dig +djgen+-o+ dj,k))
J=jo+1
6 4L
> Zhit1ge (|ajo|djo,k = |aj|dj,k)
J=jo
6 4N dy
> =dj khet1,k+1 (|a’j0| -3 Z j—)
7 3~ djyk
J=Jo ’
6 48d; +1,k
Sy s (o - £330
= 7 jo,kltk+1,k+1 |aJ0| 37 djg,k
6 32 1 .
Z ?djo,khk_»,_l’k_t,_l (|aj0| — ﬁm) and if &k Z k]_ Z ko,then
>

—di khke1 pe1la; — —4o0.
14 Jo, +1,k+ | JO| k—s+00
Thus, if there is a sequence (sg)ren C Ng, such that to, to+ s, 11,541 € [Tio.sn.06 > Tiossklr-+1)s

then
[/ (to + hsr1sp+1) = FR)| | oo,
hsk+1,8k+1 ko0

meaning that f allows no finite right-sided derivative at tq.
Step 2°. On the other hand, there is a ks > kg such that

to,to + Pkt1,k+1 € [Tio k05 Tjo kyo+1], k> ko, L €Z.
Thus there exists a sequence ({y)ren,, such that to < 7j, ke, < to + hit1,k+1 Whenever

k> k.
Similarly to how we proceeded above, we would like to estimate By, := | f( h12"“ )— f(to)l,

kaQZ

Bi=| Y a;(lto + "52) = v (t0))

j:jo

= ) _Z i: m(@jm(to + 252) — wj,m(to))‘-

Recall that if k < j < m, then ;jlmk € N. Therefore,

Bk_\zajzdm%m ML) — @im(1))
J=jo
> |ajo||¢J0 (tO + ha, k) ¢j0 (t0)|

k

k
- Z |aj|zdj,m|‘pj,m(
m=j

Jj=jo+1

5 ~
5+) — @jm(to)| =: Br.
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Using Lemma 12.3.6, it follows that

By >

\ V

I \%

Y

5 1,k
5210l djo kh1 e — Z |, Z —
28 2
Jj=jo+1
k k

5 hy 14
175 (awldns =5 32 3 din)

5 S me

k k

5 hy 14 1
T (=5 > X (5))

J=jo+1 m=j
5 hy 16 <
ﬂT("%' ok = 5 2 dm)

Jj=jo+1
5 hl k 168d +1,k

> % ( — _L)
=14 2 Jo,k | J0| 57 djo,k

5%60 <|a'|— 16 -8 ) 5h1k |aj0|
14 2 oR\%ol T 35934k ) = 14 2 ok

2_

if £ > k* > ko, k* sufficiently large. Hence,

| (t0+h1k

5 |aj,|d;
— f(to)] > _|aJo| Jok | J0|23k jo)djo,jo — +oo,

2
hik
2

implying again that f allows no finite right-sided derivative at tg.

14 2 _28 k—+o0

O

Remark 12.3.10. In a recent paper (see [Bob14]), Bobok has shown that even NDP(I) is a
spaceable set. The proof of this result is based on the construction of Besicovitch (see [Bes24])
and its description by Pepper (see [Pep28]). For earlier results, see also [Bob05, Bob07].
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Riemann Function



Chapter 13
Riemann Function

13.1 Introduction

The aim of this chapter is to discuss the problem of differentiability of the classical Riemann
function

= sin(mn’z)
Rw =3 B, aen
To get some feeling of the behavior of R see Fig.13.1.
At the outset, we should notice that R ¢ ND(R) (cf. Remark 13.1.1). Thus in fact, the
function R is not in line with this book. Nevertheless, for many years, mathematicians believed
that R € ND(R). The first to claim that R € ND(R) was B. Riemann (cf. [BR74], p. 28,

and [Wei95], p. 71).

Remark 13.1.1. (a) Obviously, R(z + 2) = R(z), R(—x) = —R(x), € R. In particular,
the differentiability of R may be checked only for z € (0, 2].

(b) Hardy proved in [Harl6] that R has no finite derivative at irrational x nor at x = %
(see also [Ita81]) or = 45_11:1 (peZ,qeN).

(¢ ardy’s result was extende erver, who proved in |Ger that r) = —5 for

(¢) Hardy’ 1 ded by Gerver, who proved in [Ger70] that R'(z) T f

x = ggﬁ (p € Z, q € N). Moreover, he proved in [Ger71] that R has no finite derivative
at points x = %7 x = % (p € Z, n € N); see also [Moh80).

(d) Our presentation will be based on [Smi72, Smi83]. Theorem 13.3.1 gives the full charac-
terization of finite or infinite one-sided derivatives R/, (z) for z € Q, and shows that a
finite derivative R'(z) at x ¢ Q does not exist.

It remains an open question
whether an infinite derivative R'(z) exists for x ¢ Q | ? |and, more generally,

whether finite or infinite one-sided derivatives R/, () exist for = ¢ Q

(© Springer International Publishing Switzerland 2015 257
M. Jarnicki, P. Pflug, Continuous Nowhere Differentiable Functions, Springer
Monographs in Mathematics, DOI 10.1007/978-3-319-12670-8_13



258 13 Riemann Function

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

sln(7rn T)

Fig. 13.1 Riemann function I 5 z — Z
n=1

13.2 Auxiliary Lemmas

Lemma 13.2.1. Let ¢ € C(R,C) N L*(R) be such that:

(a) for every h >0, the series Y po__ ho(h(t+k)) is locally uniformly convergent for t € R,

(b) there exist B > 1, C > 0 such that |7|°|3(1)] < C, 7 € R, where @ is the Fourier
transform of ¢ (cf. § A.3).

Then

Z ho(hn + ha) = 3(0) + A(h,)h?, h >0, a €R,

where [A(h, )| <203 L.

Proof. Fix h > 0 and a € R. Define f(t) := hp(h(t + «)), t € R. Obviously, f €
C(R,C)NL*(R). Moreover, the series > f(t+n)=> """ hp(h(t+n+a)) is uniformly
convergent for ¢ € I. Observe that

flr) = / ho(h(t + a))e” 2™ dt = / p(u)e™ 2 (E =) gy = 62”‘”@(1).
R R h

Consequently, |T|'6|f(7)| < ChP. Thus, we may apply Proposition A.5.1, and we get
o0

Z ho(hn + ha) = Z f(n i f(n)z Z e%io‘"@(%>.

n=—oo n=—oo n=—oo n=—oo
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It remains to observe that

X e < X o) = (S ;

NELx NELx

Lemma 13.2.2. Let

P1(z) == Shﬁf)’ if z#0 Yo () == 1_022(?2)’ fo#0
BT ife=0" 27" o, fr=0"

Then -
> hapi(hk+ha) = V2+ Aj(h,a)h®, h>0, 0 €R, j=1,2,

k=—o0

where the functions Ay, As are bounded.

Proof. We are going to apply Lemma 13.2.1. First observe that for every h, R > 0, if |t| < R,

then B
< - ©
D byt + < D, e < 7rh D |l<:|

|k|>R |k|>R |k|>R

Thus for every h > 0, the series Y 7o hipj(h(t+k)) is locally uniformly convergent for ¢ € R.
Let ¢ := 1)1 + i1p2. We have proved that for every h > 0, the series > 7~ ho(h(t + k)) is
locally uniformly convergent for ¢ € R. Now, in view of Lemma 13.2.1, we have only to show
that

doso: ¥PlP(Y)| < C, yeER, (13.2.1)
P(0) = V2(1 +1). (13.2.2)

We have

. w’w _ 1 _ . oo _imxT 1
Ply) = / ————e g = 2/ S cos(2mxy)dr, ye<R.
R 0

i imax?

Proof of (13.2.1). Observe that p(—y) = @(y). So it suffices to prove that the function
(0, +00) > y — y?P(y) is bounded. We have

3( ) 2 /oo ez‘t2 -1 COS(?\/_t i
= s
Py T Jo 72 Y

Consequently, it suffices to prove that the function u — u?F(u), where

zt2 _

(0,400) 3 u - / cos(tu)dt,

it2
is bounded. Observe that the function Q(t) := <=1, t € R,, Q(0) := 4, is real analytic and
Q’(0) = 0. Obviously, lim;—, 1« Q(t) = 0. Moreover,

e (it2 — 1)+ 1

Q1) =25
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In particular, lim;—, o, @'(t) = 0. Integration by parts gives

w,

n(t ——/ Q' (t) sin(tu)d 1/ Q' (t) sin(tu)dt
:i(@ (@% / Q"(1) cos(tu)dt>

_ —5 /O 0" (#) cos(tu)dt

Thus we need to show only that the function u — fooo Q" (t) cos(tu)dt is bounded. We have
/It = _4 it? 6 it? ~t2 1 1
Q1) = 10" = S (2 1) 1),
It is clear that the function u — [ t%(e“2 (it> — 1) + 1) cos(tu)dt is bounded. Thus, it

remains to prove that the function u —— fooo eit’ cos(tu)dt is bounded. Fix a u > 0 and let
q := %. Using Fresnel integrals (cf. § A.4), we have

/ e’ cos(tu)dt = = (/ ettt gy / e”z_lt“dt)
0 2\ Jo 0
—iq? 00 ) id? o -
_e” (/ ei(t+q)2dt+/ ei(t—q)2dt) _e™ (/ e”gdt—y/ e”gdt)
2 0 0 2 q

—q
—iq2 o0 o0

=< z ( 2 gt 4 etz dt)
2 2 w/Z VE

™ Vv =

= e—2iq2 \/g(%(l—kz) —Fr (q@) + %(14—2') —Fr(—q %))
- e_;f \/g(l—i-i).

Thus, | [;° et cos(tu)dt| = 4

Proof of (13.2.2). Let g(z) := %7 z € C,, g(0) = 1. Note that g is holomorphic on
C. For R > 0, consider the contour I'g := [0, R] U~yr U [e’T,0] C C, where vz is the arc
[0,%] > 6 — Re'. By Cauchy’s theorem, we get

f(2)dz

I'r

R eiﬂI2 -1 i R 1— e—ﬂ'I2 m/4 eiﬂ'Rzezw -1
= —2dl‘ —e'4 —Qdfl? + —9d9
0 T 0 T 0 Re?

Observe that

‘/ﬂ/z; pimR2e? _1d9’ - 1 ”/4( ~R?sin20 +1)do < —
Re? - 0 ‘ - 2R e
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Thus

%) — 2 00 1
~ | 1-—- ™ T
p(0) = 2¢'4 / e—2dx = 2¢'1 / / e tdtd
0 T 0 0

1 [e%e) 1
- - 1 /1 o
=2¢'1 / / e dpdt = 2¢'F / —\/jdt =2¢'T = V2(1 +1). 0
o Jo 0o 2Vt

13.3 Differentiability of the Riemann Function

To simplify notation, instead of R (cf. § 13.1), we will study the function

nw)

2 = sin(m
= —R = 2 _—, S R
f(z) x—i—ﬂ_ (x) =+ ; 3 x
The following theorem characterizes the differentiability of the Riemann function.
Theorem 13.3.1. (a) Ifr =%, r€Z, seN, (r,s) =1, then:
—if rs = 0 (mod 2), then:

(i) if r =0, then f'(0) = +o0;

(i) if r #0, 7 =0 (mod2), and s = 1 (mod 4), then f'(z) = {;} - (+00);

(i) if 7 # 0, 7 =0 (mod2), and s =3 (mod4), then 4 (z) = F{ L} (+20);
(iv) if s =0 (mod2), and r = 1 (mod 4), then £, (z) =0, £ (z) = { 2} (+o0);
(v) if s =0 (mod2), and r = 3 (mod 4), then £, (z) = {;} (+00), f(x) = 0.

—ifrs =1 (mod?2), then f'(z) =0.
(b) If z € R\ Q, then a finite derivative f'(x) does not exist.

Thus, for x = £ with r € Z, s € N, (r,s) = 1, the above result may be written in the
following tabular form.

s € 2N s €4Ng +1 s €4Ng+3
r=0 f(z) =40
: B £l (@) {—o00,+00}
T € 27, X f(x) € {—o0, +o0} £, (@28 ()

F(x)=0
re 4Z + 1 ’ *
fL(z)€{—00,+00} f/(ZC) =0

Fl(z)e{—o0,400}
redZ +3 £ (£)=0

Proof of Theorem 13.3.1. (a) Case 12z =%, r€Z,s €N, (r,s) =1, rs =0 (mod 2).
Then for h > 0, we get (cf. Lemma 13.2.2)

o0 . 2
%(f(x +h?) + f(x — h2)) =+ 2; Smgf—réx) cos(mn’h?)

= f(z) — h? Z sin(mn?z)y(nh).

n=—oo
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Let n=ks+m, keZ, me{0,...,s—1}. Then

1 2 2

S(Fa+r)+ fe—1?)

— h? i Z sin(7 (ks + m)?2)y (khs + hm)

m=0 k=—oc0

) =0 (mo s—1 [e%s)
w= re20 (mod?) f(x) —h? Z Z sin(rm?2x)yo (khs + hm)

m=0 k=—oc0

s—1
Lemma 13.2. 2 m
2 mEZO sin(rm?x (\/_—i— Ay (hs )(hs)2)

S

3

= fx) - \/55(:5)g + By (W),

where the function h — By y(h) := —s> o 081n(7rm x)As(hs, ) is bounded. Note that
| Bz +| < cs?, where c is independent of x and h > 0. Analogously,

%(f(x +h?) = fla - h2)> =2 Z M sin(rn?h?)

— 7
0 s—1 o0
=h? Z cos(mnz )by (nh) = h? Z Z cos(mm?x)yy (khs + hm)
n=—oo m=0 k=—o0

—ﬁs_l mm2x 1 Sﬂ 5)?
= sz::Ocos( )(\/§+A (h , S)(h )) V2C(z ) + By, (h)h?,

where the function h — B, _(h) := s Y% cos(mm?xz) Ay (hs, ™) is bounded, |B, _| < cs®.
Consequently,

P47 = £(x) ~V(S() F Ow) & + P (b,

where the functions h — P, 1 (h) := By 4+ (h) & B, —(h) are bounded and |P, 4| < 2¢s®.
Thus

Fi(z) = sgn(C(z) F S(z)) - (+00) € {—00,0, +00}
with 0 - £00 := 0. Using Lemma A.7.3, we get (i)—(v).
Case2%:x=1L,recZ scN,(r,s)=17s=1(mod2).

First observe that

sin(mn?x) + sin(rmn?(z + 1))
2

f()+f@+4)_2x+1+2§:

™
n=1

2 sin(7(2k)%x)

—2x+1+2§: oI

1
=1+§f(4w), xR
k=1
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Moreover, 4x = 4{ and x +1= TJSFS are as in Case 1°. Thus for h > 0, we have

flx+hr?) =1+ %f(llzr + (2h)?) — f(z + 1+ h?)
= (@)~ VA(S(4r) — S +1)F (Clx) — Cla+ 1)) % + Qus (W,

where the functions h — Qg +(h) = 2Py, +(2h) F Pyi1,4(h) are bounded. Recall (cf.

Remark A.6.2(f)) that .
-}

Hence by Lemma A.7.3; G(4x) = G(z + 1), which gives
f@x£h?) = f(z) + Qo+ (h)h?,
and therefore f'(z) = 0, and even more, namely

flx+h) = flz—h)

li =0.
hi%l+ h
(b) Since f(—x) = —f(x), we may assume that x > 0. By Proposition A.8.3, there exists
a sequence of rational numbers z,, = ;—“ such that 7,8, € N, (rp,8,) = 1, rps, =

0 (mod2), and |z — z,| < &+, n € N.
Using Case 1° with h,, = 5;3/2 and Lemma A.7.3, we get
Flan £ 5,%) = F@n) = V2(S(20) F Clan) ) 5,72 4 Po, i (5,725, /2
= f(xn) + Ti(zn)s;2 4 Us(z,)s,°/?, (13.3.1)

where |T4 (z,)] < 2 and |Uy(zy,)| < 2¢. Moreover, |T%, (x,)| > 1 in each of the following cases:

e 7, =0 (mod?2) and ¢, € {—,+};
® 5, =0 (mod2), r, =1 (mod4), and &, = —;

e 5, =0 (mod2), r, =3 (mod4), and &, = +.
For each n € N, let us fix &, as above. We will identify ¢, = — with ¢, = —1 and ¢, = +
with ¢, = +1.

Suppose that f'(z) exists and is finite. Let

flz+q) = f(@)+ f(z)g+ aq)q,

where lim,_,¢ a(q) = 0. Put ¢, := =, — x. Then (13.3.1) gives

Flz)+ f/(x>(qn + Ensr_LB) + a(gn + EHS;B)(QH + Ensr_LB)
= f(@) + £ (@)an + a(an)an + v, (x0)s52 + Us, (z) ;%2
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Hence

fl(x)gnsgl + a(qn + €n8;3)(5i% + Ensgl)
= O‘(Qn)SiQn +1Te, (vn) + U, (xn)5;1/2-

Recall that s2|q,| < 1. Letting n — +o0 gives 1%, () — 0; a contradiction. O



Appendix A

We collect here various auxiliary results that may help the reader.

A.1 Cantor Representation

Fix a sequence (q,,)22; C Na. A series of the form
>
n=1 a1 Gn

where a,, € {0,...,q, — 1}, is called a Cantor series.

Proposition A.1.1 (cf. [Can69]). (a) Every number x € I may be represented in the form
of a Cantor series

. - an ()
N n; ql qn

It is called the Cantor representation of z. In the case q, := b, n € N, the Cantor
representation reduces to the b-adic representation. Write

k
- Z an—(x)7 kecN.
oy ql .. qn
(b) If x = Sk(x) with ax(x) > 1, then x may be also represented in the form

x = Sk(x) + _1+ i

n= k—i—l qn

The above situation is the only one in which x has a double representation.
() 1=2, v
(d) Forz,’ €1, szk( ) = Sk(a'), then an(z) = an(z'), n=1,... k.
e) © < Sk(x)+ qk,kEN.
f) If Sk(z) < Sk(x’), then Si(z) +

C

( < Sk(a').

(© Springer International Publishing Switzerland 2015 265
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A.2 Harmonic and Holomorphic Functions

Let D denote the open unit disk in the complex plane C, i.e.,
D={z=a+iyecC:|z| <1},

where |2] := /22 + y2. Then O(D) is the set of all holomorphic functions on D. Put A(D) :=
C(D,C)NO(D); A(D) is called to be the disk algebra.

Proposition A.2.1. A(D) equipped with the supremum norm is a Banach space.

Proof . Use that C(ID,C) with the above norm is a Banach space and the fact (Weierstrass
theorem) that the uniform limit of a sequence of holomorphic functions is again a holomorphic
function. O

Recall that a function u € C*(D,R) is called harmonic if uy , + uy, = 0 on D, where
Ug g 1= % and uy,, = %. It is easy to see that if f € O(D), then Re f (the real part
of f) and Im f (the imaginary part of f) are harmonic functions on D). Therefore, a function
f € A(D) leads to functions Re f,Im f € C(D) N H(D), where H(ID) denotes the set of all
real-valued harmonic functions on the open unit disk.

Recall the maximum principle for harmonic functions.

Proposition A.2.2. Ifu € C(D) N H(D), then u(z) < maxru, z € D, where T := OD.
Moreover, we have the following solution of a Dirichlet problem on D.

Proposition A.2.3. If u € C(T), then there exists a unique function @ € C(D) N H(D) with

Ul = u.
Proof. Put
it T
0= {
where | | o L
Plu)(re”) = %/0 1—2rcos(t —0) +r? d0-

Then u satisfies the properties of the proposition. Details may be found in any standard book
on complex analysis. O

Moreover, every harmonic function on D is the real part of a function f € O(D). To be
more precise, we state the following result.

Proposition A.2.4. Let v € H(ID). Then there exists a unique (up to an additive constant)
v € H(D) such that u+ iv € O(D).

Proof. Put
x Y
v(z) = —/ uy(t, 0)dt +/ ug(z, t)dt, z=ux+iyeD.
0 0
Further details are left to the reader. O

The function v is called the harmonic conjugate to u.
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Example A.2.5. For later use, we will construct a function u* € Co,(R), i.e., u* is a continu-
ous function on R having period 27, and a function h,- € C(D)NH(D) with A« (e??) = u*(6),
0 € R, such that its conjugate harmonic function - is unbounded on D.

Indeed, put

Qi={z=x+iyecC:0<|z|<1,0<y<1/2°}U{z=0+1iy:0 <y}

Obviously, 2 is a simply connected domain in C, and therefore, by virtue of the Riemann
mapping theorem, there exists a biholomorphic mapping f : D — 2. Applying a general
theorem on the boundary behavior of biholomorphic mapplngs (see [Pom92], Theorem 2.1),
one concludes that f extends to a topological mapping f D — 2 c C (C denotes the
Riemann sphere endowed with the spherical distance). In particular, one finds a point a =
e € T such the function ﬂﬁ\ {a} &ives a homeomorphism from D\ {a} onto 2NC (now

with respect to the Euclidean metric on both sides). Observe that Re ﬂT\{a} extends to a

continuous function on T by putting Re f(a) = 0. Define u*(f) := Re f(e'?), € R. Then u*
is continuous on R having period 27. Solving the Dirichlet problem (see Proposition A.2.3),
there exists h,- € C( )NH (D) such that h(e?) = u*(6), 6 € R. Using the maximum principle

gives that h,« = Re f Then its conjugate harmonic function B 18 given as hy- = Im f, which
is unbounded on D.

Moreover, we recall Schwarz’s lemma: if f : D — D, f(0) = 0, then |f(z)| < |z|, z € D.
Applying this result leads to the so-called Carathéodory inequality.

Proposition A.2.6. Let f be a holomorphic function in a neighborhood of D(R), R > 0,
where D(R) :={z € C: |z| < R}. Then

Fre®)] < F(O)] + 72

T(A(R)—Ref(o)), 0<r<R, 0cR,

where A(R) := sup{Re f(w) : |w| = R}.

Proof. There is nothing is to prove if f is a constant. If f is not a constant, then we may
start with the case f(0) = 0. Put
f

TGRS

Then g is holomorphic in a neighborhood of D(R), ¢(0) A simple estimate leads to

lg(2)] <1 on D(R). Applying Schwarz’s lemma gives |g(z)| < % for z € D(R), which finally
proves the proposition. For more details see [Boal0]. a

Finally, we present a result due to L. Fejér.

Proposition A.2.7. If f € C(T) and € > 0, then there exists a complex polynomial p € C[z]
such that | Rep — fllr < e.

Proof. The proof is based on the Stone—Weierstrass theorem. Put A := C(T,C) and A’ =
C[z,z] =: the algebra of all complex-valued polynomials in z and zZ. Then A’ is a subalgebra
of A, A" is closed under complex conjugation, i.e., A’ C A’, and A’ separates points in T,
i.e., the assumptions for the Stone—Weierstrass theorem are satisfied. Hence, A’ is dense in
A. Therefore, there exists a polynomial

N N
(Z7E> = Z CLjZJ + ijfj
j=0 j=0
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with [|p — f|lr < e. Thus, |Rep — f|lr < e. Using that z = 1, 2 € T, allows one to rewrite
p and to get a complex polynomial ¢(z) = Z;V:O ¢;jz? with Req = Rep on T (EXERCISE).
Hence the proposition is proved. a

A.3 Fourier Transform

Let LP(R) denote the space of all p-integrable (with respect to the Lebesgue measure) func-
tions f : R — C with the norm || ||z (1 <p < 400).

Definition A.3.1. For f € L*(R), we define its Fourier transform f: R — C,
flr) = / f)e ™ qt, 1 eR.
R

Put X(R) := {f € C(R,C) N L®(R) N L'(R) : f € L*(R)}.
To simplify notation, set ]v‘(t) = f(—1).

Remark A.3.2. (a) £ is uniformly continuous.

(b) fe L®(R) and [|fllre < |[fllLt-

(c) The operator L}(R) > f — f € C(R,C) N L>=(R) is C-linear.

(d) Ift* f € L} (R) for some k € N, then the differentiation under the integral gives f € C*(R)
and f®) = (—2mi)ktk f. Notice that here and in the sequel, t*f denotes the function
t — tk f(t). In particular, if f € C°(R), then f € C*®(R).

(e) If f € CE(R) for some k € N, then integration by parts gives 7%f = Wf(k). In
particular, if f € C§(R) for some k € Ng, then 7*=2f € L1(R).

(f) X(R) is a complex vector space.

() C(R) C X(R).
W) f=F fel'(R).

o~
o~

v
Proposition A.3.3. (f) = f, f € X(R). In particular, the operator
X(R) 5 f+2 J € X(R)

is bijective and
v .
Flg) =7, ie, (F 9 = /’g\(T)eQ’””dT, teR, geX®).
R
We need the following two lemmas to prove Proposition A.3.3.

Lemma A.3.4. For f,g € L*(R) we have

—
~

(g Dir) = / G(u+7)f(u)du, TER.
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Proof .

-~

(;-\f)(T):/Rg(t)f(t)e_%i”dt:/Rg(t)(/Rf(u)e_%i“tdu)e_%i”dt
F”Eni/R(/Rg(t)e_Q”it(“+T)dt)f(u)du://g\(u—i—T)f(u)du. |

R

Lemma A.3.5.

—

T _ w42
e~ (1) = /—e @V, TER, a>0.
a

—

Note that e—at® is the Fourier transform of the function ¢ —s e~¢".

Proof. Let

—

F(7) = e (1) = / e“”ge_?’”‘”dt7 TeR.
R

Then F' € C*°(R) and

F'(1) = / et (—2mit)e ™47 dt

— 0o

, ; 2
2T o, | Y 7} D o 27
= T eT2miT — ™ —(=2miT)e 2" dt = — 7 F (7).
a —0 e a a
Hence )
w2
F(r)=Ce , TER,
where

C =F(0) :/ e~ dt = \/g 0

Proof of Proposition A.3.5. Let g-(t) := e=™='t" t € R, & > 0. Note that g. € L'(R) and

pointwise

ge  — 1 when ¢ — 0+. In particular, by Lebesgue’s theorem,

~

)7 = /R Fe 2t = tim [ g.(t)F(t)e~2""dt, 7€ R.

e—=0+ Jp

By Lemmas A.3.4 and A.3.5, we get

—
~

[ o070 de = (q.P)r) = [ 3¢+ s = [ 50110 - )
R R R
— /Rge_s%t ft—7)dt = /Re_”t flet—=7)dt, TeR.

Using once again Lebesgue’s theorem, we easily conclude that the last integral tends to f(—7)
when € — 0+. O
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A .4 Fresnel Function
Definition A.4.1 (cf. [OMS09]). We define the Fresnel function Fr: R — C,
Fr(z) := /w e2™dt, xR
0

Observe that Fr(—z) = —Fr(z), z € R.
Proposition A.4.2. lim, ;o Fr(z) = $(1 +1).
Proof. Consider the holomorphic function f(z) := e%?’, 2 € C. Take an R > 0 and consider

the contour I'g := [0, e!™/4R]UygU[iR, 0], where v stands for the arc [r/4,7/2] 5 0 — € R.
By Cauchy’s theorem, we have

0= sy /[078”/% F(z)dz+ A RIS /[ el

) /4 . . R .
= e""/* Fr(R) + / FeGTIR) T Rdp — i / e~ dt.
0 0

Then,
w/4 ) ) m/4 2i(Z+46) p2
’/ f(ez(%+0)R)ez(%+9)iRd9’ SR/ 5 TR gy
0 0

m/4 5 . /4 R 1 ,
_ R/ e—%R S‘n(29)d9 < R/ €_2R 9d6: _(1 _e—gR ) —% 0
0 o 0 2R

R—+oc0
and R
lim e~ 5t 2/ et = \/—5
R—+o0 0 0 2
Thus,
0= (+i) Jim Fr(R)—iz,
which implies that limpg_, o0 Fr(R) = £(1 +1). O

A.5 Poisson Summation Formula

Proposition A.5.1 (Poisson Summation Formula, cf. [Zyg02], p. 68). Let f € C(R,C)NL(R)
be such that:

(a) the series > oo f(t+k) is uniformly convergent on I,
(b) there exist 8 > 1, C' > 0 such that |T|B|f(7')| <C,7€eR,

where f stands for the Fourier transform of f (cf. § A.83). Then

Sty =Y fn).

n=—oo n=—oo
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Proof . Let g(t) := >3~ _ . f(t+k), t € L Note that g is continuous. Let ¢,, = ¢,(g) be the
nth Fourier coefficient of g, i.e.,

1
Cn ::/ g(t)e 2™ mqt, n € Z.
0

Using (a), we get

1 st 1
n = / S ft+ ket =y / flt+k)e >t
0 0

k=—o00 R
[e%e] bl
= k_z_oo/k ! Flt)e 2 it qt = /Rf(t)e—%mtdt _ f(n).

In view of (b), the function h(t) :=> 2 F(n)e2™nt ¢ € T, is well defined and continuous.

Moreover, ¢, (h) = f(n) = cy(g9), n € Z. Hence h = g. In particular, for ¢ = 0 we get the
required equality. a

A.6 Legendre, Jacobi, and Kronecker Symbols

Definition A.6.1 (Legendre, Jacobi, and Kronecker Symbols; cf. [HW79]). For n,p € Z, we
define the symbol {1} in the following four steps.

Step 1°: n € Z, p € N3, p prime.

Then the Legendre symbol {%}L is defined by the formula

0, ifpln
n
{—} = 1, if p/n and there exists an m € N: n = m? (modp) .
Pr —1, if pfn and for all m € N: n # m? (mod p)

Step 2°: n € Z, p € N3, p odd.
Ifp= p’fl - ~p’;5, where p1,...,ps € N3, p1,...,ps are distinct primes, k1, ..., ks € N, then
we define the Jacobi symbol {%}J:

I Y A e

Moreover, we put {1}, := 1. It is clear that {%}J = {%}L, provided that p is prime.

Step 3°: n € Z, p € Z,.

If p = uph' - pFs, where u € {—1,4+1}, p1,...,ps € Na, p1,...,ps are distinct primes,
ki,...,ks €N, then we define the Kronecker symbol {%}K:

I R r MR o
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where {pij}K = {pij}L for p; € N, p; odd,

n -1, ifn<0 n
{—} = . , and {
—-1Jg 1, ifn>0
It is clear that {%}K = {%}J, provided that p € N3 is odd.
Step 4°. Finally, we put
{n} )1, ifne{-1,+41}
0Jk " )0, otherwise '
In the sequel, the subindices in {%}L7 {%}J, {%}K will be skipped, and we will simply write
{71

The following remark collects some properties of the Legendre, Jacobi, and Kronecker
symbols.

0, ifn= 2 (mod2)
, ifn==1(mod8).
—1, ifn =43 (mod8y)

o |
——
=
I
—

Remark A.6.2. Assume that n,m € Z, p € N3, p is odd.

(a) (Euler’s criterion; cf. [HW79], Theorem 83) If p is prime, then {#} = n*z (mod p).

(b) {22} = {2} . {m}
Indeed, if p is prime, then we use (a). The general case follows directly from the definition
of { %}J.

(c) {3} =0iff n and p are not relatively prime.
This follows directly from the definitions of {%}L and {%}J.

(d) If n=m (modp), then {2} = {7}.
Indeed, if p is prime, then we use (a). In the general case, if n = m (modp), then
n =m (modp;). Hence {;*} = {7}, i=1,...,s, and we have only to use the definition

of{%}J.
_ p—1 1, ifp=1(mod4)
() {FH=(-1)7 = e :
-1, if p=3(mod4)
Indeed, if p is prime, then we use (a). To get the general case, we have only to observe
that if p,¢ € N3 are odd, then 241 = -1 + 421 (mod?2). In fact, a — 1 = 0 (mod 2),
b—1=0 (mod2). Hence ab—a —b+1= (a—1)(b—1) =0 (mod4). Thus ab -1 =
(a—1)+ (b—1) (mod4).
{3}, ifp=1(mod4)
—{2}, if p=3(mod4)

In particular, by (b), {=2} = (—1)"% {2} = {

(f) If r € Z, s € N are relatively prime and rs = 1 (mod 2), then

grts r+s r4s
G =50 O =)
(g) f s€Z,r €N, then { =} = _iéi ij;g

This follows directly from the definition of {-:} .
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A.7 Gaussian Sums

Definition A.7.1 (cf. [BE81]). For n € Z, p € N with (n,p) = 1, we define the Gaussian

sum
p—1

G(n,p) := Z emim*n/p,

m=0
Remark A.7.2 (cf. [BE81]). (a) G(0,p) =p.
(b) G(2n,p) ={3}G(2,p).

(©) Gp) = VP Tp=1(modd)
’ iy/p, if p=3 (mod4)
(d) (Schaar identity) If n,p € N, (n,p) = 1, and n, p are of opposite parity, then

G(nv p) = eiﬂ-/4 \/gG(_p7 Tl)

Lemma A.7.3. Letx =%, r € Z, s€N, (r,5) =1,

=: C(z) +iS(x)
Then
(a) if r =0 (mod?2), s =1 (mod4), then G(z) = {%}\/5,
(b) if r =0 (mod2), s =3 (mod4), then G(x) = {%}\/52,
(¢) if s=0(mod2), r=1 (mod4), then G(z) = {%}\/g(l +1);
(d) if s =0 (mod 2), r =3 (mod4), then G(z) = {%}\/g(l —1i);
)

if rs = 0 (mod 2), then |G(z)| = /s.
Proof. (a, b) Using Remark A.7.2, we have
1

=600 = (e = (s [12 ot

(c, d) If r > 0, then using (a, b) and Remarks A.6.2, A.7.2, we get
G(z) = G(r,s) = e”/4\/§G(—s,T)
T

_1+id /s —1s 1, ifr=1(mod4)
V2 7"{ r }\/F{z, if r =3 (mod4)
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1 .
L [s(38y (=111, ifr=1(mod4)
= 1—|— 212" - ’
(1+1) 2{r}{ r }{z, if r =3 (mod4)
_\/g{ﬁ} 144, ifr=1(mod4)
V2l 1—i, ifr=3(mod4)
If r < 0, then using (a, b) and Remarks A.6.2, A.7.2, we get

G(z) = G(r,s) = G(—(-r),s) = e/t iG(s7 —r)

—r

1 S{i} 1, if —r=1(mod4)

V2Vl i, if —r =3 (mod4)
%S} 1, ifr =3 (mod4)
i, ifr=1 (mod4)

1
5_‘9}
r

(e) is obvious. O

1+1d, ifr=3(mod4)
1—i, ifr=1(mod4)

A.8 Farey Fractions

Definition A.8.1 (cf. [HW79]). We say that ¢ is a Farey fraction of order nif 0 < a <b < n,
b > 0, and (a,b) = 1. The Farey fractions of order n form an increasing sequence, e.g., for

n = 5, we have
01112132341

REIPIEIEIE AR I A
Remark A.8.2 (cf. [HW79], Theorems 28-31, 36). (a) If ¢, g—: are two successive Farey
fractions of order n, then a'b — ab’ = 1.
a+a'

” ’ . . ”
(b) If ¢, %7, % are three successive Farey fractions of order n, then %7 = il

)

(c) If ¢, ‘g—: are two successive Farey fractions of order n, then b+ V' > n.

(d) If ¢, ‘g—: are two successive Farey fractions of order n > 2, then b # ¥'.

e) For every x € R\ Q and n € Ny, there exists an irreducible fraction £ with 0 < s < n
S

such that [z — Z| < s(n+1)

Proposition A.8.3. For every x € R\ Q, we have

< i. (A.8.1)

2
Sn

vnEN Hrneﬂ snEN - (Tnasn) = 17 TnSn = 0 (mOd 2)7 ’{,E - r_n
Sn

Note that such an approximation without the condition r, s, = 0 (mod2), n € N, follows
directly from Remark A.8.2(e).

Proof . First observe that if x satisfies (A.8.1), then so does —x. Moreover, if x satisfies (A.8.1),
then x + 2k also satisfies (A.8.1) (k € Z). Consequently, we may assume that 0 < = < 1.
Suppose that for some n € Na, we have § < z < 77, where ¢, 77 are successive Farey fractions
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of order n. We know (cf. the proof of Theorem 36 in [HW79]) that either * :=
satisfies the condition |z — Z| < %. We also know that a’b—ab’ = 1 (Remark A.8.2(
there are the following three possibilities.

S
o

@ |3

T
a)). Thus,

(1) ab = 0 (mod2) and a'd’ = 0 (mod 2): Then we continue with Farey fractions of order
n+ 1.
(2) ab=1 (mod2) and a'b’ = 0 (mod 2): Consider the intervals

ag aj,

- Gesr

I, - (ka—i—a’ (k—l)a—i—a’)

Kb (k—1b+ b ), keN

Observe that:

° % = ‘g—: and ‘;—]’: \ 7. Hence there exists a k € N such that ‘;—’; <z< %

e aibr =0 (mod2) and a)bj, = 0 (mod 2).

e (ag,by) =1 = (aj,by). Thus &, % are Farey fractions of order kb 4+ b’ > n (cf. Re-
mark A.8.2(c)).

’
e aj.by — apb}, = 1, and hence 7= 7+ are successive Farey fractions.
d k

Consequently, we are in the situation of (1) (with new n = kb+ ), and we may continue.

(3) ab=0 (mod?2) and a’d’ = 1 (mod 2): Then we use the intervals I}, := (%, %),
k € N—EXERCISE.

A.9 Normal Numbers

Definition A.9.1. (a) We say that a number z € [ is a dyadic rational (z € D) if z = 5
with m € N, k € Ny, k < 2™ (note that © is countable).

(b) For a number z =Y -, E’Cz(,f) €@ =1\, where gi(x) € {0,1}, let

if the limit exists. We say that « € @' is normal if dy(z) = 1.

The following proposition shows that almost all numbers are normal.

Proposition A.9.2 (Borel Theorem). The set of all normal numbers is a full-measure set.

Proof . (Cf. [Kach9]) For z = > "2 | E’;(,f) €D, let

D, (z) = X1(z) + -+ Xn(x),

where Xy (z) := 1 —2e(z) = (—1)%®) € {—1,1}. Obviously, D, (z) = n — 2I,,(z) = O, (z) —
I, (x), where I,(z) = e1(x) + - - + en(z) and O, (x) := n — I, (x) stands for the number of 1’s
and 0’s, respectively. Observe that x is normal iff lim, | %Dn(x) = 0. Note that each of
the functions ¢ : ® — {0, 1} is piecewise constant, and therefore Borel measurable. First,
we prove that
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Indeed, let T :=

o X, (t+T)=
o X, t+1T)
Thus

A Appendix

/ Xo(t)--- X, ()dt =0, 51 <---<s5p, pENa. (A9.1)

7. Observe that for t € (0,1 —7)ND’, we have:
XSl (t)v

:Xs]‘(t)7j:27"'7p

1 2T (3+1)
/Xsl(t)---Xsp(t)dt: Z/ Xo, (t) -+ X, (t)dt
0 2

i S
2T

<.

=0

‘H

N
IS

J

0

j=0 J2iT

2;+1)T 2(j+1)T
( / Xy (1) X, (£)dt + / X (1) X, (1))
2

JT (2j+1)T

(27+1)
/ (Xsl(t) e X, () + X (04T - X, (t+ T))dt =0.
25T

Using (A.9.1), we easily get

/Ol(Dn(t))‘*dt =n+ (Z) ;—;'

Hence
Z / ) it < +oo.
Consequently,
Z (ﬁDn(t)) < 400 for almost all ¢.
In particular, limy,—, 1 o %Dn(x) = 0 for almost all z. O

Proposition A.9.3. The set

is of measure zero.

{x € @' : sup D,,(z) < 40 or inf D, (z) > —c}
neN neN

Proof. Observe that D, (1 — x) = —D,(x), x € ®’. Thus, it suffices to show that the set
Z ={zx e

k= {x e D
(k,£) € Z x N, the set Zy ¢ := {x € D" : sup,en Dn(x) = Dy(x) = k} is of measure zero. We

have Zk’g = U

c€Clye

s sup, ey Dn(x) < 400} is of measure zero. Obviously, Z = J,c;, Zr, where
: sup,eny Dn(z) = k}. Hence, we have only to prove that for arbitrary

Zk,g,c, where

Zipe ={x €D :sup Dy(x) = De(x) =k, Xj(x) =c¢j, j=1,...,£},

neN

Ck,g = {CZ (Cl,...7Cg) S {—1,1}£ :

Citde =k et <k j=1,..., 0}
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We have to prove that each set Zj ¢ . is of measure zero. Fix k, ¢, c. Let

£
1—¢j
j=1

j=

@ is an affine isomorphism. We have
D(Zkoe) CQ:={z €D :Dy(x) <0, ne N}

Thus it suffices to prove that @ is of measure zero. Observe that @ = ﬂzozl Qp, where
Qp={ze€® :D,(x) <0, n=1,...,2p}. We have

Qp = U [xc,xc ;p)ﬁ@’

ceCy
where z. := Z?i L ;J_—ff and
Cpi={c=(c1, - -,cop) E{-1, 1} ¢y +--+¢; <0, j=1,...,2p}.
Our aim is to show that £(Q,) — 0. Obviously, £(Q,) < 2%,,#0,0. First, we will show that
#Cp = (). Fix a p € N and let
By :={c=(c1,...,cop) € {11} : #{j € {1,...,2p} : ¢; = 1} = d}.

Since #C)p, + ZZZO (Ba \ Cp) = 227, it suffices to prove that

i #(Bq\ C,) = 2% — <2p)'

d=0 p
Obviously, #(Bq \ Cp) = (*) for d < p, since B4 N C, = @. Clearly, (B2p \ Cp) = 0, since
By, C C,. Tt suffices to show that #(B4\Cp) = (d+1) for p < d < 2p (then 327 0 #(Ba\Cp) =
e (4) + X5 () =27 = (7))

Fixad € {p,...,2p—1}. To prove that #(B4\C)) = (d+1) we will apply André’s reflection
method [And87]:
For c € By \ Cp, let

ple) :=min{j € {1,...,2p} 1 c1 + - +¢; = —1}.

Define «(c) := (—c1,.-., =Cu(c)s Cu(e) 41>+ -, C2p). Then ¢ : By \ C, — Bgy1 is bijective
(EXERCISE), which immediately gives the required result.

Finally, using Stirling’s formula, we get

w1
V(DI Jap

(Qp> ~ T



Appendix B
List of Symbols

B.1 General Symbols

N := the set of natural numbers, 0 ¢ N;
Ny := NU{0};

Ny :={neN:n>k}

Z := the ring of integers;

@ := the field of rational numbers;

R := the field of real numbers;

-1, ifxz<0
sgn: R — {—1,0,+1}, sgn(z) := 0, ifxz=0;
1, ifz>0

I:=[0,1] CR;

Ay ={z€A:2>0},Asp:={x e Ad:2>0} (ACR), eg. Ry, Rog;
[t] :=sup{k € Z : k <t} = the least-integer part of ¢ € R;
R:=RU{~00,+};

C := the field of complex numbers;

Rez := x = the real part of z =2 4+ iy € C (z,y € R);

Im z := y = the imaginary part of z =z + iy € C (z,y € R);

Z := x — iy = the conjugate of z =z + iy € C (z,y € R);

|z| == /22 + 92 = the modulus of z = x + iy € C (x,y € R);

D:={z € C:|z| <1} = the unit disk;

T := 0D

D(zp,r) :={2€ C: |z — 20| <71} = 20 + rD = the disk centered at zo € C with radius r > 0;
A, = A\ {0}, eg., Cy;

C := CU {c0} = the Riemann sphere;

argz := {p € R: z = |z[e’¥} = the argument of z € C (arg0 = R);

#A := the number of elements of A;

diam A := the diameter of the set A C C™ with respect to the Euclidean distance;
A CC X <= A is relatively compact in X;

[flla:=sup{[f(a)]:a € A}, f: A—C;

id: X — X, id(z) :=2, z € X;

fr k% f <= fr — f locally uniformly;

fr k:> f <= fr — f uniformly;
—o0
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B List of Symbols

supp f := {z : f(z) # 0} = the support of f;

C*(X,Y) := the space of all C*-mappings f: X — Y
CF(X) :=CF(X,R);

CH(X) := {f € C*(X) :supp f CC X};

L := the Lebesgue measure in R.

B.2 Symbols in Individual Chapters

Chapter 2

Ap(t,u) = % .......................................................
( ) derivative ............................................................
@l (t), ¢ ( ) one sided (unilateral) derivatives ............. ... ... il

D+<p(t) Tio(t) right Dini derivatives ... ... ...t

—p(t), D™ @(t) left Dini derivatives .. ... ....oouituun et

D(I):={peC(,C): foralltel, a finite derivative

@' (1) does MOt EXISE} « vt
ND>(I):={p e C(I): forall t € I, afinite or infinite derivative

@' (t) does MOt EXIST} « v
ND_(I):={p € C(I,C): forall t € I, there is neither a finite

right nor a finite left derivative at t} ........ ... .. .
NDX(I):=B(I)={peC(I): forallt €I, finite or infinite

one-sided derivatives ¢/, (t), ¢’ (t) do not exist}

= the set of Besicovitch functions ......... ... ... ... o i il
M(I) i= { € C(I) : Yy + max{[D* ()], Dy ()]} = max{|D~(t)],

|D_p(t)|} = +o0} = the set of Morse functions ...........................
BM(I) := B(I) N M(I) = the set of Besicovitch—-Morse functions ................
H*(I;t) = the space of all continuous functions that are a-Holder continuous at ¢ . .
H*(I) = the space of all a-Hélder continuous functions . ........................
NH*(I) = the set of all continuous functions that are nowhere a-Holder continuous

Chapter 3

Chapter 5

K = the Kiesswetter function . ............ . .. . . . . i
F, = the Okamoto function . ........... ... .. i
S = the Sierpinski function .............. .. i
P = the Petr function .. ... ... .
U = the Wunderlich-Bush-Wen function ................ ... ... .. ... .. ......

10
11
11

12

12

12

12

12
12
16
16
17
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Wi =the Wen function ......... ... .. . . . . . 91
S1 = the Singh function ....... ... . 93
So = the Singh function ...... ... . . 94
S3 = the Singh function ...... ... .. 96
Chapter 6
&, ¥ = the Schoenberg functions........ ... .. . 99
Ws = the Wen function . ....... ... e 102
Chapter 7
Blg,r)={h e (@ :|[h—gllt < T} o 109
zrs = “zigzag” function ....... ... L 109
Agg(x, h) = W = symmetric differential quotient .................... 112
Chapter 8
F b0 « o o e et 157
Fg = F@,p,abe ............................................................ 158
F im Fp a b oo oo 158
W a,b,0 o oot e e 159
F b oo oo 160
Clab, Sab - oot 160
7 N 20 7 161
HB@O(t,U) oot 161
Ef(e):={seR:f(x+s)—f(@)>els|™} o 171
E-(e):={seR:flx+s)— flx) < —cls|Y} oiiiiii 171
Eye):={seR:|f(x+s)— fx)] Zels|®} oo 171
EEf(e,n) = EF(e) N[0,m] <o 171
EFf(e,—n) = EF(e) N [=1,0] oo 171
Er(e,n) = Eg(e) N[0,0] v 171
Ei(e,—n) = Ep(e) N [=1,0] oo 171
Chapter 9
On:i=n—1,, Dy =0 — Ly oo e e 192
En(x) == (ant1 — an) =108 (Ant1 —an) — (@n —20) oo 192
dl ({,C)7 do(x) ............................................................... 194
Xn (), X (@ A R) o 194
ko = ko(l) e 194
Chapter 11
BV et 209
M = Morse’s Besicovitch function ......... .. 217
¢ = the generalized Cantor set. .. ... ... i 220
S4 = Singh’s Besicovitch function ........ ... . 225
7510 2 235
Chapter 13
R = the Riemann function .. ...... .. .. 257
Chapter A

O(D) = the space of all holomorphic functions on the unit disk D ................ 266
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H (D) = the space of all harmonic functionson D....... ... . ... ... ... 266
f = the Fourier transform of f € LUR) o 268
X(R) :={f €CR,C)NL®R)NLYR) : FELYR)} ..o, 268
T 268
Fr = the Fresnel function ............ .. ... ... . . 270
}%{L, {%}J, {%}K = the Legendre, Jacobi, and Kronecker symbols................ 2?1

P 272



Appendix C
List of Problems

3.1. Find exact values of ac(b) and aeg(h) . ... i 27
3.2. Decide whether W, 15,9 € NDL(R) forallb>1and @ .................... 35
5.1. Create new examples of nowhere differentiable functions based on ideas of Chap-

1173 S 97
8.1.Is it true that if (p € 2Ng + 1 and b > p) or (p € 2N and b > %), then

VV;,}a,b’g S N'Di(R)? ................................................... 133
8.2. Characterize the set of all p,a, b, 8 such that W, ;b9 € ND>®(R)............. 133
8.3. Try to complete the results from §8.8. ... .. ... .. .. . i 186
9.1. Decide whether T /9 € NDL(R) for 1 <b<10........... .. ........... 187
10.1. Decide whether Bolzano-type functions from Sect. 5.3 have properties similar

to the classical Bolzano function (Theorem 10.1.1) ......... ... ... ... 204
13.1. Decide whether an infinite derivative R'(z) exists for 2 ¢ Q ................ 257

13.2. Decide whether finite or infinite one-sided derivatives R/, () exist for z ¢ Q .. 257

(© Springer International Publishing Switzerland 2015 283
M. Jarnicki, P. Pflug, Continuous Nowhere Differentiable Functions, Springer
Monographs in Mathematics, DOI 10.1007/978-3-319-12670-8



List of Figures

3.1 Weierstrass-type function I 3 . —— Wi g91.20(2) ..ol
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3.3 Weierstrass—type functions VVLO_571707 m}o_5}270, ‘)‘/170,573}0, ‘4/170,574}0 .........

4.1 Takagi function I3 x+—— T(x). . ...
4.2 Takagi-—van der Waerden type function I 5 . —— Tp91.20(z). .. ..o oni..

5.1 The function L for N =4, o1 = % g = %, Y3 = %, P = %, Py = %, Pz = %

P=1(0,0), Q=1(1,1) oot
5.2 The first six steps of the construction of the classical Bolzano function B'. ...
5.3 The first four steps of the construction of the Hahn function ...............
5.4 The first six steps of the construction of the Kiesswetter function K ........
5.5 The first six steps of the construction of the Okamoto function with o =2/3 ..
5.6 Okamoto functions with o = ag & 0.5592,7/12,2/3,5/6, respectively........

6.1 Schoenberg function T3 z+— 53°0° ( Lp(32na) ...
6.2 Wen function I 3 z — H (14 ay, sin(mbyz)) with ay, := 2", by, = \/En(m'l)
n=1
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