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Preface

As its title indicates, this book aims to be a comprehensive, self-contained compendium
of results on continuous nowhere differentiable functions, collecting many results hitherto
accessible only in the scattered literature.

Motivation for Writing This Book

Why did the authors, both specialists in several complex variables, decide to write a book on
continuous nowhere differentiable functions? Let us try to answer this question:

(a) Whenever we would give a lecture on real analysis, we felt unsatisfied, since there was
almost no time to discuss continuous nowhere differentiable functions in detail. Therefore,
we could only mention the existence of such functions in most of our lectures. Moreover,
whenever we wanted to deal with such functions in a proseminar, it was difficult to find
a source book. Some information could be found in a master’s thesis by J. Thim (see
[Thi03]), which presented a more detailed description of these functions. Later, during
the writing of this book, we found another survey article by A.N. Singh (see [Sin35]).
With few sources available, we thought that a modern and complete description of how
these functions appeared would be of great use, both for students and for colleagues
creating their lectures and preparing proseminars.

(b) Looking back to the middle of the nineteenth century, we see that that was an important
time in the history of mathematics, when many arguments turned from being based more
or less on heuristics into being grounded in precise definitions and proofs. We are still
experiencing the consequences of this birth of mathematical precision. It is interesting
to see how the methods used to discuss continuous nowhere differentiable functions has
changed over time and to observe that there are still problems that have not been solved.

We hope that the reader will accept our motivation and that our book can be used for
learning some very nice mathematics or for preparing proseminars or lectures on analysis.

v
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Remarks for the Reader

To make a big part of the material accessible even to high-school graduates, we ordered the
content into four main parts:

• Part I: Classical results.
In this part are collected all results from the middle of the nineteenth century up to about
1950. The proofs are based on complicated arguments, but to understand them requires
only some basic facts from analysis.

• Part II: Topological methods.
This part is based on standard techniques from functional analysis that are certainly taught
in any beginning course.

• Part III: Modern approach.
This part requires some more highly developed ideas from analysis, such as measure theory
and Fourier transforms.

• Part IV: The Riemann function.
This part is in some sense unusual. On the one hand, it does not directly follow the theme of
the book, since the Riemann function discussed here does not belong to the class of nowhere
differentiable functions. On the other hand, it is more difficult and requires knowledge from
several different fields of mathematics. To help the reader, we have placed such information
in an appendix.

Nevertheless, we are convinced that at least 10% of the book may be understood by high-
school graduates, 40% by students of mathematics who have completed a first analysis course,
and the remainder by master’s-level students.

We did not include any exercises, as they can be found in many textbooks. But the reader
will find the word Exercise at different places in the text. It is at such points that the reader
is asked to stop reading and to extend our arguments into greater detail.

Moreover, whenever some function is discussed in the book, the reader is asked to continue
its study. For example, if f is claimed to be nowhere differentiable on the interval [0, 1] and
nothing, even later in the text, is said about infinite derivatives, then the reader should try
to discuss this question on his own. In any case, any additional information in such directions
that we have found in the literature has been added to the text.

Each chapter begins with a brief summary of its content. Moreover, the reader will find

open problems in some chapters. They are indicated by the sign ? . . . ? . All these problems
are collected at the end of the book, see List of Problems section in Appendix C. The reader
is asked to work on these questions, although they do not seem to be simple to solve. For
notation that may appear in the text without explanation, the reader is asked to consult
Sect. B.1.

We wish to thank all our colleagues who told us about gaps in this book during its writing.
In particular, we thank Dr. P. Zapa�lowski for all the corrections he made. It would not
have been possible to reach the current level of presentation without his precise and detailed
observations. Nevertheless, according to our experiences with our former books, we are sure
that many errors have remained, and we are responsible for not detecting them.

We will be pleased if readers inform us about any observations they may have while study-
ing the text. Please use the following e-mail addresses:

• Marek.Jarnicki@im.uj.edu.pl

• Peter.Pflug@uni-oldenburg.de
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Chapter 1

Introduction: A Historical Journey

Isaac Newton (1643–1727) first developed calculus having been inspired by the physical world:
the orbit of a planet, the swing of a pendulum, perhaps even, as legend has it, the motion
of falling fruit. His thinking led to a geometric intuition about mathematical structures.
They should make sense in the same way that a physical object would. As a result, many
mathematicians concentrated on “continuous” functions. Conceptually, these are the functions
that can be drawn without taking pen away from paper. There will be no gaps or sudden
jumps.

A first “definition” of a function was given by Leonhard Euler (1707–1783) in [Eul48],
page 4: “A function of a real variable is an analytic expression that is built from the variable,
numbers, and constants.”1 Functions in that sense are automatically everywhere continuous
(in the modern sense) up to possibly a discrete set of discontinuities.

Nevertheless, the notion of a function remained a vague one for a long time. It seems that in
1873, Lejeune Dirichlet (1805–1859) became the first to give a precise definition (see [DS00],
§1): “Fix two values a and b. Then x may be thought as a quantity that may take all values
between a and b. Assume that to every x a value y = f(x) is associated such that if x runs
continuously through the interval from a to b, then y = f(x) changes also in a continuous
way. Then y is called a continuous function of x on the interval. It is not necessary that y be
built according to one law for each x; even more, there is no need to think of this relation in
the form of a mathematical operation.”2

Even more, Dirichlet pointed out that his definition does not require a common rule regard-
ing how such a function should be built. It is allowed that the function may be constructed
from different pieces or even more, it may be given without a common rule for its pieces.3

Note that Dirichlet defines a “continuous function,” but it is clear how the term function
has to be understood out of his definition. It is important and new that a function is no

1 “Functio quantitatis variabilis est expressio analytica quomodocunque composita ex illa quantita variabili
et numeris seu quantitatibus constantibus.”
2 “Man denke sich unter a und b zwei feste Werthe und unter x eine veränderliche Grösse, welche nach und
nach alle zwischen a und b liegenden Werthe annehmen soll. Entspricht nun jedem x ein einziges endliches y
und zwar so, dass, während x das Intervall von a bis b stetig durchläuft, y = f(x) sich ebenfalls allmählich
verändert, so heisst y eine stetige oder continuirliche Function von x für dieses Intervall. Es ist dabei gar nicht
nöthig, dass y in diesem ganzen Intervalle nach demselben Gesetze von x abhängig sei, ja man braucht nicht
einmal an eine durch mathematische Operationen ausdrückbare Abhängigkeit zu denken.”
3 “Diese Definition schreibt den einzelnen Theilen der Curve kein gemeinsames Gesetz vor; man kann sich

dieselbe aus den verschiedenartigsten Theilen zusammengesetzt oder ganz gesetzlos gezeichnet denken.” See
[DS00], § 153.
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longer something that is given by a closed analytic expression. It is the above definition that
is familiar to today’s mathematicians: to any point x of a certain set X one and only one
value f(x) is given, and the whole association is called the function f .

Nevertheless, the experiences at that time made people believe that for every continuous
curve, it was possible to find the slope at all but a finite number of points. This seemed to
match intuition: a line might have a few jagged bits, but there would always be a few sections
that were “smooth.” The French physicist and mathematician André-Marie Ampère (1775–
1836) even published a proof of this claim (see [Amp06]). His argument was built on the
“intuitively evident” fact that a continuous curve must have sections that increase, decrease,
or remain flat. This meant that it must be possible to calculate the slope in those regions.
Ampère did not think about what happened when the sections became infinitely small, but he
claimed that he did not need to. His approach was general enough to avoid having to consider
things that were “infiniment petits.” Most mathematicians were happy with his reasoning.
By the middle of the nineteenth century, almost every calculus textbook quoted Ampère’s
proof.

But during the 1860s, rumors began circulating about a strange function that contradicted
Ampère’s theorem. In Germany, the great Bernhard Riemann (1826–1866) told his students
that he knew of a continuous function that had no smooth sections, and for which it was
impossible to calculate the derivative of the function at any point. Riemann did not publish
a proof, and neither did Charles Cellérier (1818–1889), at the University of Geneva, who—
despite writing that he had discovered something “very important and I think new”—stuffed
the work into a folder that would become public only after his death decades later (see [Cel90]).
Over the years, it was found that the function Riemann proposed does not fulfill the property
of being nowhere differentiable. Although his function is, in fact, somewhere differentiable,
we decided to put an extensive discussion of this function into our book, showing the current
state of knowledge (see Chap. 13).

Such a monster of a function was finally publicly accessible in 1872, when Karl Weierstrass
(1815–1897) announced in a lecture in front of the Königliche Akademie der Wissenschaften,
Berlin, that he had found a function that was continuous everywhere and yet not smooth
at any point. He had constructed it by adding together an infinitely long sequence of cosine
functions. To be more precise, it is given by the following formula:

f(x) =

∞∑

n=1

an cos(bnπx), x ∈ R,

where a ∈ (0, 1), b is an odd integer, and ab > 1 + 3
2π.

As a function, it was ugly and awkward. It was not even clear what it would look like
when plotted on a graph. But that did not matter to Weierstrass. His proof consisted of
equations rather than shapes, and that is what made his announcement so powerful. Not only
has he created a monster, he has built it from concrete logic. He had taken his new, rigorous
definition of a derivative and shown that it was impossible to calculate one anywhere for this
new function.

The lecture by Weierstrass was not immediately published, but it seems that his example
reached many mathematicians at that time. Thus Paul du Bois-Reymond (1831–1889) wrote
to Weierstrass asking for details. After Weierstrass had sent him his notes, Bois-Reymond
published the example (see [BR74]). Bois-Reymond added the following comment, showing
the influence that this example had had on him: “There is not only no implication between
continuity and differentiability at one point, but it is an exciting result that there exists a
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continuous function in an interval having no differential quotient at any point of it.”4 This is
the first example of a continuous nowhere differentiable function published in a mathematical
journal.

After the Weierstrass lecture and before its publication by Bois-Reymond, Gaston Darboux
(1842–1917) also observed another similar monster. He showed that the function

f(x) =

∞∑

n=1

sin((n + 1)!x)

n!
, x ∈ R,

is continuous but nowhere differentiable (see [Dar75, Dar79]). His proof in the first cited paper
is very sketchy, while the second paper contains more details of the proof. It is interesting
to observe that in his preface to the first paper, he mentioned names like Riemann, Hankel,
Schwarz, and Klein, but omitted to cite Weierstrass. This was also the case in the second
paper, even though Weierstrass had protested in a letter to Bois-Reymond, claiming that the
first examples were due to him (see [Wei23], page 211).

Also Ulisse Dini (1845–1918) published in 1877 a paper (see [Din77]) in which he presented
another example, namely

F (x) =
∞∑

n=1

an

1 · 3 · 5 · · · (2n− 1)
cos(1 · 3 · 5 · · · (2n− 1)x), x ∈ R,

which is continuous but nowhere differentiable if a > 1 + 3
2π. He referred to the example of

Weierstrass, but his aim was to find other such strange functions.
This result5 threw the mathematics community into a state of shock. The French mathe-

matician Émile Picard (1856–1941) pointed out that if Newton had known about such func-
tions, he would have never created calculus. Rather than harnessing ideas about the physics
of nature, he would have been stuck trying to clamber over rigid mathematical obstacles. The
monster also began to trample over previous research. Results that had been “proven” began
to buckle. Ampère had used the vague definitions favored by Cauchy to prove his smoothness
theorem. Now his arguments began to collapse. The vague notions of the past were hopeless
against the monster. Worse, it was no longer clear what constituted a mathematical proof.
The intuitive geometry-based arguments of the previous two centuries seemed to be of little
use. If mathematics tried to wave the monster away, it would stand firm. With one bizarre
equation, Weierstrass had demonstrated that physical intuition was not a reliable foundation
on which to build mathematical theories. So this new mathematics (arithmetic analysis) led
to a breaking away from trusting one’s intuition, geometric or otherwise.

Established mathematicians tried to brush the result aside, arguing that it was awkward
and unnecessary. They feared that pedants and troublemakers were hijacking their beloved
subject. At the Sorbonne, Charles Hermite (1822–1901) wrote to Stieltjes (see [BB05], page
318): “I turn with terror and horror from this lamentable scourge of functions with no deriva-
tives.”6 Henri Poincaré (1854–1912)—who was the first to call such functions monsters—

4 “Mit der Existenz eines Differentialquotienten hat die Bedingung der Stetigkeit nicht allein für einen einzel-
nen Punkt nichts zu schaffen, sondern es ist eines der ergreifendsten Ergebnisse der neueren Mathematik, dass
eine Funktion in allen Punkten eines Intervalles stetig sein kann, ohne für einen Punkt dieses Intervalles einen
bestimmten Differentialquotienten zu ergeben.”
5 The present paragraph and others as well are taken from the lovely article [Kuc14], sometimes word for
word (see also [Vol1987, Vol1989]).
6 “Je me détourne avec effroi et horreur de cette plaie lamentable des fonctions continues qui n’ont point de
dérivées.”
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denounced Weierstrass’s work as “an outrage against common sense.” He claimed that the
functions were an arrogant distraction, and of little use to the subject. “They are invented
on purpose to show that our ancestors’ reasoning was at fault,” he said, “and we shall never
get anything more out of them.” See [Poi99], page 159.

Many of the old guard wanted to leave Weierstrass’s monster in the wilderness of math-
ematics. It did not help that nobody could visualize the shape of this strange function they
were dealing with—only with the advent of computers did it become possible to plot it. Its
hidden form made it hard for the mathematics community to grasp how such a function could
exist. Weierstrass’s style of proof was also unfamiliar to many mathematicians. His argument
involved dozens of logical steps and ran to several pages. The trail of ideas was subtle and
technically demanding, with no real-life analogies to guide the way. The general instinct was
to avoid it.

But with the dawn of the twentieth century, situation changed. Even physicists began
to discuss strange curves like the Ludwig Boltzmann (1844–1906) nonrectifiable H-curve,
which was used to describe the movement of particles in statistical mechanics. In fact, much
later, Norbert Wiener (1894–1964) was able to prove that the trajectory of a particle, in
view of Brownian motion, is not rectifiable. The twentieth century has forced upon us the
inadequacy of so-called ordinary curves to represent the facts of nature. Let us quote the
French physicist Jean Baptiste Perrin (1870–1942), who helped to prove that atoms and
molecules exist, an achievement that earned him the 1926 Nobel Prize in physics. In his 1913
book Les atomes, about the motion of atoms (see the English translation [Per16]), he writes
in the introduction: “I wish to offer a few remarks designed to give objective justification for
certain logical exigencies of the mathematicians. It is well known that before giving accurate
definitions we show beginners that they already possess the idea of continuity. We draw a
well-defined curve and say to them, holding a ruler against the curve, ‘You see that there is
a tangent at every point.’ Or again, in order to impart the more abstract notion of the true
velocity of a moving object at a point in its trajectory, we say, ‘You see, of course, that the
mean velocity between two neighbouring points on this trajectory does not vary appreciably
as these points approach infinitely near to each other.’ And many minds, perceiving that
for certain familiar motions this appears true enough, do not see that there are considerable
difficulties in this view. To mathematicians, however, the lack of rigour in these so-called
geometrical considerations is quite apparent, and they are well aware of this childishness
of trying to show, by drawing curves, for instance, that every continuous function has a
derivative. Though derived functions are the simplest and the easiest to deal with, they are
nevertheless exceptional; to use geometrical language, curves that have no tangents are the
rule, and regular curves, such as the circle, are interesting though quite special cases. At first
side the consideration of such cases seems merely an intellectual exercise, certainly ingenious
but artificial and sterile in application, the desire for absolute accuracy carried to a ridiculous
pitch. And often those who hear of curves without tangents, or underived functions, think at
first that Nature presents no such complications, nor even offers any suggestion of them. The
contrary, however is true, and the logic of mathematicians has kept them nearer to reality
than the practical representations employed by physicists.”

Or consider Grace Chisholm Young’s (1868–1944) apologia (see [You16a], §18) of contin-
uous nowhere differentiable functions, in which she says, “We of the twentieth century are
bound to recognise it in its full importance. These curves (i.e. such without tangents) afford us
a means of rendering more veracious the representation of the physical universe by the realm
of Mathematics.” So the last resistance to this kind of new function gradually disappeared.

In addition to Cellérier, another mathematician, Bernard Bolzano (1781–1841), found
a function continuous but not differentiable at many points. This function is contained
in Bolzano’s book Functionenlehre, written around 1834, but published only in 1930.
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The function itself remained unpublished until 1921, when it was discovered by the young
Czech mathematician M. Jasek, who was asked by the Bohemian Academy of Sciences to go
through Bolzano’s manuscripts. Bolzano’s function is the limit of a sequence of effectively
given piecewise linear functions. Bolzano himself comments thus on his function: “The func-
tion Fx considered in I, §75, changes its increasing and decreasing behavior so many times
that for no value of x does there exist a small enough w so that it is possible to believe that
Fx is continuously increasing or continuously decreasing between x and x±w. This function
gives us a proof that even a continuous function can have no derivative for so many values of
the variable that between each two such points there is a third one for which there is also no
derivative to be found.”7

A precise proof that his function is continuous and even nowhere differentiable was given
by Karel Rychlik (1855–1968) in 1922 (see his comment in [Ryc23]) and by Vojtěch Jarńık
(1897–1970) (see [Jar22]). Because of its late publication, this kind of function did not have
as great an influence on the early discussions about continuous but nowhere differentiable
functions as did the example of Weierstrass.

A number of papers dealing with new examples of continuous nowhere differentiable func-
tions appeared. In fact, in the bibliography of Emde-Boas (see [Boa69]) there are eight articles
listed before 1900 and 33 papers during the period 1901–1931; see also the bibliography in
[Sin35] and the one for this book. Even more, the Weierstrass example began to appear
in several textbooks, for example in U. Dini: Grundlagen für eine Theorie der Funktionen
einer veränderlichen reellen Grösse (see [Din92]), F. Klein: Anwendungen der Differential-
und Integralrechnung auf Geometrie. Eine Revision der Prinzipien (see [Kle02]), M. Pasch:
Veränderliche und Funktion (see [Pas14]), E.W. Hobson: The theory of functions of a real
variable and the theory of Fourier series (see [Hob26]). For example, let us quote U. Dini
from his book, §145: “The theorems proved in the last paragraphs should be able to reject,
at least from the better books, the belief up to now that a continuous function has to have
a derivative.”8 Finally, modern mathematics, such as the theory of fractals, has sufficiently
proved the importance of the existence of these monster functions.

In developing the discussion of these monster functions, there are first examples that, under
certain restrictions on their parameters, can be handled by simple means. The discussion of
these particular functions is exactly the content of Part I. Later on, mathematicians became
interested in understanding the role of the parameters that lead to a function being nowhere
differentiable. More difficult reasoning became necessary to study such functions. Moreover,
one-sided derivatives and also infinite derivatives became of interest. Results of this kind will
be discussed in Part III.

But apart from all these examples, more is true, namely that most of the continuous
functions are monster functions. This kind of investigation has its basis in the theorem of
Baire. It was Stefan Banach (1892–1945) who proved that the complement of the set of
continuous nowhere differentiable functions is of first category, i.e., is a rather small set. As
it turned out, most continuous functions behave in a strange way and are thus themselves
monsters of various types. This is the content of Part II. Note that this abstract approach

7 “Die in I, §75, betrachtete Function Fx, bey welcher das Steigen und Fallen so vielmals abgewechselt, dass
es zu keinem Werthe von x ein w klein genug gibt, um behaupten zu können, dass Fx innerhalb x und x±w
fortwährend wachse oder fortwährend abnehme, gibt uns einen Beweis, dass eine Function sogar stetig seyn
könne und doch keine abgeleitete hat für so viele Werthe ihrer Veränderlichen, dass zwischen je zwey derselben
sich noch ein dritter, für welchen sie abermahls keine abgeleitete hat nachweisen.”
8 “Den in den letzten Paragraphen bewiesenen Sätzen dürfte, wie uns scheint, die Aufgabe zufallen, künftig
aus den bessern Lehrbüchern den bis in die neueste Zeit als Grundlage der Differentialrechnung figurirenden
Leitsatz zu verdrängen, nach welchem die Existenz der Derivierten jeder endlichen und stetigen Function
wenigstens im Allgemeinen ausser Zweifel sein sollte.”
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does not give any effective example of such a function. Thus it makes the study of concrete
examples not superfluous at all. The notion of being of first category has certain refinements
such as porosity. Looking at even stranger monsters such as continuous functions having
nowhere finite or infinite one-sided derivatives ended with a negative result: those functions
are rare among the continuous ones. Such functions, as was shown by Stanis�law Saks (1897–
1942) in 1932, are of first category among all continuous functions. So there was no immediate
deduction that such functions exist. Earlier, in 1924, Abram Samoilovitch Besicovitch (1891–
1970) had already constructed such an example using very difficult geometric reasoning. In
Chap. 11, we will present, in addition to concrete examples, a categorial argument showing,
in fact, that there are many of those monsters.

Later, at the end of the twentieth century and into the current one, there appeared authors
who have constructed Weierstrass-type monsters with additional pathologies. It has been a
generalized trend in mathematics toward the search for large algebraic structures of patho-
logical objects such as the continuous nowhere differentiable functions. The lineability of this
type of functions has been thoroughly studied in recent years. Recall that a subset M of a
topological vector space X is called lineable (resp. spaceable) in X if there exists an infinite-
dimensional linear space (resp. an infinite-dimensional closed linear space) Y ⊂ M \ {0}.
These notions of lineable and spaceable were originally coined by V.I. Gurariy (1935–2005).
The very first result in this direction was also due to him (see [Gur67, Gur91]). He showed that
the set of continuous nowhere differentiable functions on [0, 1] is lineable. Further, V.P. Fonf,
V.I. Gurariy, and M.I. Kadets (see [FGK99]) proved that the set of nowhere differentiable
functions on [0, 1] is spaceable. To give the reader a feeling for such results, we discuss some
of them in Chap. 12.

We close this discussion by emphasizing that we have given only our own historical journey.
We do not claim that it is a complete survey.
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Classical Results



Chapter 2

Preliminaries

Summary. This chapter contains definitions and auxiliary results related to various notions of nowhere

differentiability. In particular, in § 2.3, we present a proof of the famous Denjoy–Young–Saks theorem, which

may permit the reader to understand better the sense of nowhere differentiability.

2.1 Derivatives

Let I ⊂ R be an arbitrary interval containing at least two distinct points.

Definition 2.1.1. For a function ϕ : I −→ C, set

Δϕ(t, u) :=
ϕ(u)− ϕ(t)

u− t
, t, u ∈ I, t �= u.

Recall that ϕ has a (finite) derivative ϕ′(t) at a point t ∈ I if the limit

ϕ′(t) := lim
I�u→t

Δϕ(t, u)

exists and is finite. In the case ϕ : I −→ R, we may also consider an infinite derivative ϕ′(t)
if the limit

ϕ′(t) := lim
I�u→t

Δϕ(t, u)

exists but is infinite, i.e., ϕ′(t) ∈ {−∞,+∞}.
Remark 2.1.2. If ϕ : I −→ C, then

Δϕ(u1, u2) =
u2 − t

u2 − u1
Δϕ(t, u2) +

t− u1

u2 − u1
Δϕ(t, u1),

t, u1, u2 ∈ I, u1 < t < u2.
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Consequently:

(a) If a finite derivative ϕ′(t) exists at an interior point t ∈ int I, then

ϕ′(t) = lim
u1,u2→t
u1<t<u2

Δϕ(u1, u2);

note that this fact was already known to T.J. Stieltjes (cf. [Sti14]).

(b) If ϕ : I −→ R, then

min{Δϕ(t, u2),Δϕ(t, u1)} ≤Δϕ(u1, u2) ≤max{Δϕ(t, u2),Δϕ(t, u1)},
t, u1, u2 ∈ I, u1 < t < u2.

In particular, if an infinite derivative ϕ′(t) exists at an interior point t ∈ int I, then

ϕ′(t) = lim
u1,u2→t
u1<t<u2

Δϕ(u1, u2).

Definition 2.1.3. Let ϕ : I −→ C, t ∈ I. We say that ϕ has a finite right- (resp. left-) sided
derivative ϕ′

+(t) (resp. ϕ′
−(t)) at t if the limit

ϕ′
+(t) := lim

I�u→t
u>t

Δϕ(t, u) = lim
I�u→t+

Δϕ(t, u)

(
resp. ϕ′

−(t) := lim
I�u→t
u<t

Δϕ(t, u) = lim
I�u→t−

Δϕ(t, u)
)

exists and is finite. In the case ϕ : I −→ R, we allow infinite one-sided derivatives ϕ′
±(t) ∈

{−∞,+∞}. Notice that:
• if t ∈ I is the right endpoint of the interval, then ϕ′

+(t) is not defined and ϕ′−(t) = ϕ′(t);
• if t ∈ I is the left endpoint of the interval, then ϕ′

−(t) is not defined and ϕ′
+(t) = ϕ′(t).

One-sided derivatives are also called unilateral derivatives.

Remark 2.1.4. Let ϕ : I −→ C.

(a) If a finite ϕ′
+(t) exists, then for every C > 0, we have

ϕ′
+(t) = lim

I�u′,u′′→t, t<u′<u′′

| u′′−t
u′′−u′ |≤C

Δϕ(u′, u′′).

Indeed, we have ϕ(u) = ϕ(t) + ϕ′
+(t)(u − t) + α(u)(u − t), t < u ∈ I, where

limu→t+ α(u) = 0. Hence

Δϕ(u′, u′′) =
ϕ(t) + ϕ′

+(t)(u
′′ − t) + α(u′′)(u′′ − t)

u′′ − u′

− ϕ(t) + ϕ′
+(t)(u

′ − t) + α(u′)(u′ − t)

u′′ − u′

= ϕ′
+(t) +

u′′ − t

u′′ − u′α(u
′′)− u′ − t

u′′ − u′α(u
′) −→

I�u′,u′′→t
t<u′<u′′

ϕ′
+(t),

provided u′′−t
u′′−u′ is bounded.

(b) An analogous result may be easily obtained for finite left derivatives.
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(c) Notice that (a) is not true for infinite unilateral derivatives.
For example, let n1 = 2, nk+1 = n2

k, k ∈ N. Define ϕ :
[
0, 1

4

] −→ R, ϕ(0) := 0,

ϕ(u) :=
1

nk
, u ∈

[
1
n3
k
, 1
n2
k

]
, ϕ(u) := nk+1u, u ∈

[
1

n2
k+1

, 1
n3
k

]
, k ∈ N.

Observe that ϕ is continuous and ϕ′
+(0) = +∞. In fact, for u ∈ [

1
n3
k
, 1
n2
k

]
, we have

Δϕ(0, u) = 1
nku
≥ nk. For u ∈ [

1
n2
k+1

, 1
n3
k

]
, we have Δϕ(0, u) = nk+1.

Take u′
k := 1

n3
k
, u′′

k := 1
n2
k
. Then Δϕ(u′

k, u
′′
k) = 0 and

u′′
k−0

u′′
k−u′

k
≤ 2.

(d) A finite derivative ϕ′(t) exists at an interior point t ∈ int I iff

∀ε>0 ∃δ>0 ∀ t−δ≤ai≤t≤bi≤t+δ
ai,bi∈I, ai<bi, i=1,2

: |Δϕ(a1, b1)−Δϕ(a2, b2)| < ε.

Indeed, if the above condition is satisfied, then taking a1 = a2 = t (resp. b1 = b2 = t), we
conclude that a finite one-sided derivative ϕ′

+(t) (resp. ϕ′
−(t)) exists. Taking a1 = b2 = t,

we get ϕ′
+(t) = ϕ′−(t). Conversely, if ϕ′(t) ∈ R exists, then we use Remark 2.1.2(a).

We will use also the following more general derivatives, introduced, e.g., by U. Dini in
[Din92].

Definition 2.1.5. Let ϕ : I −→ R, t ∈ I. The lower (resp. upper) right Dini derivative
D+ϕ(t) (resp. D+ϕ(t)) of ϕ at t is defined as

D+ϕ(t) := lim inf
I�u→t+

Δϕ(t, u) ∈ R

(
resp. D+ϕ(t) := lim sup

I�u→t+
Δϕ(t, u) ∈ R

)
.

Analogously, the lower (resp. upper) left Dini derivative D−ϕ(t) (resp. D−ϕ(t)) of ϕ at t is
defined as

D−ϕ(t) := lim inf
I�u→t−

Δϕ(t, u) ∈ R

(
resp. D−ϕ(t) := lim sup

I�u→t−
Δϕ(t, u) ∈ R

)
.

Similarly to the above, D+ϕ(t) and D+ϕ(t) (resp. D−ϕ(t) and D−ϕ(t)) are not defined if
t ∈ I is the right (resp. left) endpoint of the interval.

Remark 2.1.6. (a) ϕ′
+(t) exists iff D+ϕ(t) = D+ϕ(t); ϕ′

−(t) exists iff D−ϕ(t) = D−ϕ(t).

(b) D−ϕ = −D−(−ϕ), D+ϕ = −D+(−ϕ).

(c) D−∨
ϕ(t) = −D+ϕ(−t), D−

∨
ϕ(t) = −D+ϕ(−t), where

∨
ϕ(t) := ϕ(−t) (provided that −I =

I).

Remark 2.1.7. If ϕ : I −→ R is continuous, then the functions D+ϕ, D+ϕ, D−ϕ, D−ϕ are
Borel measurable.

We will prove that D+ϕ is Borel measurable (the remaining cases are left to the reader as
an Exercise). We may assume that the right endpoint of I does not belong to I. It suffices
to show that for every C ∈ R, the set AC := {t ∈ I : D+ϕ(t) < C} is Borel measurable. Fix
a C ∈ R. Let N ∈ N be such that In := {t ∈ I : t+ 1

n ∈ I} �= ∅ for n ≥ N . Now we need only
observe that in view of the continuity of ϕ, we have
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AC =
⋃

n∈NN , k∈N

⋂

h∈Q∩(0, 1n )

{
t ∈ In :

ϕ(t + h)− ϕ(t)

h
≤ C − 1

k

}
.

Notice that the result remains true for arbitrary Borel-measurable functions ϕ : I −→ R

(cf. [Ban22]).

2.2 Families of Continuous Nowhere Differentiable Functions

Recall that our principal aim is to discuss continuous nowhere differentiable functions. To sim-
plify notation related to nowhere differentiability, we define the following classes of continuous
nowhere differentiable functions.

– ND(I) := the set of all ϕ ∈ C(I,C) that are nowhere differentiable in the finite sense;
– ND∞(I) := the set of all ϕ ∈ C(I) that are nowhere differentiable in the finite or infinite
sense;

– ND±(I) := the set of all ϕ ∈ C(I,C) such that for every t ∈ I, there is neither a finite
right nor a finite left derivative at t;

– ND∞± (I) = B(I) := the set of all Besicovitch functions, i.e., the set of all ϕ ∈ C(I) such
that for every t ∈ I, there is neither a finite or infinite right nor a finite or infinite left
derivative at t (cf. § 7.5);

– M(I) := the set of all Morse functions, i.e., the set of all ϕ ∈ C(I) such that

max{|D+ϕ(t)|, |D+ϕ(t)|} = max{|D−ϕ(t)|, |D−ϕ(t)|} = +∞, t ∈ I;

we skip the left (resp. right) max{. . . } if t is the right (resp. left) endpoint of the interval;
– BM(I) = B(I) ∩M(I) := the set of all Besicovitch–Morse functions (cf. § 11.1).

Notice that

BM(I) ⊂M(I) ⊂ ND±(I) ⊂ ND(I),

BM(I) ⊂ B(I) = ND∞
± (I) ⊂ ND∞(I).

Remark 2.2.1. Observe that if I is an open interval, then there exists a real-analytic in-
creasing diffeomorphism σ : R −→ I. In particular, if a continuous function ϕ : I −→ C

belongs to one of the above classes of nowhere differentiable functions on I, then the function
ϕ ◦ σ belongs to the corresponding class on R.

The above remark permits us to transport many results from I to R and vice versa.

2.3 The Denjoy–Young–Saks Theorem

The following result may give some feelings for the general behavior of functions with respect
to their differentiability. On a first reading, the reader may skip the proof.

Theorem 2.3.1 (Denjoy–Young–Saks). Let I ⊂ R be an arbitrary nontrivial interval. Let
f : I −→ R. Then there exists a set E ⊂ I of Lebesgue measure zero such that for every
x ∈ I \ E, either
• a finite f ′(x) exists, or
• D+f(x) = D−f(x) ∈ R and D+f(x) = −∞, D−f(x) = +∞, or
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• D−f(x) = D+f(x) ∈ R and D+f(x) = +∞, D−f(x) = −∞, or
• D−f(x) = D+f(x) = +∞ and D−f(x) = D+f(x) = −∞.

Remark 2.3.2. Symbolically, for x ∈ I \ E we have the following four possibilities:

∗ ∗ +∞∗ ∗−∞
+∞∗ ∗−∞

+∞ +∞
−∞ −∞

If f is continuous, the result was first proved by A. Denjoy in [Den15]. The case in which
f is measurable was solved by G.C. Young in [You16b]. Finally, the general case was proved
by S. Saks in [Sak24]. Our elementary proof is due to E.H. Hanson [Han34].

Corollary 2.3.3. Let f : I −→ R, f ∈ ND(I). Then at almost all points of I, the function
f has no one-sided (finite or infinite) derivatives.

The following two classical results from measure theory will be important for the proof.

Theorem 2.3.4 (Vitali Covering Theorem; Cf. [KK96], Theorem 0.3.2). Let S ⊂ R be
bounded and let F be a family of bounded closed intervals, none consisting of a single point,
such that for every x ∈ S and ε > 0, there exists a P ∈ F such that x ∈ P and diam(P ) ≤ ε.
Then there exists an at most countable subfamily F0 ⊂ F , consisting of pairwise disjoint
intervals, such that

L
(
S \

⋃

P∈F0

P
)
= 0,

where L denotes the Lebesgue measure on R.

Theorem 2.3.5 (Lebesgue Density Theorem; Cf. [KK96], Theorem 2.2.1). Let A ⊂ R. Then
for almost all x ∈ A and for every sequence (Ps)

∞
s=1 of bounded intervals with x ∈ Ps and

0 < diam(Ps) −→ 0, we have

lim
s→+∞

L∗(A ∩ Ps)

L(Ps)
= 1,

where L∗ stands for the outer Lebesgue measure on R.

Proof of Theorem 2.3.1. Using Remark 2.2.1, we may assume that I = R.
Step 1o. It suffices to prove that there exists a zero-measure set E0 = E0(f) such that for

every x ∈ R \ E0, either
• D+f(x) = D−f(x) ∈ R, or
• D+f(x) = +∞ and D−f(x) = −∞.
Indeed, then we put E := E0(f) ∪ E0(−f).

Step 2o. The main idea of the proof is to show that:

(a) the set E1 := {x ∈ R : D+f(x) = +∞, D−f(x) �= −∞} is of measure zero,

(b) the set E2 := {x ∈ R : D−f(x) = −∞, D+f(x) �= +∞} is of measure zero,

(c) the set E3 := {x ∈ R : D+f(x) < D−f(x) or D−f(x) < D+f(x)} is at most countable,

(d) the set E4 := {x ∈ R : D+f(x), D−f(x) ∈ R, D+f(x) �= D−f(x)} is of measure zero.

Observe that (b) follows from (a) applied to the function −f .
Suppose for a moment that the above properties are already proven. Put E0 := E1 ∪E2 ∪

E3 ∪ E4 and fix an x ∈ R \ E0. By (d), we need to check only that if D+f(x) or D−f(x) is
infinite, then D+f(x) = +∞ and D−f(x) = −∞. The configurations from (a) and (b) are
excluded. Thus, their remains the case D+f(x) = −∞ (resp. D−f(x) = +∞), but then, in
view of (c), D−f(x) = −∞ (resp. D+f(x) = +∞), which contradicts (b) (resp. (a)).
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Step 3o. Proof of (a).
We have

E1 =
⋃

r∈Q, n∈N

Ar,n,

where
Ar,n := {x ∈ R : D+f(x) = +∞, ∀x′∈(x− 1

n ,x) : Δf(x, x′) > r}.
We need to prove only that each set Ar,n is of measure zero. Fix r, n ∈ N, and b ∈ Ar,n. Let
a ∈ R be such that 0 < b− a < 1

n . Put S := Ar,n ∩ (a, b). Take an arbitrary t ∈ R and let

Ft := {[p, q] : q > p, [p, q] ⊂ (a, b), p ∈ S, Δf(p, q) > t}.

It is clear that (S,Ft) satisfies the assumptions of the Vitali covering theorem. Thus there
exists an at most countable subfamily F0

t ⊂ Ft, consisting of pairwise disjoint intervals, such

that L(S \ ⋃P∈F0
t
P ) = 0. Take P1, . . . , PN ∈ F0

t , Pi = [pi, qi]. Then (a, b) \ ⋃N
i=1 Pi =

⋃M
j=1(αj , βj), where the intervals (α1, β1), . . . , (αM , βM ) are pairwise disjoint and βj ∈ Ar,n,

j = 1, . . . ,M . In particular, Δf(αj , βj) > r. Consequently,

f(b)− f(a) =

M∑

j=1

(f(βj)− f(αj)) +

N∑

i=1

(f(qi)− f(pi))

> r
M∑

j=1

(βj − αj) + t
N∑

i=1

(qi − pi) = (t− r)
N∑

i=1

L(Pi) + r(b − a).

Thus
f(b)− f(a) ≥ (t− r)

∑

P∈F0
t

L(P ) + r(b − a).

Observe that ∑

P∈F0
t

L(P ) = L(
⋃

P∈F0
t

P ) ≥ L∗(S).

Consequently, for t > r, we get

f(b)− f(a) ≥ (t− r)L∗(S) + r(b − a).

Letting t −→ +∞, we conclude that L∗(S) = L(Ar,n ∩ (a, b)) = 0. Hence, L(Ar,n) = 0.

Step 4o. Proof of (c).
It suffices to prove that the set A := {x ∈ R : D+f(x) < D−f(x)} is of measure zero (and

then apply this result to −f). Observe that

A =
⋃

r∈Q, n∈N

Ar,n,

where
Ar,n := {x ∈ R : ∀x′∈(x− 1

n ,x), x′′∈(x,x+ 1
n ) : Δf(x, x′) < r < Δf(x, x′′)}.

It is clear that if x, y ∈ Ar,n, then |x− y| ≥ 1
n . Consequently, Ar,n is at most countable.
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Step 5o. Proof of (d).

We have
E4 \E3 =

⋃

r1,r2,r3,r4∈Q

r1>r2>r3>r4, n∈N

Ar1,r2,r3,r4,n,

where

Ar1,r2,r3,r4,n := {x ∈ R : r4 < D−f(x) < r3 < r2 < D+f(x) < r1,

∀x′∈(x− 1
n ,x) : Δf(x, x′) > r4, ∀x′′∈(x,x+ 1

n ) : Δf(x, x′′) < r1}.

Fix r1 > r2 > r3 > r4, n ∈ N, and a, b ∈ Ar1,r2,r3,r4,n such that 0 < b − a < 1
n . Put

S := Ar1,r2,r3,r4,n ∩ (a, b). In view of the proof of Step 3o with (r, t) = (r4, r2), we get

f(b)− f(a) ≥ (r2 − r4)L∗(S) + r4(b− a).

Let
F := {[p, q] : q > p, [p, q] ⊂ (a, b), q ∈ S, Δf(p, q) < r3}.

It is clear that (S,F) satisfies the assumptions of the Vitali covering theorem. Thus there
exists an at most countable subfamily F0 ⊂ F , consisting of pairwise disjoint intervals, such

that L∗
(
S \⋃P∈F0 P

)
= 0.

Take P1, . . . , PN ∈ F0
t , Pi = [pi, qi]. Then (a, b) \ ⋃N

i=1 Pi =
⋃M

j=1(αj , βj), where the
intervals (α1, β1), . . . , (αM , βM ) are pairwise disjoint and αj ∈ Ar1,r2,r3,r4,n, j = 1, . . . ,M . In
particular, Δf(αj , βj) < r1. Consequently,

f(b)− f(a) ≤ (r3 − r1)
∑

P∈F0
t

L(P ) + r1(b− a) ≤ (r3 − r1)L∗(S) + r1(b− a).

Hence

L∗(S)
b− a

=
L∗(Ar1,r2,r3,r4,n ∩ [a, b])

L([a, b])
≤ r1 − r4

r1 − r4 + r2 − r3
< 1. (2.3.1)

Suppose that L∗(Ar1,r2,r3,r4,n) > 0. Then by the Lebesgue density theorem, there exists a
point b ∈ Ar1,r2,r3,r4,n such that

lim
a→b−

L∗(Ar1,r2,r3,r4,n ∩ [a, b])

L([a, b])
= 1. (2.3.2)

In particular, in view of (2.3.1), there are no sequences (as)
∞
s=1 ⊂ Ar1,r2,r3,r4,n such that

0 < b− as < 1
n and as −→ b. Thus Ar1,r2,r3,r4,n ∩ (b, b− 1

s ) = ∅ for s� 1, which contradicts
(2.3.2). ��

2.4 Series of Continuous Functions

Many of the functions discussed in this book will be of the form

ϕ(t) :=

∞∑

n=0

ϕn(t), t ∈ I,
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where ϕn : I −→ C is continuous, n ∈ N0, and the series is normally convergent, i.e.,

A :=
∞∑

n=0

(sup
t∈I
|ϕn(t)|) < +∞.

In particular, such a series is uniformly convergent, and therefore, the function ϕ is continuous.
Obviously, ϕ is bounded and |ϕ(x)| ≤ A, x ∈ I.

Remark 2.4.1. It is well known that if, moreover, each function ϕn : I −→ C is differentiable
and the series

∑∞
n=0 ϕ′

n is uniformly convergent (e.g., normally convergent) in I, then ϕ is
differentiable and ϕ′(t) =

∑∞
n=0 ϕ′

n(t), t ∈ I.

2.5 Hölder Continuity

Definition 2.5.1. Let α ∈ (0, 1]. We say that a continuous function ϕ : I −→ C is:
• α-Hölder continuous at a point t ∈ I (ϕ ∈Hα(I; t)) if

∃c, δ>0 ∀h∈(−δ,δ)∩(I−t) : |ϕ(t + h)− ϕ(t)| ≤ c|h|α;

• Lipschitz at a point t ∈ I if ϕ ∈H1(I; t);
• α-Hölder continuous (ϕ ∈Hα(I)) if

∃C>0 ∀t,u∈I : |ϕ(u)− ϕ(t)| ≤ C|u − t|α;

• Lipschitz continuous if ϕ is 1-Hölder continuous;
• M -Lipschitz at a point t ∈ I (where M > 0) if

∀u∈I : |ϕ(u)− ϕ(t)| ≤M |u− t|.

Remark 2.5.2. (a) Observe that if ϕ : I −→ C is a bounded continuous function, then ϕ is
α-Hölder continuous at t iff

∃c>0 ∀u∈I : |ϕ(u)− ϕ(t)| ≤ c|u− t|α (Exercise);

in particular, ϕ is 1-Hölder continuous at t iff ϕ is M -Lipschitz at t for some M > 0.

(b) If a finite derivative ϕ′(t) exists, then ϕ is Lipschitz at t.

(c) It is known (cf. [KK96], Theorems 1.2.8, 6.1.5, 6.1.15) that if ϕ : I −→ C is Lipschitz
continuous, then there exists a zero-measure set S ⊂ I such that ϕ′(t) exists for all
t ∈ I \ S.

(d) Assume that I is a bounded closed interval and let TM denote the set of all ϕ ∈ C(I,C)
such that for every t ∈ I, the function ϕ is not M -Lipschitz at t. Consider C(I,C) as a
metric space endowed with the distance d(ϕ, ψ) := maxI |ϕ − ψ|. Then TM is open in
C(I,C)1 (Exercise). Consequently, the set T :=

⋂
M∈Q>0

TM of all functions that are

nowhere Lipschitz on I is a Borel set. Observe that T ⊂ ND(I).

1 Recall that a pair (X, d) is a metric space if d : X ×X −→ R+, (d(x, y) = 0 ⇐⇒ x = y), d(x, y) = d(y, x),
and d(x, y) ≤ d(x, z) + d(z, y). A set A ⊂ X is called open if for each a ∈ A, there exists an r > 0 such that
{x ∈ X : d(x, a) < r} ⊂ A.
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Definition 2.5.3. For α > 0, we say that a continuous function ϕ : I −→ C is:
• nowhere α-Hölder continuous (ϕ ∈ NHα(I)) if ∀t∈I : ϕ /∈Hα(I; t);
• α-anti-Hölder continuous if

∃ε>0 ∀t∈I, δ∈(0,1) ∃h±∈(0,δ)
t±h±∈I

: |ϕ(t± h±)− ϕ(t)| > εδα;

we skip h+ (resp. h−) if t is the right (resp. left) endpoint of the interval;
• weakly α-anti-Hölder continuous if

∃ε>0 ∀t∈I, δ∈(0,1) ∃h∈(−δ,δ)∩(I−t) : |ϕ(t + h)− ϕ(t)| > εδα.

Remark 2.5.4. Let α ∈ (0, 1).

(a) If ϕ is α-anti-Hölder continuous, then ϕ ∈M(I) ⊂ ND±(I).
(b) If ϕ is weakly α-anti-Hölder continuous, then ϕ is nowhere 1-Hölder continuous, and hence

ϕ ∈ ND(I).



Chapter 3

Weierstrass-Type Functions I

Summary. The aim of this chapter is to present various classical methods of testing the nowhere differen-

tiability of the Weierstrass-type function x �−→ ∑∞
n=0 a

n cosp(2πbnx + θn). More developed results will be

discussed in Chap. 8.

3.1 Introduction

We will discuss the nowhere differentiability of the following Weierstrass-type function

Wp,a,b,θ(x) :=

∞∑

n=0

an cosp(2πbnx + θn), x ∈ R, (3.1.1)

where

p ∈ N, 0 < a < 1, ab ≥ 1, θ := (θn)
∞
n=0 ⊂ R. (3.1.2)

Throughout the chapter, we always assume that p, a, b, θ satisfy (3.1.2) (cf. Figs. 3.1, 3.2,
and 3.3).

Notice that the function W1,a,b,0 with p = 1, b ∈ 2N+ 1, and ab > 1 + 3
2π, coincides with

the original nowhere differentiable Weierstrass function presented by him to the Königliche
Akademie der Wissenschaften on 18 July 1872; cf. [Wei86].

We will be mainly interested in a characterization of the parameters p, a, b, θ for which
the function Wp,a,b,θ belongs to one of the following three classes of nowhere differentiable
functions: ND∞(R), ND±(R), and M(R) ∩ ND∞(R). Recall that M(R) ⊂ ND±(R). We
would like to point out that in general, most of the cases are not completely understood (even
for p = 1 and θ = 0).

To simplify notation, we will use the following conventions:
• If θn = θ for all n ∈ N0, then we simply write θ = θ.
• If the parameters p, a, b are fixed, then Wθ := Wp,a,b,θ.
A special role is played by the cases in which p = 1 or/and (θ = 0 or θ = −π

2 ). In
particular,

Ca,b(x) : = W 1,a,b,0(x) =
∞∑

n=0

an cos(2πbnx),

© Springer International Publishing Switzerland 2015
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Fig. 3.1 Weierstrass-type function I 	 x �−→ W1,0.9,1.2,0(x)
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Fig. 3.2 Weierstrass-type function I 	 x �−→ W1,0.5,3,0(x)



3.1 Introduction 21

−0.5

0.5

1 1

1.5

−0.5

0.5

1.5

2 2

0.5

1

1.5

2

0.5

1

1.5

2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 3.3 Weierstrass-type functions W1,0.5,1,0, W1,0.5,2,0, W1,0.5,3,0, W1,0.5,4,0

Sa,b(x) : = W 1,a,b,−π
2
(x) =

∞∑

n=0

an sin(2πbnx), x ∈ R,

are the classical Weierstrass functions (cf. [BR74, Wei86]).

Remark 3.1.1. To give the reader an idea of the content of the chapter, we give below a
list of results that will be presented. The list is organized in chronological order. We do not
pretend that the list is complete. Most of the results will be presented in a somewhat more
general form than in the original papers. Nowadays, most of these results have only historical
significance. They will be essentially generalized and strengthened in Chap. 8. Nevertheless,
they might give some insight into how over 120 years (1872–1992), the methods of studying
nowhere differentiability have evolved.

(1) 1872: If b, p ∈ 2N0+1 and ab > 1+ 3
2pπ, then Wp,a,b,0 ∈M(R)∩ND∞(R) ⊂ ND±(R)∩

ND∞(R) (Theorem 3.5.1).

(2) 1890: If b ∈ 2N and b ≥ 14, then W1,1/b,b,θ ∈ ND±(R) (Theorem 3.6.1).

(3) 1892: If (a < a1(p) and b > Ψ1(a)) or (a < a2(p) and b > Ψ2(a)) (the functions ai, Ψi,
i = 1, 2, are given by effective formulas), then Wp,a,b,θ ∈ ND±(R). In particular, if (a < 1

3
and ab > 1 + 3

2π
1−a
1−3a ) or (a < 2

9 and ab2 > 1 + 21
4 π2 1−a

2−9a ), then W1,a,b,θ ∈ ND±(R)
(Theorem 3.7.1).
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(4) 1908: If b ∈ 2N+ 1, θ = θ with θ ∈ (−π
2 , π

2 ), and ab > 1 + 3
2

π
cos θ (1 − a), then W1,a,b,θ ∈

ND∞(R) (Theorem 3.8.1).

(5) 1916: If ab ≥ 1, then Ca,b,Sa,b ∈ ND(R) (Theorems 8.2.1, 8.2.12). This crucial result,
due to G.H. Hardy [Har16], will be presented in Chap. 8. It will also follow from a more
general theorem, Theorem 8.6.7.

(6) 1949: We will present the following two groups of results obtained by F.A. Behrend in
[Beh49] (which are typical of the “post Hardy” period).
• Extensions of the classical Weierstrass result:

– If b ∈ 2N \ (3N) and ab > 1 + 16π
9 (1− a), then Ca,b ∈ ND∞(R) (Theorem 3.9.5).

– If b > 3 and ab > 1 + (3+2ε)π
2 cos(πε) (1 − a), where ε := 1

b−1 , then Ca,b ∈ ND∞(R) (Theo-

rem 3.9.9).

• Elementary proofs of some special cases of Hardy’s results:

– If b ∈ N2 and ab ≥ 1, then Ca,b ∈ ND(R) (Theorem 3.9.14).

– If b > 3, ab ≥ 1, ab2 > 1 + (3+2ε)(1+2ε)
8 cos(πε) π2(1− a), where ε := 1

b−1 , then Ca,b ∈ ND(R)

(Theorem 3.9.15).

(7) 1969: S1/2,2 ∈ ND(R) (an elementary proof; Theorem 3.10.1).

(8) 1992: If b ∈ 2N+ 1 and ab > 1, then W1,a,p,0 ∈ ND(R) (Theorem 3.11.1).

At the beginning of § 8.1, the reader will find a list of the best results obtained so far (up
to 2015).

3.2 General Properties of Wp,a,b,θ

We begin with a remark collecting elementary properties of Wp,a,b,θ.

Remark 3.2.1. (a) Each term of the series (3.1.1),

R � x
wn�−→ an cosp(2πbnx + θn), n ∈ N0,

is a real-analytic function.

(b) Wp,a,b,θ ∈ C(R) and |Wp,a,b,θ(x)| ≤ A := 1
1−a , x ∈ R (cf. § 2.4).

(c) The function Wp,a,b,θ may be formally defined for all b > 0. However, the case ab < 1
is from our point of view irrelevant, because if ab < 1, then Wp,a,b,θ ∈ C1(R) (cf. Re-
mark 2.4.1; see Fig. 3.3).

(d) Wθ(x + x0) = W(2πbnx0+θn)∞n=0
(x), Wθ(−x) = W−θ(x), x, x0 ∈ R.

(e) For every p, a, b, and β ∈ (0, 1], the following conditions are equivalent:

(†)Wθ is β-Hölder continuous uniformly with respect to θ, i.e.

∃c>0 ∀θ : |Wθ(x + h)−Wθ(x)| ≤ c|h|β , x, h ∈ R;

(‡)Wθ is right-sided β-Hölder continuous at 0 uniformly with respect to θ, i.e.,

∃c, δ0>0 ∀θ : |Wθ(h)−Wθ(0)| ≤ chβ, h ∈ (0, δ0).
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Indeed, if (‡) is satisfied, then, using (d), for h ∈ (0, δ0) we get

|Wθ(x± h)−Wθ(x)| = |W(2πbnx+θn)∞n=0
(±h)−W(2πbnx+θn)∞n=0

(0)|
=|W(±(2πbnx+θn))∞n=0

(h)−W(±(2πbnx+θn))∞n=0
(0)| ≤ chβ.

If |h| ≥ δ0, then |Wθ(x ± h)−Wθ(x)| ≤ 2A ≤ 2A

δβ0
|h|β .

(f) Let

Wm(x) :=

m−1∑

n=0

an cosp(2πbnx + θn), m ∈ N, x ∈ R.

Assume that ab > 1. Then

sup
x0∈R, h∈R∗

|ΔWm(x0, x0 + h)| < 2pπ
(ab)m

ab− 1
.

Indeed, by the mean value theorem, we get

|ΔWm(x0, x0 + h)|

=
∣∣∣
m−1∑

n=0

an2pπbn cosp−1(2πbnξ + θn) sin(2πbnξ + θn)
∣∣∣

≤ 2pπ

m−1∑

n=0

(ab)n = 2pπ
(ab)m − 1

ab− 1
< 2pπ

(ab)m

ab− 1
.

(g) If ab > 1 and α := − log a
log b , then Wθ is α-Hölder continuous uniformly with respect to θ.

Indeed, fix an h ∈ (0, 1) and let N = N(h) ∈ N0 be such that bNh ≤ 1 < bN+1h. Then
(using (f)) we get

|Wθ(h)−Wθ(0)| ≤ |WN (h)−WN (0)|+ 2

∞∑

n=N

an

< 2pπ
(ab)N

ab− 1
h +

2aN

1− a
≤ 2

( pπ

ab− 1
+

1

1− a

)
aN ≤ cphα,

where c depends only on a and b. Now by (e), we get the result.

(h) For every p, a, b, and β ∈ (0, 1], the following conditions are equivalent:

(†)Wθ is β-anti-Hölder continuous uniformly with respect to x ∈ R and θ, i.e.,
∃ε>0 ∀θ, x∈R, δ∈(0,1) ∃h±∈(0,δ) : |Wθ(x± h±)−Wθ(x)| > εδβ (cf. Definition 2.5.3);

(‡)∃ε, δ0>0 ∀θ, δ∈(0,δ0) ∃h+∈(0,δ) : |Wθ(h+)−Wθ(0)| > εδβ.

Indeed, suppose that (‡) is satisfied. If δ0 < 1, then fix 0 < δ′ < δ0 and let h+ ∈ (0, δ′)
be associated to (θ, δ′) via (‡). Then for δ ∈ [δ0, 1), we have |Wθ(h+)−Wθ(0)| > εδ′β ≥
(εδ′β)δβ . Hence we may assume that δ0 ≥ 1.
Take θ, x ∈ R, and δ ∈ (0, 1). Let h+ ∈ (0, δ) be associated to ((±(2πbnx + θn))

∞
n=0, δ)

via (‡). Then

|Wθ(x± h+)−Wθ(x)|
= |W(±(2πbnx+θn))∞n=0

(h+)−W(±(2πbnx+θn))∞n=0
(0)| > εδβ.
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(i) For every p, a, b, and β ∈ (0, 1], the following conditions are equivalent (Exercise):

(†)Wθ is weakly β-anti-Hölder continuous uniformly with respect to x ∈ R and θ, i.e.,
∃ε>0 ∀θ, x∈R, δ∈(0,1) ∃h∈(−δ,δ) : |Wθ(x + h)−Wθ(x)| > εδβ (cf. Definition 2.5.3);

(‡)∃ε, δ0>0 ∀θ, δ∈(0,δ0) ∃h∈(−δ,δ) : |Wθ(h)−Wθ(0)| > εδβ .

(j) The following conditions are equivalent (Exercise):

(†)Wθ ∈ ND(R) (resp. Wθ ∈ ND∞(R)) for every θ;
(‡)for every θ, a finite (resp. finite or infinite) derivative W ′

θ(0) does not exist.

(k) The following conditions are equivalent (Exercise):

(†)Wθ ∈ ND±(R) (resp. Wθ ∈ ND∞± (R)) for every θ;
(‡)for every θ, a finite (resp. finite or infinite) right-sided derivative (Wθ)

′
+(0) does not

exist.

3.3 Differentiability of Wp,a,b,θ (in the Infinite Sense)

It seems that G.H. Hardy was the first to notice that in general, Wp,a,b,θ /∈ ND∞(R).

Theorem 3.3.1 (Cf. [Har16]). If ab ≥ 1 and a(b + 1) < 2, then S′
a,b(0) = +∞.

Notice that a(b + 1) < 2, provided that ab = 1.

Proof . Put f := Sa,b. It suffices to show that f ′
+(0) = +∞. Take an h ∈ R, 0 < h ≤ 1

4 . Let
N = N(h) ∈ N be such that bN−1h ≤ 1

4 < bNh. Then

f(h)

h
=

1

h

N−1∑

n=0

an sin(2πbnh) +
1

h

∞∑

n=N

an sin(2πbnh) =: f1(h) + f2(h).

We have

f1(h) ≥ 4

N−1∑

n=0

(ab)n =

{
4N, if ab = 1

4 (ab)N−1
ab−1 , if ab > 1

, |f2(h)| ≤ 1

h

aN

1− a
.

First observe that in the case ab = 1, we have

1

h

aN

1− a
=

1

hbN
1

1− a
<

4

1− a
,

and therefore,

f1(h) + f2(h) ≥ 4N(h)− 4

1− a
−→
h→0+

+∞.

Now assume that ab > 1. Then 1
ab−1 − 1

1−a > 0, and consequently,

f1(h) + f2(h) ≥ 4
(ab)N − 1

ab− 1
− 1

h

aN

1− a
> 4

(ab)N − 1

ab− 1
− 4bN

aN

1− a

= 4(ab)N(h)
(1− (ab)−N(h)

ab− 1
− 1

1− a

)
−→
h→0+

+∞. ��
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Theorem 3.3.2 (Cf. [Hat88b]). If ab > 1 and

1 +
b

ab− 1
sin

π

2b
>

ab

1− a
, (3.3.1)

then S′
a,b(0) = +∞.

Remark 3.3.3. (a) If ab > 1 and a(b+ 1) ≤ 2, then (3.3.1) is satisfied. In particular, in the
case ab > 1, Theorem 3.3.2 generalizes the Hardy’s original criterion (a(b + 1) < 2) from
Theorem 3.3.1 (see also [Beh49] (the footnote on page 467)).

(b) The function (1b , 1) � a �−→ 1+ b
ab−1 sin

π
2b− ab

1−a is strictly decreasing. In particular, there

exists exactly one a = ϕ(b) ∈ (1b , 1) such that 1 + b
ab−1 sin

π
2b > ab

1−a ⇐⇒ 1
b < a < ϕ(b).

Note that ϕ(b) > 2
b+1 .

Proof of Theorem 3.3.2. Put f := Sa,b. It suffices to show that f ′
+(0) = +∞. Take an h ∈ R,

0 < h ≤ 1
4 . Let N = N(h) ∈ N be such that 4bNh ≤ 1 < 4bN+1h. Then

Δf(0, h) =
(1

h

N−1∑

n=0

an sin(2πbnh)
)
+

aN

h
sin(2πbNh)

+
( 1

h

∞∑

n=N+1

an sin(2πbnh)
)
=: f1(h) + f2(h) + f3(h).

We have

|f3(h)| ≤ 1

h

aN+1

1− a
<

4(ab)N+1

1− a
, f2(h) ≥ 1

h
aN4bNh = 4(ab)N .

For 1 ≤ n ≤ N − 1, we have 2πbnh ≤ π
2b . Hence

f1(h) ≥ 1

h

N−1∑

n=0

an
(
sin

π

2b

)
4bn+1h =

4b((ab)N − 1)

ab− 1
sin

π

2b
.

Finally,

Δf(0, h) ≥ 4
(
1 +

b(1− (ab)−N(h))

ab− 1
sin

π

2b
− ab

1− a

)
(ab)N(h) −→

h→0
+∞,

provided that (3.3.1) is satisfied. ��
Proposition 3.3.4. Assume that a, b are such that S′

a,b(0) = +∞. Then:

(a) (cf. [Har16]) if b ∈ 4N+ 1, then C ′
a,b(

1
4 ) = +∞;

(b) (cf. [Hob26], p. 407) if b ∈ N, then S′
a,b(

k
2m ) = +∞ for all k ∈ Z and m ∈ N.

Remark 3.3.5. We will prove that Sa,b ∈ ND(R) (Theorem 8.6.7). Moreover, in view of
Theorem 2.3.1, the set

A := {x ∈ R : an infinite derivative S′
a,b(x) exists}

is of measure zero. On the other hand, (b) states that if b ∈ N and S′
a,b(0) = +∞, then the

set A is dense in R.
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Proof of Proposition 3.3.4.

(a) Ca,b(x− 1
4 ) =

∞∑

n=0

an cos(2πbn(x− 1
4 )) =

∞∑

n=0

an sin(2πbnx) = Sa,b(x).

(b) Fix an x0 := k
2m and let g(x) := Sa,b(x + x0). We have to prove that g′(0) = +∞. Let

ϕ(x) :=

m−1∑

n=0

an sin(2πbn(x + x0)), x ∈ R.

Then

g(x) =

m−1∑

n=0

an sin(2πbn(x + x0)) +

∞∑

n=m

an sin(2πbnx+ 2πbn−mk)

= ϕ(x) +

∞∑

n=m

an sin(2πbnx) = ϕ(x) + am
∞∑

n=0

an sin(2πbnbmx)

= ϕ(x) + amSa,b(b
mx), x ∈ R.

Since ϕ is a differentiable function and S′
a,b(0) = +∞, the proof is complete. ��

3.4 An Open Problem

In view of the results presented in the previous section, one may formulate the following
natural problem. Given b > 1, estimate the numbers

αC(b) := inf{a ∈ [1/b, 1) : Ca,b ∈ ND∞(R)},
αS(b) := inf{a ∈ [1/b, 1) : Sa,b ∈ ND∞(R)}.

Remark 3.4.1. (a) We have seen that αS(b) ≥ 2
b+1 (Theorem 3.3.1) and αC(b) ≥ 2

b+1 for
b ∈ 4N+ 1 (Proposition 3.3.4(a)).

(b) A better lower estimate was given in Theorem 3.3.2: αS(b) ≥ ϕ(b) > 2
b+1 , where a =

ϕ(b) ∈ (1b , 1) is a uniquely determined root of the equation 1 + b
ab−1 sin

π
2b − ab

1−a = 0.

(c) Theorem 3.8.1 (cf. Remark 3.1.1(4)) will show that αC(b) ≤ 1+ 3
2π

b+ 3
2π

, provided b ∈ 2N+ 1.

(d) Theorem 3.9.9 (cf. Remark 3.1.1(6)) will give αC(b) ≤ 1+κ(b)
b+κ(b) for b > 3, where κ(b) :=

(3+2ε)π
2 cos(πε) , ε := 1

b−1 . Note that if b ∈ 2N2 + 1, then (d) is not better than (c).

(e) The best known (as of 2015) estimate will be proved in Theorem 8.7.6: αS(b),αC(b) ≤ H
b ,

where H := 1 + 1
cosψ∗ , ψ∗ ∈ (0, π

2 ) is such that tanψ∗ = π + ψ∗; note that ψ∗ ≈ 1.3518,
H ≈ 5.6034.

(f) Observe that (Exercise)

1 + κ(b)

b + κ(b)
≥ H

b
for b ≥ b0 ≈ 212.9669.

Thus for b ≥ 213, the estimate (e) is better than (d).
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(g) Moreover (Exercise),

1 + 3
2π

b + 3
2π
≥ H

b
for b ≥

3
2πH

3
2π + 1−H

≈ 242.1373.

In particular, for b ∈ 2N+ 1, b ≥ 243, the estimate (e) is better than (c).

? Exact values of αC(b) and αS(b) are not known ?

3.5 Weierstrass’s Method

The following sections will present different attempts to get the nowhere differentiability
of Wp,a,b,θ for certain configurations of the parameters p, a, b, θ. We will see that the case
ab = 1 is the most difficult one. We point out that in general, these results are not optimal.
Nevertheless, they perfectly illustrate various ways of attacking the problem.

Theorem 3.5.1 (Cf. [BR74, Her79, Wei86, Muk34]; see also [Mal09]). Assume that b, p ∈
2N0 + 1 and ab > 1 + 3

2pπ. Put f := Wp,a,b,0. Then for every x ∈ R,

either (D+f(x) = +∞ and D−f(x) = −∞),

or (D−f(x) = +∞ and D+f(x) = −∞).

In particular, f ∈M(R) ∩ND∞(R) ⊂ ND±(R) ∩ND∞(R).

Remark 3.5.2. (a) According to P. Bois-Reymond (cf. [BR74], p. 31), Weierstrass himself
conjectured that Ca,b ∈ ND(R) for all 0 < a < 1 and ab ≥ 1.

(b) Note that for p = 1, b ∈ 2N+ 1, the inequality ab > 1 + 3
2π implies that b ≥ 7.

(c) The case p > 1 was first considered by K. Hertz in [Her79]. His proof is a direct modifi-
cation of the original Weierstrass proof for p = 1.

Proof of Theorem 3.5.1. Fix x ∈ R and m ∈ N. Let αm ∈ Z be such that

hm := 2bmx− αm ∈ (− 1
2 ,

1
2 ].

Put x±
m := 1

2 (αm±1)b−m and observe that x±
m−x = 1

2 (±1−hm)b−m. In particular, x−
m −→ x−

and x+
m −→ x+. Then

Δf(x, x±
m) =

m−1∑

n=0

an cos
p(2πbnx±

m)− cosp(2πbnx)

x±
m − x

+

∞∑

n=m

an cos
p(2πbnx±

m)− cosp(2πbnx)

x±
m − x

=: Q′
m,± + Q′′

m,±.

By Remark 3.2.1(f), we obtain |Q′
m,±| < 2pπ (ab)m

ab−1 . For n ≥ m, we have

cosp(2πbnx±
m) = cosp(πbn−m(αm ± 1)) = −(−1)αm ,

cosp(2πbnx) = cosp(πbn−m(hm + αm)) = (−1)αm cosp(πbn−mhm).
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Hence

Q′′
m,± = 2

∞∑

n=m

an−(−1)αm(1 + cosp(πbn−mhm))

(±1− hm)b−m

= ∓(−1)αm(ab)m2
∞∑

n=0

an 1 + cosp(πbnhm)

1∓ hm
= ∓(−1)αm(ab)m2Tm,±,

where

Tm,± ≥ a0 1 + cosp(πhm)

1∓ hm
≥ 2

3
.

Thus

Δf(x, x±
m) = ∓(−1)αm2(ab)m

( pπ

ab− 1
Vm,± +

2

3
Um,±

)
, (3.5.1)

where Um,± ≥ 1, |Vm,±| ≤ 1. The condition ab > 1 + 3
2π implies that

sgnΔf(x, x+
m) = − sgnΔf(x, x−

m), |Δf(x, x±
m)| −→

m→+∞ +∞.

Hence, either (D+f(x) = +∞ and D−f(x) = −∞) or (D−f(x) = +∞ and D+f(x) =
−∞). ��

The above idea of the proof may be used to obtain other results concerning nowhere
differentiability of the function W1,a,b,0 (see below).

Theorem 3.5.3. If b ∈ 2N+ 1 and ab > 1 + π
2 , then f := W1,a,b,0 ∈ ND(R).

Proof . (Some ideas are taken from [Wie81].) We keep the notation from the proof of Theo-

rem 3.5.1. Fix an x ∈ R. For m ∈ N, define xm := αm+qm
2bm , where qm :=

{
−1, if hm < 0

1, if hm ≥ 0
.

Note that xm −→ x. Then we get

Δf(x, xm) = (−1)αm+1qm2π(ab)m
( Vm

ab− 1
+ Um

)
,

where |Vm| ≤ 1 and

Um :=

∞∑

n=0

(ab)n
1 + cos(πbn|hm|)
πbn(1− |hm|) ≥ 1 + cos(π|hm|)

π(1 − |hm|) ≥ 2

π

(because cos t ≥ 1 − 2
π t for t ∈ [0, π

2 ]). Consequently, if ab > 1 + π
2 , then |Δf(x, xm)| −→

+∞. ��
In order to continue, we need the following auxiliary function ϕ : R>0 −→ R+:

ϕ(x) :=
1− cosx

x
, x > 0.

Observe that:
• ϕ is increasing on (0, π

2 ],• limx→0+ ϕ(x) = 0.
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Lemma 3.5.4.

(a) ϕ(x) +
(
1 +

1

ϕ(3π2b )

)
ϕ(bx) ≥ ϕ

(3π
2b

)
, b ≥ 3, x ∈

[ π

2b
,
3π

2b

]
,

(b)
{
b ∈ 2N3 + 1 : ϕ

(3π
2b

)
>

2

3π

}
= {7, 9}.

Proof . Exercise—use a computer. ��
Theorem 3.5.5 (Cf. [You16a]). Assume that

b ∈ 2N+ 1 and ab > max
{
1 +

3

2
π, 1 +

1

ϕ(3π2b )

}

=

⎧
⎨

⎩
1 + 3

2π, if b ∈ {7, 9}
1 + 1

ϕ(
3π
2b )

, if b ≥ 11 . (3.5.2)

Let A := { k
2b�

: k ∈ Z, 
 ∈ N}. Put f := W1,a,b,0.

(a) If x /∈ A, then

either (D+f(x) = +∞, D+f(x) = −∞,

and max{|D−f(x)|, |D−f(x)|} = +∞)

or (D−f(x) = +∞, D−f(x) = −∞,

and max{|D+f(x)|, |D+f(x)|} = +∞).

(b) If x ∈ A, then either f ′±(x) = ±∞ or f ′±(x) = ∓∞.

Remark 3.5.6. (i) Notice that the points x ∈ R with property (b) are called cusps.

(ii) Observe that in view of the Denjoy–Young–Saks theorem, Theorem 2.3.1, almost every
x /∈ A is a knot point for f i.e., D+f(x) = D−f(x) = +∞ and D+f(x) = D−f(x) =
−∞.

Proof of Theorem 3.5.5. (Some ideas are taken from [Wie81].) We keep the notation from the
proof of Theorem 3.5.1.

(a) In view of Theorem 3.5.1 (with p = 1), we need to prove only that

either (D+f(x) = +∞, D+f(x) = −∞),

or (D−f(x) = +∞, D−f(x) = −∞).

Assume that (D+f(x) = +∞ and D−f(x) = −∞). The case (D−f(x) = +∞ and
D+f(x) = −∞) is left to the reader as an Exercise.

If the set {m ∈ N : αm is even} is infinite, then equality (3.5.1) implies that D+f(x) = −∞,
which finishes the proof. Thus, we may assume that αm is odd for m ≥ m0.

Now observe that the set M := {m ∈ Nm0 : |hm| > 1
2b} is infinite. Indeed, suppose that

|hm| ≤ 1
2b for some m ≥ m0. Let r ∈ N2 be the minimal number such that br|hm| > 1

2b . We
have 2bm+rx0 − brαm = brhm = b(br−1hm) ≤ b 1

2b = 1
2 . Thus m + r ∈M , and therefore M is

infinite.
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Let xm := αm

2bm , m ∈ M . Then, using the same method as in the proof of Theorem 3.5.1,
we get

Δf(x, xm) = sgn(hm)2π(ab)m
( Vm

ab− 1
+ Um

)
, (3.5.3)

where |Vm| ≤ 1 and

Um :=

∞∑

n=0

(ab)n
1− cos(πbn|hm|)

πbn|hm| =

∞∑

n=0

(ab)nϕ(πbn|hm|)

≥ ϕ(π|hm|) + abϕ(πb|hm|) =: Tm.

The main problem is to show that

Tm ≥ ϕ
(3π
2b

)
, m ∈M. (3.5.4)

Indeed, if (3.5.4) is satisfied, then (3.5.3) implies that either D−f(x) = +∞ or D+f(x) = −∞,
which finishes the proof.

We move to the proof of (3.5.4). Recall that 1
2b < |hm| ≤ 1

2 for m ∈ M . If 3
2b ≤ |hm| ≤ 1

2 ,
then we have Tm ≥ ϕ(π|hm|) ≥ ϕ(3π2b ), and we are done. Thus, we may assume that 1

2b <
|hm| < 3

2b , and then we can use Lemma 3.5.4(a).

(b) Fix an x = k
2b� . Take an h such that 1

2b < 2bm|h| ≤ 1
2 for some m ∈ N
 and write

x = kbm−�

2bm . Then

Δf(x, x + h) = (−1)k+1 sgn(h)2π(ab)m
( Vm

ab− 1
+ Um

)
,

where |Vm| ≤ 1 and

Um :=

∞∑

n=0

(ab)n
1− cos(2πbn+m|h|)

2πbn+m|h| .

In view of the proof of (a), we have Um ≥ ϕ(3π2b ). Consequently,• if k is odd, then f ′
+(x) = +∞ and f ′−(x) = −∞;

• if k is even, then f ′
+(x) = −∞ and f ′

−(x) = +∞.

��
Theorem 3.5.1 (with p = 1) allowed Weierstrass to answer his question on the existence

of a holomorphic function on D, continuous on D, and holomorphically uncontinuable across
∂D (cf. [Wei86], p. 90).1

Proposition 3.5.7 (Cf. [Wei86], p. 90; see also Remark 8.5.3(g)). Assume that b ∈ 2N+ 1,
ab > 1 + 3

2π, and define

1 “Ich habe in meinen Vorlesungen über die Elemente der Functionenlehre von Anfang an zwei mit den
gewöhnlichen Ansichten nicht übereinstimmende Sätze hervorgehoben, nämlich: (. . . ) (2) dass eine Function
eines complexen Arguments, welche für einen beschränkten Bereich des letzteren definirt ist, sich nicht immer
über die Grenzen dieses Bereichs hinaus fortsetzen lasse; mit andern Worten, dass monogene Functionen
einer Veränderlichen existiren, welche die Eigenthümlichkeit besitzen, dass in der Ebene der Veränderlichen
diejenigen Stellen, für welche die Function nicht definirbar ist, nicht bloss einzelne Punkte sind, sondern auch
Linien und Flächen bilden.”
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F (z) :=

∞∑

n=0

anzb
n

, z ∈ D.

Then F ∈ O(D) ∩ C(D,C), and D is the domain of existence of F .

Proof . Since |anzb
n | ≤ an, z ∈ D, n ∈ N0, the function F is well defined, F ∈ O(D), and F ∈

C(D,C). Suppose that there exist z0 = e2πix0 ∈ T, r > 0, and F̃ ∈ O(D(z0, r)) such that F̃ = F

in D ∩D(z0, r). Then W1,a,b,0(x) = ReF (e2πix) = Re F̃ (e2πix) for x in a neighborhood of x0.
Consequently, W1,a,b,0 is a real-analytic function near x0, which contradicts Theorem 3.5.1.

��
The above proposition may be easily generalized as follows.

Proposition 3.5.8. Assume that b ∈ N2 and W1,a,b,θ ∈ ND(R). Define

F (z) :=

∞∑

n=0

aneiθnzb
n

, z ∈ D.

Then F ∈ O(D) ∩ C(D,C), and D is the domain of existence of F .

3.5.1 Lerch’s Results

The class of the Weierstrass-type functions Wp,a,b,θ may be extended in the following natural
way. We define

Wp,a,b,θ(x) :=
∞∑

n=0

an cos
p(2πbnx + θn), x ∈ R,

where p ∈ N, a := (an)
∞
n=0 ⊂ C∗ with

∑∞
n=0 |an| < +∞, b := (bn)

∞
n=0 ⊂ R>0, and θ :=

(θn)
∞
n=0 ⊂ R. Functions of the above type will be studied in § 8.5. Now we mention only two

results due to M. Lerch in [Ler88] that extend Theorem 3.5.1 (with p = 1 and θ = 0).

Theorem 3.5.9 (Cf. [Ler88]). Let f := W1,a,b,0, where:
• a = (an)

∞
n=0 ⊂ R∗ is such that

∑∞
n=0 |an| < +∞,

• b = (bn)
∞
n=0 ⊂ N is such that there exists a sequence (qm)∞m=0 ⊂ N for which bn

qm
=:

pn,m ∈ N for n > m.
Let x0 := 


2qm
for some 
 ∈ Z and m ∈ N0. Assume that there is a μ > m such that

sgn(−1)
pn,m = ε ∈ {−1, 1} for n ≥ μ. Then f ′(x0) exists iff f ′(0) exists. Moreover, if f ′(x0)
exists, then

f ′(x0) = −2π
∞∑

n=0

anbn sin(2πbnx0)

(i.e., we can formally differentiate under the summation sign).

Remark 3.5.10. (a) Since f is an even function, if f ′(0) exists, then f ′(0) = 0.

(b) Consider, for example, bn := n!, qm := (m+1)!. Then pn,m := (m+2) · · ·n (pm+1,m = 1)
and (−1)
pn,m = 1 for n ≥ m + 3.
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Proof of Theorem 3.5.9. We have

f(x0 + h) =
m∑

n=0

an cos(2πbn(x0 + h)) +
∞∑

n=m+1

an(−1)
pn,m cos(2πbnh).

Hence,

Δf(x0, x0 + h)−
m∑

n=0

an
cos(2πbn(x0 + h))− cos(2πbnx0)

h

=

∞∑

n=m+1

an(−1)
pn,m
cos(2πbnh)− 1

h
= εΔf(0, h)

− ε

m∑

n=0

an
cos(2πbnh)− 1

h
+

μ−1∑

n=m+1

an((−1)
pn,m − ε)
cos(2πbnh)− 1

h
.

Consequently, f ′(x0) exists iff f ′(0) exists, and then

f ′(x0) = −2π
m∑

n=0

anbn sin(2πbnx0) = −2π
∞∑

n=0

anbn sin(2πbnx0). ��

Theorem 3.5.11 (Cf. [Ler88]). Let f := W1,a,b,0, where:
• a = (an)

∞
n=0 ⊂ R>0 is such that

∑∞
n=0 an < +∞,

• b = (bn)
∞
n=0, bn := p0 · · · pn, where (pm)∞m=0 ⊂ 2N0 + 1, bn ↗ +∞, and

• there exists an M > 0 such that ambm − π2

bm

∑m−1
n=0 anb2n ≥M , m ∈ N.

Then f ∈ ND(R).

Remark 3.5.12. In the original Weierstrass case (an = an, bn = bn with 0 < a < 1 and
b ∈ 2N+ 1), the third condition states that

(ab)m − π2

bm

m−1∑

n=0

(ab2)n ≥M, m ∈ N.

In the case ab2 = 1, we get (ab)m − π2

bm m ≥ M , i.e., 1
bm (1 − π2m) ≥ M , m ∈ N, which gives

a contradiction. Thus ab2 �= 1 and

M ≤ (ab)m − π2

bm
(ab2)m − 1

ab2 − 1
= (ab)m

(
1− π2 1− (ab2)−m

ab2 − 1

)
, m ∈ N,

which is equivalent to ab ≥ 1, ab2 > 1 + π2. Note that this condition is better than the
Weierstrass one (cf. Theorem 3.5.1), i.e., ab > 1 + 3

2π, but the result is weaker.

Proof of Theorem 3.5.11. (Cf. the proof of Theorem 3.5.1.) Fix x ∈ R and m ∈ N. Let αm ∈ Z

be such that
hm := 2bmx− αm ∈ (− 1

2 ,
1
2 ].

Put x±
m := αm±1

2bm
and observe that x±

m−x = ±1−hm

2bm
. In particular, x−

m −→ x− and x+
m −→ x+.

Then
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Δf(x, x±
m) =

m−1∑

n=0

an
cos(2πbnx±

m)− cos(2πbnx)

x±
m − x

+

∞∑

n=m

an
cos(2πbnx±

m)− cos(2πbnx)

x±
m − x

=: Q′
m,± + Q′′

m,±.

By the mean value theorem, we get

Q′
m,− −Q′

m,+ = −
m−1∑

n=0

an

(
2πbn sin(2πbnξ−n )− 2πbn sin(2πbnξ+n )

)

= −4π2
m−1∑

n=0

anb2n cos(2πbnηn)(ξ
−
n − ξ+n ).

Thus,

|Q′
m,− −Q′

m,+| ≤
4π2

bm

m−1∑

n=0

anb2n.

For n ≥ m, we have

cos(2πbnx±
m) = cos(π bn

bm
(αm ± 1)) = (−1) bn

bm
(αm±1) = −(−1)αm ,

cos(2πbnx) = cos(π bn
bm

(hm + αm)) = (−1)αm cos(π bn
bm

hm).

Hence

Q′′
m,± = −(−1)αm

2bm
±1− hm

∞∑

n=m

an(1 + cos(π bn
bm

hm)),

and therefore

Q′′
m,− −Q′′

m,+ = (−1)αm
4bm

1− h2
m

∞∑

n=m

an(1 + cos(π bn
bm

hm)).

Observe that ∞∑

n=m

an(1 + cos(π bn
bm

hm)) ≥ am(1 + cos(πhm)) ≥ am.

Thus

|Δf(x, x−
m)−Δf(x, x+

m)| ≥ 4
(
ambm − π2

bm

m−1∑

n=0

anb2n

)
≥ 4M > 0,

which immediately implies that a finite derivative f ′(x) does not exist. ��

3.5.2 Porter’s Results

In the context of Lerch’s results (cf. § 3.5.1), another approach was proposed by
M.B. Porter in [Por19].
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Theorem 3.5.13 (Cf. [Por19]). Let f := W1,a,b,0, where:
• a = (an)

∞
n=0 ⊂ C is such that

∑∞
n=0 |an| < +∞,

• b = (bn)
∞
n=0, bn := p0 · · · pn with (pm)∞m=0 ⊂ N,

• the set A := {n ∈ N : pn+1 ∈ 4N} is infinite,

• Mm := |am|bm − 3π
2

∑m−1
n=0 |an|bn −→

A�m→+∞
+∞.

Then f ∈ ND(R).
The result remains true for the function W1,a,b,−π/2.

Remark 3.5.14 (Cf. [Por19]). Theorem 3.5.13 implies that the following functions are
nowhere differentiable (Exercise):

(a) f(x) =
∑∞

n=0 an cos(2πbnx), |a| < 1, b ∈ 4N, |a|b > 1 + 3
2π.

(b) f(x) =
∑∞

n=0
an

n! cos(2πn!x), |a| > 1 + 3
2π.

(c) f(x) =
∑∞

n=0
1
bn cos(2πn!bnx), b ∈ N2.

Moreover, in the above examples, one can replace cos by sin.

Proof of Theorem 3.5.13. Fix an x0 ∈ R and an m ∈ A. Let bm+1

bm
= pm+1 = 4qm (qm ∈ N)

and let h = hm,k := k
bm+1

with k ∈ Z, |k| bm
bm+1

= |k|
4qm
≤ 3

4 . Since bm|bn for n ≥ m + 1, we get

Δf(x0, x0 + h) =
(m−1∑

n=0

an
cos(2πbn(x0 + h))− cos(2πbnx0)

h

)

+ am
cos(2πbm(x0 + h))− cos(2πbmx0)

h
= Q′

m + Q′′
m.

Then |Q′
m,±| ≤ 2π

∑m−1
n=0 |an|bn (cf. Remark 3.2.1(f)). On the other hand, since |k| bm

bm+1
≤ 3

4 ,

we have

|Q′′
m| =

∣∣∣am

2 sin(πkbmbm+1
) sin(πbmx0 +

πkbm
bm+1

)

k
bm+1

∣∣∣

≥ 2π|am|bm 1
3
4π
√
2

∣∣∣ sin
(
πbmx0 +

πk

4qm

)∣∣∣.

Observe (Exercise) that there exists an 
 ∈ {−1, 1} such that

∣∣∣ sin
(
πbmx0 +

π


4

)∣∣∣ ≥ 1√
2
.

Consequently, for h = hm := hm,
qm (note that 0 �= hm −→ 0), we get

|Δf(x0, x0 + hm)| ≥ 2π|am|bm 2

3π
− 2π

m−1∑

n=0

|an|bn =
4

3
Mn −→

A�m→+∞
+∞,

which implies that a finite derivative f ′(x0) does not exist.
The case of the function W1,a,b,−π/2 is left to the reader as an Exercise. ��
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3.6 Cellérier’s Method

Theorem 3.6.1 (Cf. [Cel90]). If b ∈ 2N and b ≥ 14, then W1,1/b,b,θ ∈ ND±(R) for every θ.

Remark 3.6.2. (a) In fact, C. Cellérier in [Cel90] considered only the case in which b ∈ 2N,
b > 1000, and θ = 0.

(b) We will see (cf. Remark 3.7.2(d)) that in fact, the result is true for all b� 1.

(c) Notice that in the case θ = θ, the result is true for all b ∈ N2 (Theorem 8.4.1).

? It is an open question whether W1,1/b,b,θ ∈ ND±(R) for all b > 1 and θ ?

Proof of Theorem 3.6.1. Put

f(x) := W1,1/b,b,θ−π
2
(x) =

∞∑

n=0

1

bn
sin(2πbnx + θn), x ∈ R.

We know that it suffices to prove that f ′
+(0) does not exist for every θ (cf. Remark 3.2.1(k)).

Define
Δm := Δf(0, b−m), Δ′

m := Δf(0, 1
2b

−m), m ∈ N.

Observe that for n > m and η ∈ { 12 , 1}, we have

sin(2πbnηb−m + θn) = sin(2πηbn−m + θn) = sin θn.

Moreover,

sin(2πbmηb−m + θm) = sin(2πη + θm) =

{
− sin θm, if η = 1

2

sin θm, if η = 1
.

Thus for m ≥ 2, we get

Δm =
m−1∑

n=0

sin(2πbn−m + θn)− sin θn
bn−m

=
m−1∑

n=0

(
sin θn

cos(2πbn−m)− 1

bn−m
+ cos θn

sin(2πbn−m)

bn−m

)
.

Observe that

∣∣∣
cos(2πbn−m)− 1

bn−m

∣∣∣ =
∣∣∣
2 sin2(πbn−m)

bn−m

∣∣∣ ≤ 2π2bn−m,

∣∣∣1− sin(2πbn−m)

2πbn−m

∣∣∣ ≤ 1

6
(2πbn−m)2.

Let

cm := 2π

m−1∑

n=0

cos θn.
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Thus

|Δm − cm| ≤
m−1∑

n=0

(
2π2bn−m +

2

3
π2b2(n−m)

)
< 2π2 1

b− 1
+

2

3
π2 1

b2 − 1

=
2π2

b2 − 1

(
b + 1 +

2

3
π
)
=: B.

Analogously,

|Δ′
m − cm + 4 sin θm| < π2 1

b− 1
+ 2π

1

6
π2 1

b2 − 1
=

π2

b2 − 1

(
b + 1 +

1

3
π
)
=: B′.

Suppose f ′
+(0) exists and is finite. Then Δm+1 − Δm −→ 0 and Δm − Δ′

m −→ 0 when
m −→ +∞. On the other hand,

|Δm+1 −Δm − 2π cos θm| < 2B, |Δm −Δ′
m − 4 sin θm| < B + B′.

Since cos2 θm + sin2 θm = 1, to get a contradiction we have only to show that

ϕ(b) :=
(B

π

)2

+
(B + B′

4

)2

< 1.

We have

ϕ(b) =
π2

144(b2 − 1)2

(
(576 + 81π2)b2 + (1152 + 768π + 162π2 + 90π3)b

+ 576 + 768π + 337π2 + 90π3 + 25π4
)
.

Then ϕ′(b) < 0 for all b > 1 and ϕ(13) < 1 (Exercise—use a computer). ��

3.7 Dini’s Method

The following general method proposed by U. Dini in [Din92] made it possible to solve many
new cases. For p ∈ N, define

δ :=

{
3
4 , if p ∈ 2N0 + 1
1
2 (1−Θp), if p ∈ 2N

, d :=

{
1, if p ∈ 2N0 + 1
1
2 , if p ∈ 2N

,

where Θp ∈ (0, 1
4 ] is such that cosp(πΘp) =

1
2 (p ∈ 2N). Consider the following two conditions:

ab > 1 and
pπδ

ab− 1
+

a

1− a
<

d

2
, (3.7.1)

(pπ)2δ(δ + d)

ab2 − 1
+
(
1 +

δ

d

) a

1− a
<

d

2
. (3.7.2)

Direct calculations give:
• (a, b) satisfies (3.7.1) iff 0 < a < a1(p) and b > Ψ1(a),
• (a, b) satisfies (3.7.2) iff 0 < a < a2(p) and b > Ψ2(a),

where
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Ψ1(x) : =
1

x

(
1 + 2pπδ

1− x

d− (d + 2)x

)
, 0 < x <

d

d + 2
=: a1(p),

Ψ2(x) : =

√
1

x

(
1 + (pπ)2δ(δ + d)

2d(1− x)

d2 − (d2 + 2(δ + d))x

)
,

0 < x <
d2

d2 + 2(δ + d)
=: a2(p) < a1(p).

Theorem 3.7.1 (Cf. [Din92], Chap. 10). If (a < a1(p) and b > Ψ1(a)) or (a < a2(p) and
b > Ψ2(a)), then Wp,a,b,θ ∈ ND±(R).

Remark 3.7.2. (a) One can easily check (Exercise) that Ψ1(x) > Ψ2(x) when x −→ 0+,
and Ψ1(x) < Ψ2(x) when x −→ a2(p)−. Thus for small a, the estimate b > Ψ2(a) is better,
and for a near a2(p), the estimate b > Ψ1(a) is better.

(b) In fact, U. Dini in [Din92] considered only the case that p = 1 and θ = 0.

(c) In the case p = 1, the theorem states the following:
If (a < 1

3 and ab > 1 + 3
2π

1−a
1−3a) or (a < 2

9 and ab2 > 1 + 21
4 π2 1−a

2−9a), then W1,a,b,θ ∈
ND±(R).

(d) In the case ab = 1, condition (3.7.2) states that

b >

{
21
8 (pπ)2 + 9

2 , if p ∈ 2N0 + 1

(2−Θp)(1−Θp)(pπ)
2 + 9− 4Θp, if p ∈ 2N

.

In particular,
• if p = 1, then b > 21

8 π2 + 9
2 ≈ 30.4077; note that if b ∈ 2N and θ = 0, then

Theorem 3.6.1 gives a better estimate (b ≥ 14);
• if p = 2, then b > 21

4 π2 + 8 ≈ 59.8154.

Proof of Theorem 3.7.1. Put f := Wp,a,b,θ. By Remark 3.2.1(k), we have only to prove that
a finite f ′

+(0) does not exist. Let ϕn(x) := cosp(2πbnx + θn), x ∈ R. For h > 0, we have

|ϕn(h)− ϕn(0)− ϕ′
n(0)h| = | 12ϕ′′

n(η)h
2| ≤ 2(pπbnh)2, (3.7.3)

where η = η(n, h) ∈ (0, h). Fix m ∈ N, h > 0, and write

f(h)− f(0) =
(m−1∑

n=0

an(ϕn(h)− ϕn(0))
)
+
(
am(ϕm(h)− ϕm(0))

)

+
( ∞∑

n=m+1

an(ϕn(h)− ϕn(0))
)
=: Am(h) + Bm(h) + Cm(h).

By Remark 3.2.1(f), we obtain |Am(h)| < 2pπh(ab)m

ab−1 , provided that ab > 1. Using (3.7.3), we
get

∣∣∣Am(h)−
m−1∑

n=0

anϕ′
n(0)h

∣∣∣ ≤
m−1∑

n=0

an2(pπbnh)2 =2(pπh)2
(ab2)m − 1

ab2 − 1

<
2(pπh)2(ab2)m

ab2 − 1
,
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|Cm(h)| ≤ 2

∞∑

n=m+1

an =
2am+1

1− a
.

Observe that there exists an hm ∈ (0, δ
bm ) such that ϕm(hm) − ϕm(0) = dεm, where εm ∈

{−1,+1}. Consequently, if ab > 1, then we get

Δf(0, hm) =
εmdam

hm

(
αm

2pπδ

d(ab− 1)
+ 1 + γm

2a

d(1− a)

)
,

where αm, γm ∈ [−1, 1]. Note that dam

hm
> d

δ (ab)m −→
m→+∞ +∞. Thus, if pπδ

ab−1 +
a

1−a < d
2 , then

|Δf(0, hm)| −→
m→+∞ +∞, and therefore a finite f ′

+(0) does not exist.

Now let us consider the general case (with ab ≥ 1). Let h′
m := d

bm . Then ϕm(h′
m) = ϕm(0).

Thus

Δf(0, hm)−Δf(0, h′
m)

=
εmdam

hm

(
α′
m

2(pπ)2h2
mb2m

d(ab2 − 1)
+ α′′

m

2(pπ)2h′
mhmb2m

d(ab2 − 1)
+ 1

+ γ′
m

2a

d(1− a)
+ γ′′

m

hm

h′
m

2a

d(1− a)

)

=
εmdam

hm

(
αm

2(pπ)2δ(δ + d)

d(ab2 − 1)
+ 1 + γm

(
1 +

δ

d

) 2a

d(1− a)

)
,

where α′
m, α′′

m, αm, γ′
m, γ′′

m, γm ∈ [−1, 1]. Observe that dam

hm
> d

δ (ab)m ≥ d
δ > 0. Thus, if

(pπ)2δ(δ+d)
ab2−1 + (1 + δ

d )
a

1−a < d
2 , then a finite f ′

+(0) does not exist. ��

3.8 Bromwich’s Method

Theorem 3.8.1 (Cf. [Bro08]). Assume that b ∈ 2N + 1, θ = θ with θ ∈ (−π
2 , π

2 ), and
ab > 1 + 3

2
π

cos θ (1− a). Let f := W1,a,b,θ. Then

min{D+f(x), D−f(x)} = −∞, max{D+f(x), D−f(x)} = +∞.

In particular, f ∈ ND∞(R).

Remark 3.8.2. In fact, T.J.I’A. Bromwich considered only the case θ = 0.

Proof of Theorem 3.8.1. Take m ∈ N, p ∈ Z, q ∈ {p + 1, p + 3}, and let t := 1
2pb

−m, u :=
1
2qb

−m. Observe that

∞∑

n=m

an cos(2πbnt + θ) =

∞∑

n=m

an cos(πbn−mp + θ) =

∞∑

n=m

an(−1)p cos θ

= (−1)p cos θ am

1− a
.
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Hence, in view of Remark 3.2.1(f), we obtain

Δf(t, u) =
2(ab)m

q − p

(
(−1)q 2 cos θ

1− a
+ M(m, p, q)

)
,

where |M(m, p, q)| ≤ 3π
ab−1 . The condition ab > 1 + 3π

2 cos θ (1 − a) implies that sgnΔf(t, u) =
sgn(−1)q.

Now fix x ∈ R and δ > 0. Let m ∈ N be such that 2b−m < δ and let r := �2xbm�.
If r < �2xbm�, then we put ti,m = 1

2pi,mb−m, pi,m := r + 1− i, ui,m = 1
2qi,mb−m, i = 1, 2,

q1,m := p1,m + 1, q2,m := p2,m + 3.
If r = �2xbm�, then we take pi,m := r − i, qi,m := pi,m + 3, i = 1, 2.
Then ti,m ∈ (x− δ, x), ui,m ∈ (x, x+ δ), i = 1, 2, and by the first part of the proof, we get

Δf(ti,m, ui,m) =
2(ab)m

qi,m − pi,m

(
(−1)qi,m 2 cos θ

1− a
+ Mi,m

)
,

where |Mi,m| ≤ 3π
ab−1 , i = 1, 2. Note that sgn q1,m = − sgn q2,m, m ∈ N. Thus, there exist

sequences (t±s )
∞
s=1, (u

±
s )

∞
s=1 with t±s < x < u±

s , t
±
s −→ x, u±

s −→ x, such that Δf(t±s , u±
s ) −→

±∞. By Remark 2.1.2, we have

min{Δf(x, u±
s ),Δf(x, t±s )} ≤Δf(t±s , u±

s ) ≤ max{Δf(x, u±
s ),Δf(x, t±s )}.

Hence −∞ = min{D+f(x), D−f(x)} < max{D+f(x), D−f(x)} = +∞. ��

3.9 Behrend’s Method

This whole section is based on [Beh49]. Let f := Ca,b.

Theorem 3.9.1. Assume that K > 0 is such that ab > 1 + 2π
K and

∀x∈R ∃h∈R∗ : Δf(x, x + h) ≥ K (3.9.1)

(cf. Remark 3.9.3). Then f ∈ ND∞(R).

It is clear that the result gets better as we increase the constant K.

Proof . Let A := 1
1−a . Note that |Δf(x, x + h)| ≤ 2A

|h| . We will prove that

∀x∈R, C>0 ∃h=hx,C , h′=h′
x,C

∈R∗ : Δf(x, x + h) > C, Δf(x, x + h′) < −C. (3.9.2)

Observe that |hx,C |, |h′
x,C | ≤ 2A

C . In particular, h(x,C), h′(x,C) −→ 0 when C −→ +∞.
Consequently, (3.9.2) implies that f ∈ ND∞(R).

Put

Wm(x) :=
m−1∑

n=0

an cos(2πbnx), Rm(x) := amf(bmx), x ∈ R, m ∈ N.

Then f = Wm + Rm. Indeed,

∞∑

n=m

an cos(2πbnx) =

∞∑

n=0

am+n cos(2πbm+nx) = amf(bmx).
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We know that |ΔWm(x, x + h)| < 2π(ab)m

ab−1 (cf. Remark 3.2.1(f)). Since f(−x) = f(x), x ∈ R,
condition (3.9.1) implies that

∀x∈R, m∈N ∃h=hx,m, h′=h′
x,m∈R∗ :

ΔRm(x, x + h) ≥ K(ab)m, ΔRm(x, x + h′) ≤ −K(ab)m.

Hence

Δf(x, x + hx,m) ≥ (ab)m
(
K − 2π

ab− 1

)
,

Δf(x, x + h′
x,m) ≤ −(ab)m

(
K − 2π

ab− 1

)
,

which immediately gives (3.9.2). ��
The same proof gives the following general theorem (Exercise).

Theorem 3.9.2. Let g : R −→ [−1, 1] be a function such that

|g(x)− g(x′)| ≤M |x− x′| and g(−x) = g(x), x, x′ ∈ R.

For 0 < a < 1 and b > 1, define G(x) :=
∑∞

n=0 ang(bnx), x ∈ R. Assume that K > 0 is such
that ab > 1 + M

K and

∀x∈R ∃h∈R∗ : ΔG(x, x + h) ≥ K.

Then G ∈ ND∞(R).

Remark 3.9.3. Let ϕ : R −→ R. Fix x ∈ R, K > 0. Observe that the following two
conditions are equivalent:

(i) ∃h∈R∗ : Δϕ(x, x + h) ≥ K;

(ii) ∃x1≤x≤x2, x1<x2 : Δϕ(x1, x2) ≥ K.

Indeed, the implication (i) =⇒ (ii) is obvious. To prove the opposite implication, observe that
using Remark 2.1.2(b), we get

K ≤Δϕ(x1, x2) ≤ max{Δϕ(x, x1),Δϕ(x, x2)}.

Thus either Δϕ(x, x2) ≥ K or Δϕ(x, x1) ≥ K.

To apply Theorem 3.9.1, one should find a constant K > 0 such that (3.9.1) is satisfied.
We get the following corollaries.

Theorem 3.9.4. If b ∈ N2 and

ab >

{
1 + 3π

2 , if b ∈ 2N

1 + 3π
2 (1− a), if b ∈ 2N+ 1

,

then f ∈ ND∞(R) (cf. Theorems 3.5.1, 3.8.1).

Proof . Since f(x) = f(x+1), x ∈ R, it suffices to check (3.9.1) only for x ∈ [0, 1). As before,
let A :=

∑∞
n=0 an = 1

1−a . In view of Remark 3.9.3, we have only to find x1 ≤ 0 < 1 ≤ x2 such

that Δf(x1, x2) = K > 0. Take x1 := − 1
2 , x2 := 1. Then
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f(x1) =

∞∑

n=0

an cos(πbn) =

{
−1 +∑∞

n=1 an = −2 + A, if b ∈ 2N

−∑∞
n=0 an = −A, if b ∈ 2N+ 1

,

f(x2) =

∞∑

n=0

an cos(2πbn) = A.

Hence

K = Δf(x1, x2) =

{
4
3 , if b ∈ 2N
4
3A, if b ∈ 2N+ 1

.

It remains to apply Theorem 3.9.1. ��
Theorem 3.9.5. If b ∈ 2N \ (3N) and ab > 1 + 16π

9 (1− a), then f ∈ ND∞(R).

Remark 3.9.6. Observe that 16π
9 (1 − a) < 3π

2 for 5
32 < a < 1. Thus for 5

32 < a < 1,
Theorem 3.9.5 improves Theorem 3.9.4.

Proof of Theorem 3.9.5. We take x1 := − 1
3 , x2 := 1. Then f(x1) = − 1

2A and K = 9
8A. ��

Theorem 3.9.7. Assume that b ∈ 2N. Let μ ∈ (0, 1
2 ) be such that

(3
2
− μ

)
π =

1

tan(πμ)

(μ ≈ 0.0697) and let k = k(b) ∈ 2N0 be such that |bμ− k| ≤ 1. If ab > 1 +
π( 3

2−k
b )

cos(π k
b )

=: C(b),

then f ∈ ND∞(R).

Remark 3.9.8. Observe that limb→+∞ C(b) = 1 +
π( 3

2−μ)

cos(πμ) = 1 + 1
sin(πμ) < 1 + 3π

2 (because
3π
2 − 1

sin(πμ) ≈ 0.1088). Thus for b� 1, Theorem 3.9.7 improves Theorem 3.9.4.

Proof of Theorem 3.9.7. Let x1 = x1(b) := − 1
2 + k

2b , x2 = x2(b) := 1 − k
2b . Then f(x1) =

− cos(π k
b ) + aA and f(x2) = cos(π k

b ) + aA. Hence Δf(x1, x2) =
cos(π k

b )
3
2− k

b

. The above points

x1, x2 suffice to prove the nowhere differentiability in [0, 1
2 ]. Since f(x+ 1

2 ) = f(x) (b is even),
we get the nowhere differentiability on R. ��
Theorem 3.9.9. For an arbitrary b > 3, if ab > 1 + (3+2ε)π

2 cos(πε) (1 − a), where ε := 1
b−1 , then

f ∈ ND∞(R).

Remark 3.9.10. One can prove (Exercise) that the above estimate is better than Dini’s

(Remark 3.7.2(c)), i.e., if a < 1
3 and ab > 1+ 3

2π 1−a
1−3a , then b > 3 and ab > 1+ (3+2ε)π

2 cos(πε) (1− a)

with ε := 1
b−1 .

Proof of Theorem 3.9.9. We have cos(πx) ≥ cos(πε) =: δ > 0, x ∈ Ip := [2p − ε, 2p + ε],
p ∈ Z. Take an m ∈ Z and let J0 := Im. Observe that every interval of length ≥ 2 + 2ε
contains an interval Ip for some p. Suppose that Jn := 1

bn Ipn (for some pn). The length of Jn

equals
2ε

bn
=

2ε

bn+1
b ≥ 2ε

bn+1

(
1 +

1

ε

)
=

2 + 2ε

bn+1
.

Thus there exists a pn+1 such that Jn+1 := 1
bn+1 Ipn+1 ⊂ Jn ⊂ · · · ⊂ J1 ⊂ J0. Let

⋂∞
n=0 Jn =

{x2m}. Then f(12x2m) ≥ δ
1−a and |2m− x2m| ≤ ε.
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Analogously, one gets a point x2m+1 such that f(12x2m+1) ≤ − δ
1−a and |2m+1−x2m+1| ≤

ε. We have xk ≤ k + ε < k + 1
2 < k + 1 − ε ≤ xk+1. Hence for every x ∈ R, there exists an

m ∈ Z such that 2x ∈ (x2m+1, x2m+4). Thus

Δf(12x2m+1,
1
2x2m+4) ≥ 4δ

(1− a)(x2m+4 − x2m+1)
≥ 4δ

(1− a)(3 + 2ε)
. ��

To get better characterizations of the case f ∈ ND(R), F.A. Behrend proposed the follow-
ing method.

Theorem 3.9.11. Assume that E,D,L > 0 are such that ab ≥ 1, ab2 > 1 + 2π2

L , and for
every x ∈ R, there exist x′, x′′ ∈ R for which:

• |x− x′|+ |x− x′′| ≤ E,

• Δf(x, x′)−Δf(x, x′′) ≥ D,

• Δf(x, x′)−Δf(x, x′′) ≥ L(|x− x′|+ |x− x′′|).
Then f ∈ ND(R).

It is clear that the result gets better as we increase the constant L.

Proof . Fix an x ∈ R and suppose that a finite f ′(x) exists. We use notation from the proof
of Theorem 3.9.1. Observe that for the function ϕ(t) := cos(2πt), we have

|Δϕ(t, t′)−Δϕ(t, t′′)| ≤ N(|t− t′|+ |t− t′′|),

where N := 2π2. Thus we get

|ΔWm(x, x′)−ΔWm(x, x′′)| ≤
m−1∑

n=0

(ab2)nN(|x− x′|+ |x− x′′|)

< N
(ab2)m

ab2 − 1
(|x − x′|+ |x− x′′|), m ∈ N.

Recall that Rm(x) = amf(bmx). Hence for every m ∈ N, there exist points x′
m, x′′

m such that:

• |x− x′
m|+ |x− x′′

m| ≤ E
bm (in particular, x′

m −→ x and x′′
m −→ x as m −→ +∞),

• ΔRm(x, x′
m)−ΔRm(x, x′′

m) ≥ D(ab)m,

• ΔRm(x, x′
m)−ΔRm(x, x′′

m) ≥ L(ab2)m(|x − x′
m|+ |x− x′′

m|).
Finally,

Δf(x, x′
m)−Δf(x, x′′

m) ≥ D(ab)m
(
1− N

L

1

ab2 − 1

)
, m ∈ N.

Letting m −→ +∞, we get a contradiction. ��
The same proof gives the following general theorem (Exercise).

Theorem 3.9.12. Let g : R −→ [−1, 1] be such that there exists an N > 0 with

|Δg(x, x′)−Δg(x, x′′)| ≤ N(|x− x′|+ |x− x′′|), x, x′, x′′ ∈ R.

For 0 < a < 1 and b > 1, define G(x) :=
∑∞

n=0 ang(bnx), x ∈ R. Assume that E,D,L > 0
are such that ab ≥ 1, ab2 > 1 + N

L , and for every x ∈ R, there exist x′, x′′ ∈ R for which:
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• |x− x′|+ |x− x′′| ≤ E,

• ΔG(x, x′)−ΔG(x, x′′) ≥ D,

• ΔG(x, x′)−ΔG(x, x′′) ≥ L(|x− x′|+ |x− x′′|).
Then G ∈ ND(R).

Remark 3.9.13. (a) Let ϕ : R −→ R. Fix x ∈ R, D > 0. Observe that the following two
conditions are equivalent:

(i) ∃x′,x′′∈R : Δϕ(x, x′)−Δϕ(x, x′′) ≥ D;

(ii) ∃ x′
1≤x≤x′

2, x
′
1<x′

2

x′′
1≤x≤x′′

2 , x
′′
1<x′′

2

: Δϕ(x′
1, x

′
2)−Δϕ(x′′

1 , x′′
2 ) ≥ D.

Indeed, the implication (i) =⇒ (ii) is obvious. The opposite implication follows from
Remark 2.1.2(b). We have

D ≤Δϕ(x, x′)−Δϕ(x, x′′)
≤ max{Δϕ(x, x′

1),Δϕ(x, x′
2)} −min{Δϕ(x, x′′

1 ),Δϕ(x, x′′
2 )},

which gives (i) with x′ ∈ {x′
1, x

′
2}, x′′ ∈ {x′′

1 , x
′′
2}.

(b) Let x′
i, x′′

i , i = 1, 2, be as in (ii) above. Assume that x′
1 < x < x′

2 and x′′
1 < x < x′′

2 .
Let x′

0 := max{x′
1, x

′′
1}, x′′

0 := min{x′
2, x

′′
2}, R := [x′

0, x
′′
0 ] × R, y′

i := ϕ(x′
i), y′′

i := ϕ(x′′
i ),

i = 1, 2, and define

L′
i(x, y) :=

y′
i − y

x′
i − x

, L′′
i (x, y) :=

y′′
i − y

x′′
i − x

, (x, y) ∈ R, i = 1, 2.

Consider four sets

S1,1 := {(x, y) ∈ R : L′
1(x, y) ≤ L′

2(x, y), L′′
1(x, y) ≤ L′′

2(x, y)},
S1,2 := {(x, y) ∈ R : L′

1(x, y) ≤ L′
2(x, y), L′′

1(x, y) ≥ L′′
2(x, y)},

S2,1 := {(x, y) ∈ R : L′
1(x, y) ≥ L′

2(x, y), L′′
1(x, y) ≤ L′′

2(x, y)},
S2,2 := {(x, y) ∈ R : L′

1(x, y) ≥ L′
2(x, y), L′′

1(x, y) ≥ L′′
2(x, y)}.

Assume that there exists a point (σ, τ) ∈ R such that:
• L′

1(σ, τ) = L′
2(σ, τ),

• L′′
1(σ, τ) = L′′

2(σ, τ),
• (x, y) ∈ S1,2 =⇒ x ≥ σ,
• (x, y) ∈ S2,1 =⇒ x ≤ σ.
Fix an x ∈ [x′

0, x
′′
0 ]. Put 
(x) := |x− x′|+ |x− x′′|. We obtain

(x, ϕ(x)) in x′ x′′ 
(x)

S1,1 x′
2 x′′

1 x′
2 − x′′

1

S1,2 x′
2 x′′

2 x′
2 + x′′

2 − 2x ≤ x′
2 + x′′

2 − 2σ

S2,1 x′
1 x′′

1 2x− x′
1 − x′′

1 ≤ 2σ − x′
1 − x′′

1

S2,2 x′
1 x′′

2 x′′
2 − x′

1

Thus for x ∈ [x′
0, x

′′
0 ], we can take

E := max{x′
2 − x′′

1 , x
′
2 + x′′

2 − 2σ, 2σ − x′
1 − x′′

1 , x
′′
2 − x′

1}, L :=
D

E
.
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Theorem 3.9.14. If b ∈ N2 and ab ≥ 1, then f ∈ ND(R).

Proof . Since f(x + 1) = f(x) and f(−x) = f(x), x ∈ R, to apply Theorem 3.9.11 it suffices
to perform the construction from Remark 3.9.13(b) for x ∈ [0, 1

2 ]. Take x′
1 := − 1

2 , x′
2 := 1,

x′′
1 := 0, x′′

2 := 1
2 . Then

f(x′
1) = f(x′′

2 ) =

{
−A, if b ∈ 2N+ 1

A− 2, if b ∈ 2N
, f(x′

2) = f(x′′
1) = A,

where A = 1
1−a . Moreover, (σ, τ) = (14 , 0). Hence

D := Δf(x′
1, x

′
2)−Δf(x′′

1 , x
′′
2 ) =

{
16
3 A, if b ∈ 2N+ 1
16
3 , if b ∈ 2N

,

E = 1, L =

{
16
3 A, if b ∈ 2N+ 1
16
3 , if b ∈ 2N

.

Thus, if

ab ≥ 1, ab2 > 1 +
2π2

L
=

{
1 + 3

8π
2(1 − a), if b ∈ 2N+ 1

1 + 3
8π

2, if b ∈ 2N
,

then f ∈ ND(R). Observe that if ab ≥ 1 and b ≥ 5, then the above condition is automatically
satisfied. Indeed, ab2 ≥ 5 > 1 + 3

8π
2 > 3

8π
2(1− a).

For b ∈ {2, 3, 4}, F.A. Behrend had to use more subtle systems of points x′
i, x′′

i , i = 1, 2
(the reader is asked to check the details).
• b = 4. Then a ≥ 1

4 and A ≥ 4
3 . It suffices to consider only x ∈ [0, 1

2 ]. We use the
following configuration:

x in x′
1 x′

2 x′′
1 x′′

2 y′
1 y′

2 y′′
1 y′′

2 σ D E L

[0, 1
6 ] − 1

6
1
6 0 1

6 1− 1
2A 1− 1

2A A 1− 1
2A

1
6 6 1

2 12

[ 16 ,
1
4 ]

1
6

1
4

1
6

1
3 1− 1

2A A− 1 1− 1
2A − 1

2A 1
6 6 1

4 24

[ 14 ,
1
3 ]

1
4

3
4

1
4

1
3 A− 1 A− 1 A− 1 − 1

2A 1
4 12 7

12
144
7

[ 13 ,
1
2 ]

1
3

1
2

1
4

1
2 − 1

2A A− 2 A− 1 A− 2 1
2 4 5

12
48
5

Consequently, we get the condition a ≥ 1
4 and ab2 > 1 + 5

24π2, which is always satisfied,
because ab2 ≥ 4 > 1 + 5

24π
2 ≈ 3.0561.

• b = 3. Then a ≥ 1
3 , A ≥ 3

2 , and f(14 + x) = −f(14 − x). Thus it suffices to consider only
x ∈ [0, 1

4 ]. We use the following configuration:

x in x′
1 x′

2 x′′
1 x′′

2 y′
1 y′

2 y′′
1 y′′

2 σ D E L

[0, 1
6 ] − 1

2
1
6 0 1

6 −A 3
2 −A A 3

2 −A 1
6

45
4

5
6

27
2

[ 16 ,
1
4 ]

1
6

1
4 0 1

4
3
2 −A 0 A 0 1

4 6 1
3 18

Consequently, we get the condition a ≥ 1
3 and ab2 > 1 + 4

27π2, which is always satisfied,
because ab2 ≥ 3 > 1 + 4

27π
2 ≈ 2.4621.
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• b = 2. Then a ≥ 1
2 , A ≥ 2, 3

2A ≥ 2(1 + a), and A − 1 − 2a ≥ 0. We use the following
configuration:

x in x′
1 x′

2 x′′
1 x′′

2 y′
1 y′

2 y′′
1 y′′

2 σ D E L

[0, 1
6 ] − 1

6
1
6 0 1

6 1− 1
2A 1− 1

2A A 1− 1
2A

1
6 12 1

2 24

[ 16 ,
1
4 ]

1
6

1
4

1
6

1
3 1− 1

2A A−1−2a 1− 1
2A − 1

2A
1
6 6 1

4 24

[ 14 ,
1
3 ]

1
4

1
2

1
4

1
3 A−1−2a A− 2 A−1−2a − 1

2A
1
4 12 1

3 36

[ 13 ,
1
2 ]

f(x)≥− 1
3

1
3 x x 2

3 − 1
2A f(x) f(x) − 1

2A x 8 1
3 24

[ 13 ,
1
2 ]

f(x)≤− 1
3

x 1
2

1
4 x f(x) A− 2 A−1−2a f(x) x 16

3
1
4

64
3

Consequently, we get the condition a ≥ 1
2 and ab2 > 1 + 3

32π2, which is always satisfied,
because ab2 ≥ 2 > 1 + 3

32π
2 ≈ 1.9252. ��

Theorem 3.9.15. If b ∈ R, b > 3, ab ≥ 1, and

ab2 > 1 +
(3 + 2ε)(1 + 2ε)

8 cos(πε)
π2(1− a),

where ε := 1
b−1 , then f ∈ ND(R).

Remark 3.9.16. (a) One can prove (Exercise) that the above estimate is better than
Dini’s (Remark 3.7.2(c)), i.e., if a < 2

9 and ab2 > 1 + 21
4 π2 1−a

2−9a , then b > 3 and ab2 >

1 + (3+2ε)(1+2ε)
8 cos(πε) π2(1− a) with ε := 1

b−1 .

(b) The conditions ab ≥ 1 and ab2 > 1 + κ(1 − a) are always satisfied if ab ≥ 1 and b > κ

(Exercise). Hence we conclude that if ab ≥ 1 and b > (3+2ε)(1+2ε)
8 cos(πε) π2 with ε := 1

b−1 , then

f ∈ ND(R). One can check (Exercise) that the above condition is satisfied if ab ≥ 1
and b ≥ 20

3 (b > 6.6208).

Proof of Theorem 3.9.15. We keep the notation from the proof of Theorem 3.9.9. Recall that
|k − xk| ≤ ε, f(12x2m) ≥ δA, f(12x2m+1) ≤ −δA, where δ := cos(πε). Fix an m ∈ Z. Suppose
that 2x ∈ [x2m, x2m+1]. The case 2x ∈ [x2m+1, x2m+2] is left to the reader as an Exerci-
se. Put P := (x, f(x)). Consider two segments S′ := [Q2m, Q2m+1], S′′ := [Q2m−1, Q2m+2],
where

Q2m−1 := (m− 1
2 − ε

2 ,−δA), Q2m := (m− ε
2 , δA),

Q2m+1 := (m + 1
2 + ε

2 ,−δA), Q2m+2 := (m + 1 + ε
2 , δA).

One can easily check that S′ ∩ S′′ = {R}, where R := (m + 1
4 , 0). Consider the following

configurations:
• The point P is below S′ and below S′′. Then

Δf(x, 1
2x2m+2)−Δf(x, 1

2x2m) ≥ slope[Q2m+2, R]− slope[Q2m, R]

=
δA

3
4 + ε

2

+
δA

1
4 + ε

2

=
16δA(1 + ε)

(3 + 2ε)(1 + 2ε)
=: D

and
| 12x2m+2 − x|+ | 12x2m − x| = 1

2x2m+2 − x + x− 1
2x2m ≤ 1 + ε =: E.
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• The point P is above S′ and below S′′. Then

Δf(x, 1
2x2m+2) − Δf(x, 1

2x2m+1) ≥ slope[Q2m+2, R] − slope[Q2m+1, R] = D,

| 12x2m+2 − x|+ | 12x2m+1 − x|
≤ m + 1 + ε

2 − (m + 1
4 ) + (m + 1

2 + ε
2 )− (m + 1

4 ) = 1 + ε = E.

• The same estimates may be obtained in the remaining two cases—Exercise.
Now we apply Theorem 3.9.11 with L := 16δA

(3+2ε)(1+2ε) . ��

3.10 Emde Boas’s Method

The aim of this section is to present an elementary proof of the following result.

Theorem 3.10.1 (Cf. [Boa69]). S1/2,2 ∈ ND(R).

Recall that the result was already proved by a different method in Theorem 3.9.14.

Proof . Step 1o. Let

g(x) := (2 −√2) sin(πx/2) + sin(πx) + sin(2πx), x ∈ R.

Then for every x0 ∈ R, there exists a y ∈ R such that

x0 ∈ [y, y + 1] and |g(y)| > π2

16
+

1

20
.

Indeed, since g(x) = g(x + 4), x ∈ R, it suffices to find points 0 ≤ y0 < · · · < yN ≤ 4 such

that |g(yi)| > π2

16 + 1
20 and yi− yi−1 < 1, i = 0, . . . , N , with y−1 := yN − 4. Using a computer

(Exercise), we check that we may take (y0, . . . , y6) = (18 ,
4
8 ,

9
8 ,

13
8 , 19

8 , 23
8 , 28

8 ).

Step 2o. Let f : R −→ R be continuous and let

A(x, h) :=
1

h

(
f(x) + f(h)− 2f

(
x +

h

2

))
.

Suppose that

∃M>0 ∀x0∈R, δ>0 ∃x∈R, h∈(0,δ) : x0 ∈ [x, x + h], |A(x, h)| ≥M. (3.10.1)

Then f ∈ ND(R).
Indeed, take x0 ∈ R and δ > 0. Let x, h be as in (3.10.1). Then we have

A(x, h) = Δf(x, x + h)−Δf(x, x + h/2)

= Δf(x + h/2, x+ h)−Δf(x, x + h). (3.10.2)

If x + h/2 ≥ x0, then we take a1 = a2 := x, b1 = x + h, b2 := x + h/2. If x + h/2 ≤ x0, then
we take a1 := x + h/2, a2 := x, b1 = b2 := x + h. Using (3.10.2), we get
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|Δf(a1, b1)−Δf(a2, b2)| = |A(x, h)| ≥M.

It remains to apply Remark 2.1.4(d).

Step 3o. Now let f := S1/2,2. We will check that f satisfies (3.10.1) with M := 1
5 . We have

A(x, h) =
∑∞

n=0 An(x, h), where

An(x, h) =
1

h

1

2n

(
sin(π2n+1x) + sin(π2n+1(x + h))− 2 sin(π2n+1(x + h/2))

)

=
1

h

1

2n

(
2 sin(π2n+1(x + h/2)) cos(π2n+1h/2)− 2 sin(π2n+1(x + h/2))

)

=
1

h

1

2n
2 sin(π2n+1(x + h/2))

(
cos(π2n+1h/2)− 1

)

=
1

h

1

2n−1
sin(π2n+1x + π2nh)(cos(π2nh)− 1).

Taking h = hm := 1/2m+1, m ∈ N2, we get

An(x, hm) = 2m−n+2 sin(π2n+1x + π2n−m−1)(cos(π2n−m−1)− 1).

In particular, if n ≥ m + 2, then An(x, hm) = 0. Thus

A(x, hm) = Rm(x) + Sm(x),

where

Rm(x) : =
m−2∑

n=0

An(x, hm),

Sm(x) : = Am−1(x, hm) + Am(x, hm) + Am+1(x, hm).

If n ≤ m− 2, then we get

|An(x, hm)| ≤ 2m−n+2 1

2
(π2n−m−1)2 = π22n−m−1.

Hence

|Rm(x)| ≤
m−2∑

n=0

|An(x, hm)| ≤
m−2∑

n=0

π22n−m−1 <
π2

4
.

Let ξ = ξx,m := 2m+1x + 1/2. Then we have

Sm(x) = 8 sin(π2mx + π/4)(cos(π/4)− 1)

+ 4 sin(π2m+1x + π/2)(cos(π/2)− 1) + 2 sin(π2m+2x + π)(cos π − 1)

= −4
(
(2 −

√
2) sin(πξ/2) + sin(πξ) + sin(2πξ)

)
= −4g(ξ),

where g is as in Step 1o.
Take x0 ∈ R, δ > 0. Let m ∈ N2 be such that hm < δ. By Step 1o, there exists a y ∈ R

such that 2m+1x0 + 1/2 ∈ [y, y + 1] and |g(y)| > π2

16 + 1
20 . Define x := (y − 1/2)/2m+1. Note

that ξx,m = y. Then x0 ∈ [x, x+hm] and |A(x, hm)| ≥ 4|g(y)|− |Rm(x)| > 4(π
2

16 + 1
20 )− π2

4 =
1
5 = M . ��
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3.11 The Method of Baouche–Dubuc

In 1992, A. Baouche and S. Dubuc, using elementary means, proved the following strong
result.

Theorem 3.11.1 (Cf. [BD92]). If b ∈ 2N + 1, ab > 1, and α := − log a
log b ∈ (0, 1), then

W1,a,b,0 is weakly α-anti-Hölder continuous uniformly with respect to x ∈ R. In particular,
W1,a,b,0 ∈ ND(R) (cf. Remark 2.5.4(b)).

The result will be generalized in Theorem 8.3.1.

Proof . Put f := W1,a,b,0. Fix x ∈ R and m ∈ N. Let k ∈ Z be such that |bmx − k| ≤ 1
2 .

Define t := k
bm , h := 1

4bm . Then for n ≥ m, we get

cos(2πbn(t± h)) = cos
(
2bn−m

(
k ± 1

4

))
= cos

(bn−m

2

)
= 0,

cos(2πbnt) = cos(2πbn−mk) = 1.

Hence,

f(t± h) =
m−1∑

n=0

an cos(2πbn(t± h)), f(t) =
m−1∑

n=0

an cos(2πbnt) +
am

1− a
.

Note that for 0 ≤ n ≤ m− 1, we have

2 cos(2πbnt)− cos(2πbn(t− h))− cos(2πbn(t + h))

= 2 cos(2πbnt)(1 − cos(πbnh))

≥ −2(1− cos(πbnh)) = −4 sin2
(πbnh

2

)
≥ −(πbnh)2.

Thus

2f(t)− f(t− h)− f(t + h) ≥ 2am

1− a
−

m−1∑

n=0

an(πbnh)2

=
2am

1− a
− (ab2)m − 1

ab2 − 1
(πh)2 >

2am

1− a
− (ab2)m

ab2 − 1
(πh)2 = amc,

where

c : =
2

1− a
− b2m

ab2 − 1
(πh)2 =

2

1− a
− π2

16(ab2 − 1)
=

32ab2 + π2a− 32− π2

16(1− a)(ab2 − 1)

≥ 32b+ π2

b − 32− π2

16(1− a)(ab2 − 1)
=

1
b (32b

2 − (32 + π2)b + π2)

16(1− a)(ab2 − 1)
=

2(b− 1)(b− π2

32 )

b(1− a)(ab2 − 1)

> 0.

On the other hand,

2f(t)− f(t− h) − f(t + h)

= 2(f(t)− f(x)) + (f(x)− f(t− h)) + (f(x) − f(t + h)),
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which implies that at least one of the above four summands is greater than cam

4 , i.e., there

exists an xm ∈ {t, t− h, t + h}, |xm − x| ≤ 3
4bm , such that |f(xm)− f(x)| > cam

4 .

Now put ε := ca
4 (43 )

α and let δ ∈ (0, 3
4 ). Take an m ∈ N such that 3

4bm ≤ δ < 3
4bm−1 . Then

cam

4 = c
4bmα = c4α

4·3αbα (
3

4bm−1 )
α > εδα. ��

3.12 Summary

In a concentrated tabular form, the best results presented so far (related to nowhere differ-
entiability of the function Wp,a,b,θ) can be summarized as follows:

ND∞ ND± M ∩ND∞

p=1, θ=0, b odd
ab>1+ 3

2π(1−a)
Theorem 3.8.1

p=1, θ arbitrary, b even, b≥14
a=1/b

Theorem 3.6.1

p odd, θ=0, b odd
ab>1+ 3

2pπ
Theorem 3.5.1

p=1, θ=0, b∈ 2N\(3N)
ab>1+ 16π

9 (1−a)
Theorem 3.9.5

p arbitrary, θ arbitrary
(a<a1(p), b>Ψ1(a)) or (a<a2(p), b>Ψ2(a))

Theorem 3.7.1

p=1, θ=0, b>3

ab>1+ (3b−1)π

2(b−1) cos( π
b−1

)
(1−a)

Theorem 3.9.9



Chapter 4

Takagi–van der Waerden-Type Functions I

Summary. The purpose of this chapter is to present basic results related to the nowhere differentiability of

the Takagi–van der Waerden function x �−→ ∑∞
n=0 a

n dist(bnx+ θn,Z). The discussion will be continued in

Chap. 9.

4.1 Introduction

Let ψ : R −→ [0, 1
2 ], ψ(x) := dist(x,Z). Observe that

• ψ(x + 1) = ψ(x),
• ψ(−x) = ψ(x), x ∈ R,
• |ψ(x) −ψ(y)| ≤ |x− y|, x, y ∈ R, and
• |ψ′(x)| = 1, x ∈ R \ 1

2Z.
For 0 < a < 1, ab ≥ 1, θ = (θn)

∞
n=0 ⊂ R, define

Ta,b,θ(x) :=
∞∑

n=0

anψ(bnx + θn), x ∈ R.

The function Ta,b,θ is called the generalized Takagi–van der Waerden function. The function
T := T1/2,2,0 is called the Takagi function; it is sometimes also called the blancmange function.
The name “blancmange” comes from the resemblance of the graph of T to a pudding of the
same name (cf. Fig. 4.1).

The aim of this section is to present basic properties of the Takagi–van der Waerden
function. More developed results (such as Theorem 9.2.1) will be given in Chap. 9.

Remark 4.1.1 (Takagi (blancmange) Function).

(a) T. Takagi in [Tak03] proved that T ∈ ND(R) (see also [KV02]).

(b) Independently, T.H. Hildebrandt in [Hil33] proved that T ∈ ND(R).

(c) A. Shidfar and K. Sabetfakhri in [SS86] proved that T ∈Hβ(R) for every β ∈ (0, 1).

(d) M. Hata in [Hat91] proved the optimal estimate

|T (x + h)− T (x)| ≤ const |h| log |h|, x, h ∈ R.

(e) W.F. Darsow, M.J. Frank, and H.-H. Kairies proved in [KDF88, DFK89] that
T ∈ ND±(I) (Theorem 4.2.1).

© Springer International Publishing Switzerland 2015
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Monographs in Mathematics, DOI 10.1007/978-3-319-12670-8 4
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0.1

0.2

0.3

0.4

0.5

0.6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 4.1 Takagi function I 	 x �−→ T (x)

(f) T has several applications in physics (cf. references in [AK06b]). Moreover, T =
1
2T1, where Tn := 1

n!
∂nLa

∂an |a=1/2, and La stands for the Lebesgue singular function
(cf. [AK06b]). One can prove that Tn ∈ ND(R) (cf. [AK06b], Theorem 5.1).

(g) T has applications in number theory, e.g., we have the following generalized Trollope’s
formula (cf. [AFS09]):

S(n) =
1

2
nm− 2m−1T

( n

2m

)
, 1 ≤ n ≤ 2m, where

S(n) :=

n−1∑

k=0

s(k), s(k) :=

∞∑

p=0

ep(k),

k =

∞∑

p=0

ep(k)2
p with ep(k) ∈ {0, 1}.

(h) The Riemann hypothesis can be formulated in terms of the Takagi function [KY00,
BKY06]. More precisely, the Riemann hypothesis is equivalent to

∑


∈Fn

T (�)− (#Fn)

∫ 1

0

T (t)dt = O(n
1
2+ε) when n −→ +∞,

where Fn is the set of all Farey fractions of order n (cf. § A.8).
(i) The function T has been studied in many other papers; see, e.g.,[All13, AK06b, AK10,

AK12, Kôn87, Krü07, Krü08, Krü10, Lag12, Vas13].
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0.5

1

1.5

2

2.5

3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 4.2 Takagi–van der Waerden type function I 	 x �−→ T0.9,1.2,0(x)

Remark 4.1.2 (Takagi–van der Waerden-Type Function; cf. Fig. 4.2).

(a) B.L. van der Waerden in [Wae30] proved that T1/10,10,0 ∈ ND(R); see also [Hai76].

(b) F.S. Cater in [Cat94] and [Cat03] proved two general results that imply that:
• T1/b,b,θ ∈ ND±(R) provided that b ≥ 10 (Theorem 4.3.1) and
• Ta,b,0 ∈ ND±(R) provided that ab ≥ 1 and b ∈ N2 (Theorem 4.3.2); in particular,
T1/b,b,0 ∈ ND±(R), provided that b ∈ N2.

(c) The function T1/b,b,0 with b ∈ N2 has been discussed in many other papers, e.g.,[Rha57b,
Bab84, Spu04].

(d) K. Knopp in [Kno18] proved that Ta,b,0 ∈ ND(R) for 0 < a < 1, ab > 4, and b ∈ 2N.

(e) D.P. Minassian and J.W. Gaisser presented in [MG84] an elementary proof showing that
T1/2,5,0 ∈ ND±(R).

(f) A. Baouche and S. Dubuc in [BD94] proved that Ta,b,θ ∈ M(R) ⊂ ND±(R) for ab > 1
(Theorem 9.2.1).

(g) The reader may find in [AK12] more historical information on the nowhere differentiability
of the generalized Takagi–van der Waerden function.

The Takagi function has the following elementary properties.

Remark 4.1.3 (cf. [Lag12]).

(a) T (1− x) = T (x), x ∈ I.

(b) T (x) = 0 iff x ∈ Z.

(c) 0 ≤ T ≤ 2
3 .

Indeed, since ψ(x) + 1
2ψ(2x) ≤ 1

2 , we have T (x) ≤ 1
2 + 1

8 + 1
32 + · · · = 2

3 .

(d) T (13 ) =
2
3 .

(e) T (Q) ⊂ Q.
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Indeed, fix an x0 = p
q ∈ Q∩I. Then rn := ψ(2nx0) = ψ({2nx0}) ∈ Q, n ∈ N, where {t} :=

t− �t� denotes the fractional part of t. Since {2nx0} is one of the numbers 0, 1
q , . . . ,

q−1
q ,

there exist μ < ν such that {2μx0} = {2νx0}. Put ω := ν − μ. Then {2n+ωx0} = {2nx0}
for n ≥ μ (observe that {2n+1x0} = {2{2nx0}} and use induction). Finally,

T (x0) =
( μ−1∑

n=0

rn
2n

)
+

ω−1∑

s=0

rμ+s

2μ+s

∞∑

k=0

1

2kω
∈ Q.

Notice that in fact, the original definition of the Takagi function T has been formulated in
the language of binary representations of numbers.

Proposition 4.1.4. Let x =
∑∞

n=1
an

2n ∈ I with (an)
∞
n=1 ⊂ {0, 1} be a binary representation

of x.

(a) (Cf. [Tak03]) Put

τk :=

∞∑

n=k

an

2n
, τ ′

k :=
1

2k−1
− τk, γk :=

{
τk, if ak = 0

τ ′
k, if ak = 1

,

Ak := a1 + · · ·+ ak,

bk :=

{
Ak, if ak = 0

k −Ak, if ak = 1

}
= (1− ak)Ak + ak(k −Ak), k ∈ N. (4.1.1)

Then

T (x) =
∞∑

k=1

γk =
∞∑

k=1

bk
2k

.

(b) (Cf. [Lyc40, AFS09]) Let

ck :=

{
0, if ak = 0

k − 2(Ak − 1), if ak = 1

}
= ak(k − 2(Ak − 1)), k ∈ N. (4.1.2)

Then T (x) =
∑∞

k=1
ck
2k
.

Proof . (a) To get the equality T (x) =
∑∞

k=1 γk, it suffices to prove that ψ(2kx) = 2kγk+1,
k ∈ N0. Fix a k ∈ N0. Then

ψ(2kx) = ψ
(
2k

∞∑

n=1

an

2n

)
=ψ

( ∞∑

n=1

an

2n−k

)

ψ(t+1)=ψ(t)
= ψ

( ∞∑

n=k+1

an

2n−k

)
= ψ(2kτk+1).

It now remains to observe that:

• 2kτk+1 ∈ I,

• ak+1 = 0 =⇒ 2kτk+1 ∈ [0, 1/2],

• ak+1 = 1 =⇒ 2kτk+1 ∈ [1/2, 1] =⇒ 2kτ ′
k+1 ∈ [0, 1/2].

Note that Ak counts the number of 1’s in the sequence (a1, . . . , ak) and k−Ak, the number
of 0’s. To get the equality

∑∞
k=1 γk =

∑∞
k=1

bk
2k , we proceed as follows:
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∞∑

k=1

γk =

∞∑

k=1

(
ak

∞∑

n=k

1

2n
+ (−1)ak

∞∑

n=k

an

2n

)

=
∞∑

n=1

1

2n

( n∑

k=1

ak + an

n∑

k=1

(−1)ak

)
=

∞∑

n=1

bn
2n

.

(b)

∞∑

k=1

bk − ck
2k

=

∞∑

k=1

(1− ak)Ak + ak(k −Ak)− ak(k − 2(Ak − 1))

2k

=

∞∑

k=1

Ak − 2ak

2k
=

( ∞∑

k=1

Ak

2k

)
− 2x = 0. ��

Remark 4.1.5.

(a) Note that

b1 = 0, bn+1 =

{
bn, if an+1 = an

n− bn, if an+1 �= an

, n ∈ N.

(b) If x = k
2m , then x has two binary representations:

x =

m∑

n=1

an

2n
=

(m−1∑

n=1

an

2n

)
+

∞∑

n=m+1

1

2n
=: x′

with am = 1. Let (bn)
∞
n=1, (cn)

∞
n=1, (b

′
n)

∞
n=1, (c

′
n)

∞
n=1, be associated to x, x′, respectively

(using (4.1.1) and (4.1.2)). Proposition 4.1.4 implies that

T (x) =
∞∑

n=1

bn
2n

=
∞∑

n=1

b′n
2n

=
∞∑

n=1

cn
2n

=
∞∑

n=1

c′n
2n

,

i.e., the results are independent of the representation.

The Takagi function may be also defined in an axiomatic way.

Proposition 4.1.6 (cf. [Rha57a]). The function f = T is the only bounded function on I

satisfying the following equations:

(1) f(x)− 2f(x2 ) = −x, x ∈ I,

(2) f(x+1
2 )− f(x2 ) = −x + 1

2 , x ∈ I.

Proof . One can easily check that T satisfies (1) and (2).
Let E be the Banach space of all bounded functions on I with the supremum norm ‖F‖ :=

supx∈I |F (x)|. Let L : E −→ E be given by the formula

L(F )(x) :=

{
x + 1

2F (2x), if 0 ≤ x ≤ 1
2

1− x + 1
2F (2x− 1), if 1

2 < x ≤ 1
, x ∈ I.

Observe that

‖L(F )− L(G)‖ ≤ 1

2
‖F −G‖, F,G ∈ E.
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One can easily prove that if F ∈ E satisfies (1) and (2) (in particular, if F = T ), then
L(F ) = F (Exercise), i.e., F is a fixed point of L. Since L is a contraction, the Banach
fixed-point theorem implies that T is the only fixed point of L. ��

4.2 Kairies’s Method

Theorem 4.2.1 (cf. [KDF88, DFK89]). If a continuous function f : I −→ R satisfies condi-
tions (1), (2) from Proposition 4.1.6, and moreover,

(3) f(1− x) = f(x), x ∈ I,
then f ∈ ND±(I). In particular, T ∈ ND±(I) (cf. Remark 4.1.3(a)).

Proof . In view of (3), we have only to prove that for every x1 ∈ (0, 1], a finite left-sided
derivative f ′

−(x1) does not exist. Fix an x1 ∈ (0, 1] and suppose that a finite f ′
−(x1) exists.

Iteration of (1) gives

f(2mx) = 2mf(x)−m2mx, x ∈ [0, 1
2m ], (4.2.1)

f( x
2m ) = 1

2m (f(x) + mx), x ∈ I, m ∈ N. (4.2.2)

We have

f(x + 1
2m ) = f( 1

2m−1 (2
m−1x + 1

2 ))

(4.2.2)
= 1

2m−1

(
f(2m−1x + 1

2 ) + (m− 1)(2m−1x + 1
2 )
)

(2)
= 1

2m−1

(
f(2m−1x)− 2mx + 1

2

)
+ (m− 1)(x + 1

2m )

(4.2.1)
= f(x)− 2x+ m

2m , x ∈ [0, 1
2m ]. (4.2.3)

Let x1 =
∑∞

s=1
1

2ns , where 1 ≤ n1 < n2 < . . . , be the infinite binary representation of x1.
Put xk :=

∑∞
s=k

1
2ns . We have xk = xk+1 + 1

2nk
and 0 < xk+1 ≤ 1

2nk
. By (4.2.3), we have

f(xk) = f(xk+1)− 2xk+1 +
nk

2nk
, which gives

f(x1) = f(xk+1)− 2(x2 + · · ·+ xk+1) +
n1

2n1
+ · · ·+ nk

2nk
. (4.2.4)

Fix a k ∈ N2 and let

y1 := x1 − 1

2nk
=

1

2n1
+ · · ·+ 1

2nk−1
+

1

2nk+1
+

1

2nk+2
+ · · · .

Let (ys)
∞
s=1 be defined for y1 in the same way as (xs)

∞
s=1 for x1. We have ys = xs+1 for s ≥ k

and ys = xs− 1
2nk

for s ≤ k− 1. If we apply (4.2.4) to (y1, k− 1) (instead of (x1, k)), then we
get

f(y1) = f(xk+1)− 2
(
x2 − 1

2nk
+ · · ·+ xk−1 − 1

2nk
+ xk+1

)
+

n1

2n1
+ · · ·+ nk−1

2nk−1
.
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Hence

Δf(x1, y1) = 2nk(f(x1)− f(y1)) = 2nk

(
− 2

k − 2

2nk
− 2xk +

nk

2nk

)

= nk − 2k + 2(1− 2nkxk+1) = nk − 2k + 2(1− uk), where uk := 2nkxk+1.

When x1 is dyadic rational, i.e., x1 = m
2q with 1 ≤ m ≤ 2q, we have (n1, n2, . . . ) =

(n1, . . . , np, np + 1, np + 2, . . . ) for some p ∈ N. Thus for k ≥ p, we get

Δf(x1, y1) = nk − 2k + 2(1− uk) = k − p + np − 2k + 2(1− uk)

= −k + np − p + 2(1− uk) ≤ −k + np − p −→
k→+∞

−∞;

a contradiction.
When x1 is not a dyadic rational, the set

S := {s ∈ N : ns+1 − ns ≥ 2}

is infinite. Assume that k ∈ S and let

z1 := x1 − 1

2nk+1
=

1

2n1
+ · · ·+ 1

2nk−1
+

1

2nk+1
+

1

2nk+1
+

1

2nk+2
+ · · · .

We have zs = xs for s ≥ k + 1 and zs = xs − 1
2nk+1 for s ≤ k. If we apply (4.2.4) to (z1, k)

(instead of (x1, k)), then we get

f(z1) = f(xk+1)− 2
(
x2 − 1

2nk+1
+ · · ·+ xk − 1

2nk+1
+ xk+1

)

+
n1

2n1
+ · · ·+ nk−1

2nk−1
+

nk + 1

2nk+1
.

Consequently,

Δf(x1, z1) = 2nk+1(f(x1)− f(z1)) = 2nk+1
(
− 2

k − 1

2nk+1
+

nk

2nk
− nk + 1

2nk+1

)

= nk − 2k + 1 −→
S�k→+∞

f ′
−(x1).

Thus there exist m, s0 ∈ N such that ns − 2s + 1 = m for s ∈ S ∩ Ns0 . In particular,
ns′ − ns = 2(s′ − s) for s, s′ ∈ S ∩ Ns0 , s < s′. For k ≥ s0, we get

Δf(x1, y1) = nk − 2k + 2(1− uk) = m− 1 + 2(1− uk) −→ m,

which implies that uk −→ 1
2 .

There are two possibilities:
• The set S3 := {s ∈ S : ns+1 − ns ≥ 3} is infinite. Then for k ∈ S3, we get

uk = 2nkxk+1 ≤ 2nk

( 1

2nk+3
+

1

2nk+4
+

1

2nk+5
+ · · ·

)
=

1

4
;

a contradiction.
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• The set S3 is finite, i.e., ns+1 − ns = 2 for s ∈ S ∩ Ns1 with an s1 ≥ s0. Suppose that
there exist s, s′ ∈ S ∩Ns1 such that s′ ≥ s+ 2 and (s, s′) ∩ S = ∅, i.e., ns′ − ns = s′ − s. On
the other hand, we know that ns′ − ns = 2(s′ − s); a contradiction. Thus ns+1 − ns = 2 for
s ∈ Ns2 with an s2 ≥ s1. Then

uk = 2nkxk+1 = 2nk

( 1

2nk+2
+

1

2nk+4
+

1

2nk+6
+ · · ·

)
=

1

3
, k ≥ s2;

a contradiction. ��

4.3 Cater’s Method

We will present two general theorems due to F.S. Cater that give a partial characterization
of nowhere differentiability of the function T1/b,b,θ.

Theorem 4.3.1 (cf. [Cat94]). Let b = (bn)
∞
n=0 ⊂ R>0, a = (an)

∞
n=0 ⊂ R∗, |an| = 1/bn,

n ∈ N0, θ = (θn)
∞
n=0 ⊂ R,

Ta,b,θ(x) :=

∞∑

n=0

anψ(bnx + θn), x ∈ R.

If bn+1

bn
≥ 10, n ∈ N0, then Ta,b,θ ∈ ND±(R). In particular, if b ≥ 10, then T1/b,b,θ ∈

ND±(R).

Functions of the class Ta,2,0 have also been studied in [HY84].

Proof of Theorem 4.3.1. Since Ta,b,θ(x + x0) = Ta,b,(bnx0+θn)∞n=0
(x) and Ta,b,θ(−x) =

Ta,b,−θ(x), x, x0 ∈ R, we have only to prove that for every θ, a finite derivative (Ta,b,θ)
′
+(0)

does not exist (cf. Remark 3.2.1(k)). Suppose that for some θ, a finite derivative (Ta,b,θ)
′
+(0)

exists. Put f := Ta,b,θ. Write f(x) = f(0)+ f ′
+(0)x+α(x)x, x > 0, where limx→0+ α(x) = 0.

Let ε > 0 be such that |α(x)| < 1/100 for 0 < x < ε.
Step 1o. Let N ∈ N be such that 5/bN < ε. Then, using Remark 2.1.4(a), for n ≥ N and

i ∈ {2, 3, 4}, we get

|Δf( i
bn

, i+1
bn

)− f ′
+(0)| = |(i + 1)α( i+1

bn
)− iα( i

bn
)| < 9

100 < 1
10 .

For some n ∈ N0, consider five intervals In,i := [ i
bn

, i+1
bn

), i = 0, . . . , 4.

Step 2o. Suppose that the function x
ψj�−→ ψ(bjx+θj) is nonlinear on two of the four intervals

In,0 ∪ In,1, In,2, In,3, In,4. Then 5/bn > 1/(2bj), which is impossible for j ∈ {0, . . . , n − 1}.
Thus, for every j ∈ {0, . . . , n−1}, the function ψj is nonlinear on at most one of the intervals
In,0 ∪ In,1, In,2, In,3, In,4. In particular, if ψj is nonlinear on one of the intervals In,2, In,3,
In,4, then ψj is linear on the interval In,0 ∪ In,1. Observe that since 2

bn
≥ 5

bn+1
, we get

[
0,

2

bn

)
= In,0 ∪ In,1 ⊃

∞⋃

s=1

[ 2

bn+s
,

5

bn+s

)
=

∞⋃

s=1

In+s,2 ∪ In+s,3 ∪ In+s,4.

Consequently, if ψj (j ∈ {0, . . . , n − 1}) is nonlinear on one of the intervals In,2, In,3, In,4,
then ψj is linear on each of the intervals In+s,2, In+s,3, In+s,4 with s ∈ N.
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Step 3o. There are infinitely many even (resp. odd) n ∈ N such that there exists in ∈
{2, 3, 4} for which all the functions ψj , j = 0, . . . , n− 1, are linear on In,in .

Suppose that there exists a constant M ∈ N such that for every i ∈ {2, 3, 4} and even
(resp. odd) number n > M there exists a ji,n ∈ {0, . . . , n− 1} such that ψji,n is not linear on
In,i. In view of Step 2o, we know that ji,n′ �= ji,n for n′ > n. Thus for every q > 3M + 8, we
get an injective mapping A −→ B, where

A := {(i, n) : i ∈ {2, 3, 4}, M < n ≤ q, n even (resp. odd)},
B := {0, . . . , q − 1}.

It follows that q = #B ≥ #A ≥ 3(12 (q −M)− 1); a contradiction.
Step 4o. Let N be as in Step 1o and let n > N be even (resp. odd) and such that all

functions ψj , j = 0, . . . , n− 1, are linear on In,in (as in Step 3o). Then

Pn := bn

n−1∑

j=0

aj

(
ψj

( in + 1

bn

)
− ψj

( in
bn

))
= bn

n−1∑

j=0

εj
bj

ηj
bj
bn

=
n−1∑

j=0

εjηj ,

where εj , ηj ∈ {−1,+1}, j = 0, . . . , n − 1. Consequently, Pn is even (resp. odd); Exercise.
Obviously, ψn(

in+1
bn

) = ψn(
in
bn
). Moreover,

bn

∣∣∣
∞∑

j=n+1

aj

(
ψj

( in + 1

bn

)
− ψj

( in
bn

))∣∣∣ ≤ bn

∞∑

j=n+1

|aj |1
2
≤ 1

2

∞∑

n=1

1

10j
=

1

18
.

Hence |Δf( inbn , in+1
bn

) − Pn| < 1
18 , and consequently, by Step 1o, |Pn − f ′

+(0)| < 1
5 . Taking n

even and m odd as in Step 3o, we get 1 ≤ |Pn − Pm| < 2
5 ; a contradiction. ��

Theorem 4.3.2 (cf. [Cat03]). Let

T (x) :=

∞∑

n=0

anfn(bnx), x ∈ R,

where a = (an)
∞
n=0 ⊂ R>0,

∑∞
n=0 an < +∞, b = (bn)

∞
n=0 ⊂ N, bn+1

bn
∈ N2,

lim supn→+∞ anbn > 0, (fn)
∞
n=0 ⊂ C(R, I), fn(−x) = fn(x), x ∈ R, fn(2k) = 0,

fn(2k + 1) = 1, fn|[2k,2k+2] is concave, k ∈ Z, n ∈ N0.
Then T ∈ ND±(R). In particular, taking fn(x) := 2ψ(x2 ), we conclude that if b ∈ N2, then

T1/b,b,0 ∈ ND±(R).

Remark 4.3.3. An independent proof showing that T ∈ ND±(R) may be found in [Cat84].
Similar problems have been studied in [Mik56].

Notice that Theorem 4.3.2 is a general tool that may be applied to many other series.
For example, one can take fn(x) := ϕn(2ψ(x2 )), where ϕn : I −→ I is an increasing concave
function with ϕn(0) = 0, ϕn(1) = 1.

(a) In particular, we may take

ϕn(t) = t1/m (m ≥ 1), ϕn(t) =
sin t

sin 1
, ϕn(t) =

1

2
(t1/3 + t1/5);

see [Cat03] for more examples.
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(b) Taking ϕn := id, we easily conclude that the Faber functions

∞∑

n=0

1

10n
ψ(2n!x),

∞∑

n=0

1

n!
ψ(2n!x), x ∈ R,

are of the class ND±(R) (cf. [Fab07, Fab08, Fab10]).
(c) Similarly, the Lebesgue function

∞∑

n=0

1

2n
sin(2n

2

x), x ∈ R,

is of the class ND±(R) (cf. [Leb40]).
(d) In an analogous way, one can easily prove (Exercise) that the McCarthy function

∞∑

n=0

1

2n
g(22

n

x), x ∈ R,

where g(x) := 4ψ(14 (x+2))−1, is of the classND±(R) (cf. [McC53]). Note that g(x+4) =
g(x) and

g(x) =

{
1 + x, if x ∈ [−2, 0]
1− x, if x ∈ [0, 2]

.

Proof of Theorem 4.3.2. Obviously, T ∈ C(R).
Since T (−x) = T (x), x ∈ R, we have only to show that T ′

+(x) does not exist for every
x ∈ R. Suppose that T ′

+(x0) exists for some x0 ∈ R. Write

T (x) = T (x0) + T ′
+(x0)(x− x0) + α(x)(x − x0), x > x0,

where limx→x0+ α(x) = 0. Let 0 < ε < 1
10L, where L := lim supn→+∞ anbn. Take a δ > 0

such that |α(x)| < ε for x0 < x < x0 + 2δ. Fix an N ∈ N such that bN > 4
δ and aNbN > 10ε.

Take a k ∈ Z with 2k − 2 ≤ bNx0 < 2k and define xi := 2k+i−1
bN

, i = 1, 2, 3. Then, by
Remark 2.1.4(a), we get

|ΔT (x1, x2)−ΔT (x1, x3)| = |bN (α(x2)(x2 − x0)− α(x1)(x1 − x0))

− bN
2
(α(x3)(x3 − x0) + α(x1)(x1 − x0))|

≤ bN

(
ε
3

bN
+ ε

2

bN

)
+

bN
2

(
ε
4

bN
+ ε

2

bN

)
= 8ε.

If n > N and m := bn
bN
∈ N, then

fn(bnxi) = fn((2k + i− 1)m) =

{
0, if i ∈ {1, 3}
fn((2k + 1)m), if i = 2

.

Thus

fn(bnx2)− fn(bnx1)

x2 − x1
− fn(bnx3)− fn(bnx1)

x3 − x1
=

fn(bnx2)− 0

x2 − x1
− 0− 0

x3 − x1
≥ 0.
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If n = N , then we get

fN(bNx2)− fN (bNx1)

x2 − x1
− fN (bNx3)− fN (bNx1)

x3 − x1

=
fN (2k + 1)− fN (2k)

x2 − x1
− fN (2k + 2)− fN (2k)

x3 − x1
= bN .

If n < N and m := bN
bn
∈ N, k = 
m + r (
 ∈ Z, r ∈ {0, . . . ,m − 1}), then 2
 ≤ 2
 + 2r

m =

bnx1 < bnx3 = 2
 + 2r+2
m ≤ 2
 + 2. Thus the function [x1, x3] � x �−→ fn(bnx) is concave.

Consequently,

fn(bnx2)− fn(bnx1)

x2 − x1
− fn(bnx3)− fn(bnx1)

x3 − x1
≥ 0.

Finally,

ΔT (x1, x2)−ΔT (x1, x3) ≥ aNbN > 10ε;

a contradiction. ��
Remark 4.3.4. In [Lan08], G. Landsberg showed that if (an)n∈N0 ⊂ R,

∑∞
n=0 |an| < +∞,

and if the series (S) =
∑∞

n=0 2
nan is divergent, then the function F : R −→ R, F (x) :=∑∞

n=0 anψ(2nx), belongs to ND(R). If the series (S) is absolutely convergent, then F ′
+ and

F ′− exist as finite values everywhere.

4.4 Differentiability of a Class of Takagi Functions

It is clear that the Takagi function

Fa(x) := Ta,2,0(x) =

∞∑

n=0

anψ(2nx), x ∈ R,

may be formally defined for all a ∈ R with 0 < |a| < 1
2 . Obviously, Fa ∈ C(R). We are not

interested in the nowhere differentiability of Fa, but in its differentiability. The aim of this
section is to prove the following Theorem 4.4.2 due to A.L. Thomson and J.N. Hagler.

Remark 4.4.1. Put fn(x) := ψ(2nx), x ∈ R, n ∈ N0 (f0 ≡ ψ). Then for every n ∈ N0, we
have:

(a) fn is periodic with period 1
2n .

(b) (fn)
′
+(x) =

{
2n, if 0 ≤ x < 1

2n+1

−2n, if 1
2n+1 ≤ x < 1

2n

}
= 2nψ′

+(2
nx).

(c) (fn)
′−(x) =

{
2n, if 0 < x ≤ 1

2n+1

−2n, if 1
2n+1 < x ≤ 1

2n

}
= 2nψ′

−(2nx).

(d) (fn)
′
+ and (fn)

′
− are periodic with period 1

2n .

Theorem 4.4.2 (cf. [TH]). Let 0 < |a| < 1
2 , and for x ∈ I, let x =

∑∞
n=1

xn

2n be a binary
representation of x. Then:

(a) F1/4(x) = 2x(1− x).
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(b) If x < 1, then (Fa)
′
+(x) =

∑∞
n=0 an(fn)

′
+(x) ∈ R. Moreover, if

sup{n ∈ N : xn = 0} = +∞, then (fn)
′
+(x) = 2n(1 − 2xn+1), and consequently,

(Fa)
′
+(x) =

a
1−2a − 2

∑∞
n=0(2a)

nxn+1.

(c) If x > 0, then (Fa)
′
−(x) =

∑∞
n=0 an(fn)

′
−(x) ∈ R. Moreover, if

sup{n ∈ N : xn = 1} = +∞, then (fn)
′−(x) = 2n(1−2xn+1), and consequently,(Fa)

′−(x) =
a

1−2a − 2
∑∞

n=0(2a)
nxn+1.

(d) If a �= 1
4 , then a finite F ′

a(x) exists iff x is not a dyadic rational.

Proof . (a) Let E := {F ∈ C(R) : ∀x∈R : F (x + 1) = F (x)}. Consider E as a Banach
space with the supremum norm ‖F‖ := supx∈R

|F (x)|. Define an operator L : E −→ E,
L(F )(x) := ψ(x) + 1

4F (2x), x ∈ R. Let H ∈ E be such that H(x) = 2x(1 − x) for x ∈ I.
Observe that for x ∈ I, we get

L(H)(x) = ψ(x) +
1

4
H(2x) =

{
x + x(1 − 2x), if x ≤ 1

2

1− x + 1
4H(2x− 1), if x ≥ 1

2

}
= H(x).

One may easily check (Exercise) that ‖Ln(ψ)−F1/4‖ −→
n→+∞ 0, where Ln stands for the

nth iterate of L.
For every F,G ∈ E, we have ‖L(F )− L(G)‖ = 1

4‖F −G‖. Consequently, by the Banach
fixed-point theorem, there exists exactly one F ∗ ∈ E such that L(F ∗) = F ∗, and moreover,
for every F ∈ E, we get Ln(F ) −→ F ∗.
Thus F1/4 ≡ F ∗ ≡ H .

(b) Let ε > 0, and let k ∈ N be such that 2(2|a|)k+1

1−2|a| < ε. Observe that there exists a 0 <

δ < 1 − x such that fn(x + h) = fn(x) + (fn)
′
+(x)h for n = 0, . . . , k and 0 < h < δ.

Consequently, for 0 < h < δ, we get

∣∣∣ΔFa(x, x + h)−
∞∑

n=0

an(fn)
′
+(x)

∣∣∣

≤
∞∑

n=k+1

|a|n
∣∣∣
ψ(2n(x + h))−ψ(2nx)

h

∣∣∣+
∞∑

n=k+1

|a|n|(fn)′+(x)|

Remark 4.4.1≤ 2

∞∑

n=k+1

(2|a|)n =
2(2|a|)k+1

1− 2|a| < ε,

which proves the formula for (Fa)
′
+(x).

Let x′ =
∑∞

n=1
x′
n

2n with sup{n ∈ N : x′
n = 0} = +∞. Then

ψ′
+(x

′) =

{
1, if x′

1 = 0

−1, if x′
1 = 1

}
= 1− 2x′

1.

Take a k ∈ N0. Then

2kx =
( k∑

n=1

2k−nxn

)
+

∞∑

n=k+1

xn

2n−k
=: y + x′ = y +

∞∑

n=1

xk+n

2n
= y +

∞∑

n=1

x′
n

2n
,
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where y ∈ N0. Hence

(fk)
′
+(x

′) = 2kψ′
+(2

kx) = 2kψ′
+(x

′) = 2k(1− 2x′
1) = 2k(1− 2xk+1).

(c) Exercise.

(d) If x is not a dyadic rational, then sup{n ∈ N : xn = 0} = sup{n ∈ N : xn = 1} = +∞,
and therefore, the result follows from (b) and (c).
If x = m

2k is a dyadic rational (m, k ∈ N0, m ≤ 2k, and (m, 2k) = 1), then

(fn)
′
+(x)− (fn)

′
−(x) = 2n(ψ′

+(2
nx) −ψ′

−(2
nx))

= 2n
(
ψ′

+

( m

2k−n

)
−ψ′

−
( m

2k−n

))
=

⎧
⎪⎨

⎪⎩

0, if n = 0, . . . , k − 2

−2k, if n = k − 1

2n+1, if n = k, k + 1, . . .

,

with obvious modifications for k ∈ {0, 1}. Hence, using (b) and (c), we get

(Fa)
′
+(x)− (Fa)

′
−(x) = −ak−12k +

∞∑

n=k

an2n+1 =
2(2a)k−1

1− 2a
(4a− 1) �= 0. ��



Chapter 5

Bolzano-Type Functions I

Summary. The goal of this chapter is to prove basic results related to the nowhere differentiability of

Bolzano-type functions. Some more advanced properties will be presented in Chap. 10.

5.1 The Bolzano-Type Function

Bolzano-type functions f : I −→ R will be of the form f(x) = limn→+∞ Ln(x), x ∈ I, where
each function Ln : I −→ R, n ∈ N0, is continuous, piecewise linear, and the convergence is
uniform (which guarantees that f is continuous). Moreover, L0(x) = x, x ∈ I, and Ln+1 is
obtained from Ln via the following geometric procedure (Fig. 5.1).

Fix numbers N ∈ N2, 0 = ϕ0 < ϕ1 < · · · < ϕN = 1, Φ1, . . . , ΦN−1 ∈ R. Let Φ0 := 0,
ΦN := 1.

For two points P = (a,A), Q = (b, B) ∈ R
2, a < b, consider the segment S := [P,Q] ⊂ R

2

identified with the graph of the affine function

J � x �−→ LP,Q
0 (x) := A + κ(x − a),

where J = J(S) := [a, b], Δ = Δ(S) := B − A, δ = δ(J) := b − a, κ = κ(S) := Δ
δ . Consider

N + 1 points

Ri = (ai, Ai) := (a + ϕiδ, A + ΦiΔ), i = 0, . . . , N.

Note that R0 = P and RN = Q. Let Si = Si(P,Q) := [Ri−1, Ri], Ji = Ji(P,Q) := [ai−1, ai],

i = 1, . . . , N , and let LP,Q
1 : J −→ R be the piecewise affine function corresponding to the

union of segments S1 ∪ · · · ∪ SN . We say that the interval Ji is of type i (type(Ji) = i). We
have

Δ(Si) = (Φi − Φi−1)Δ, δ(Ji) = (ϕi − ϕi−1)δ, κ(Si) =
Φi − Φi−1

ϕi − ϕi−1
κ,

i = 1, . . . , N.

Observe that

max
1≤i≤N

|Δ(Si)| = MΔ · |Δ|, where MΔ := max
1≤i≤N

|Φi − Φi−1|,
max

1≤i≤N
δ(Ji) = Mδ · δ, where Mδ := max

1≤i≤N
(ϕi − ϕi−1) < 1,
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max
1≤i≤N

|κ(Si)| = Mκ · |κ|, where Mκ := max
1≤i≤N

|Φi − Φi−1|
ϕi − ϕi−1

,

|LP,Q
1 (x′)− LP,Q

1 (x′′)| ≤Mκ|κ||x′ − x′′|, x′, x′′ ∈ J,

max
x∈J
|LP,Q

1 (x)− LP,Q
0 (x)| = ML · |Δ|, where ML := max

1≤i≤N−1
|Φi − ϕi|.

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 5.1 The function L1 for N = 4, ϕ1 = 3
8
, ϕ2 = 1

2
, ϕ3 = 7

8
, Φ1 = 5

8
, Φ2 = 1

2
, Φ3 = 9

8
, P = (0, 0),

Q = (1, 1)

Assume additionally that MΔ < 1.
We are ready to define the Bolzano-type function using the following recursive procedure.
We begin with P = (a,A) := (0, 0) and Q = (b, B) := (1, 1) and continue using the general

construction given previously. We get:

• N intervals J1,i := [a1,i−1, a1,i], i = 1, . . . , N ,

• N segments S1,i = [(a1,i−1, A1,i−1), (a1,i, A1,i)], i = 1, . . . , N , and

• a continuous piecewise affine function L1 : I −→ R.

We have type(J1,i) = i, i = 1, . . . , N . We repeat the above construction for each of the
segments S1,i, i = 1, . . . , N . We get:

• N2 intervals J2,i = [a2,i−1, a2,i], i = 1, . . . , N2,

• N2 segments S2,i = [(a2,i−1, A2,i−1), (a2,i, A2,i)], i = 1, . . . , N2, and

• a continuous piecewise affine function L2 : I −→ R.

We have type(J2,sN+i) = i, s = 0, . . . , N − 1, i = 1, . . . , N . After n steps, we arrive at:

• Nn intervals Jn,i = [an,i−1, an,i], i = 1, . . . , Nn,

• Nn segments Sn,i = [(an,i−1, An,i−1), (an,i, An,i)], i = 1, . . . , Nn, and

• a continuous piecewise affine function Ln : I −→ R.
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We have type(Jn,sN+i) := i, s = 0, . . . , Nn−1 − 1, i = 1, . . . , N . Set

Jn : = {[an,i−1, an,i] : i = 1, . . . , Nn},
Sn : = {[(an,i−1, An,i−1), (an,i, An,i)] : i = 1, . . . , Nn}.

If J = [an,i−1, an,i] ∈ Jn, then S(J) := [(an,i−1, An,i−1), (an,i, An,i)]. Conversely, if S =
[(an,i−1, An,i−1), (an,i, An,i)] ∈ Sn, then J(S) := [an,i−1, an,i]. We have

|Δ(Sn,i)| ≤Mn
Δ, δ(Jn,i) ≤Mn

δ , |κ(Sn,i)| ≤Mn
κ
, i = 1, . . . , Nn,

|Ln(x
′)− Ln(x

′′)| ≤Mn
κ |x′ − x′′|, x′, x′′ ∈ I,

max
x∈I

|Ln+1(x)− Ln(x)| ≤MLMn
Δ.

In particular, the series
∑∞

n=1(Ln+1−Ln) is convergent uniformly on I. Consequently, the
Bolzano-type function

f(x) := lim
n→+∞Ln(x) = L1(x) +

∞∑

n=1

(Ln+1 − Ln(x)), x ∈ I,

is well defined and is continuous on I.
Let Nn := {an,i : i = 0, . . . , Nn}, and let N :=

⋃∞
n=1 Nn denote the set of nodes.

Remark 5.1.1.

(a) The classical Bolzano function B (cf. § 10.1) is the case in which N = 4, ϕ1 = 3
8 , ϕ2 = 1

2 ,
ϕ3 = 7

8 , Φ1 = 5
8 , Φ2 = 1

2 , Φ3 = 9
8 (MΔ = 5

8 ) (cf. Fig. 5.2).

(b) N is countable and dense in I.

(c) If x0 ∈ Np, then f(x0) = Ln(x0) for n ≥ p.

(d) Let x0 ∈ I and let Sn ∈ Sn be such that x0 ∈ Jn := J(Sn) = [an, bn]. If x0 /∈ Nn,
then Sn is uniquely determined, and an < x0 < bn. If p is the minimal number such that
x0 ∈ Np \ {1}, then we choose Sn such that an = x0 for all n ≥ p (then we say for short
that the sequence (Sn)

∞
n=1 is of type (L)). Notice that if p is the minimal number such

that x0 ∈ Np \ {0}, then we may also choose Sn such that bn = x0 for all n ≥ p (then
the sequence (Sn)

∞
n=1 is of type (R)). In any case, we have Jn+1 ⊂ Jn for all n ∈ N and

{x0} =
⋂∞

n=1 Jn. We say that (Sn)
∞
n=1 is a determining sequence for x0.

(e) Conversely, if (Sn)
∞
n=1 is a sequence such that Sn ∈ Sn and Jn+1 ⊂ Jn (Jn := J(Sn)),

then (Sn)
∞
n=1 is a determining sequence for x0, where {x0} =

⋂∞
n=1 Jn.

(f) If Mκ ≤ 1, then f is Lipschitz continuous; in particular, f ′(x) exists for a.a. x ∈ I. Thus,
from our “nowhere differentiable” point of view, we have to assume that Mκ > 1.

Define

Σ :=
{
i ∈ {1, . . . , N} : |Φi − Φi−1|

ϕi − ϕi−1
> 1

}
Σ′ := {1, . . . , N} \Σ.

Theorem 5.1.2. Assume that MΔ < 1, Σ �= ∅, and

Φi − Φi−1

ϕi − ϕi−1
= −1, i ∈ Σ′. (5.1.1)

Then f ∈ ND(I).
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Fig. 5.2 The first six steps of the construction of the classical Bolzano function B
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Remark 5.1.3.

(a) The above assumptions imply that |κ(Sn,i)| ≥ 1, n ∈ N, i = 1, . . . , Nn.

(b) In the Bolzano case (cf. Remark 5.1.1(a)), we have MΔ = 5
8 and Σ = {1, 3}. Moreover,

in this case, condition (5.1.1) is also satisfied.

Proof of Theorem 5.1.2. Let

Mκ,0 := min
{ |Φi − Φi−1|

ϕi − ϕi−1
: i ∈ Σ

}
> 1.

Suppose that f ′(x0) ∈ R exists. Let (Sn)
∞
n=1 be a determining sequence for x0 (cf. Re-

mark 5.1.1(d)) and let Jn = J(Sn) = [an, bn]. Then

κ(Sn) = ΔLn(an, bn) = Δf(an, bn) −→
n→+∞ f ′(x0)

(cf. Remark 2.1.2). There are the following two possibilities:

(A) There exists an n0 ∈ N such that type(Jn) ∈ Σ for n ≥ n0.
Then |κ(Sn)| ≥ Mn−n0

κ,0 |κ(Sn0 )| for n ≥ n0, and consequently |κ(Sn)| −→ +∞; a con-
tradiction.

(B) There exists a subsequence (ns)
∞
s=1, n1 ≥ 2, such that type(Jns) ∈ Σ′ for all s ∈ N.

Then κ(Sns ) = −κ(Sns−1), s ∈ N. Thus, a finite or infinite limit limn→+∞ κ(Sn) does
not exist; a contradiction.

��
Notice that in the case (B), a finite or infinite derivative f ′(x0) does not exist.

Exercise 5.1.4. Consider the case N = 4, ϕ2 = 1
2 = Φ2.

(a) Prove that MΔ < 1⇐⇒ Φ1 ∈ (− 1
2 , 1) and Φ3 ∈ (0, 3

2 ).

(b) Prove that each of the following sets Σ may be realized by a configuration of parameters
0 < ϕ1 < 1

2 < ϕ3 < 1, Φ1 ∈ (− 1
2 , 1), Φ3 ∈ (0, 3

2 ):

{1, 2, 3, 4}, {2, 3, 4}, {1, 3, 4}, {1, 2, 4}, {1, 2, 3}, {2, 4}, {1, 3}.

5.2 Q-Representation of Numbers

We will describe an alternative tool to define Bolzano-type functions, not via the recursive
procedure given above, but via a certain arithmetic representation of real numbers, called
Q-representation (cf. [PV13]).

We fix N ∈ N2 and δ0, . . . , δN−1 > 0 such that δ0+· · ·+δN−1 = 1. Put Q := (δ0, . . . , δN−1).
Define ϕ0 := 0, ϕi+1 := ϕi + δi, i = 0, . . . , N − 1 (note that ϕN = 1). Put Mδ :=
max{δ0, . . . , δN−1} (note that Mδ < 1). For a sequence α = (αn)

∞
n=1 ⊂ {0, . . . , N − 1},

define

xk(α) :=

k∑

n=1

ϕαndn−1(α), k ∈ N,
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where d0(α) := 1 and d
(α) := δα1 · · · δα�
, 
 ∈ N. Since d
(α) ≤M 


δ , the number

x(α) :=

∞∑

n=1

ϕαndn−1(α) = lim
k→+∞

xk(α)

is well defined.
If x(α) = xk(α) for some k ∈ N (i.e., αn = 0 for n ≥ k + 1), then we say that x(α) is

Q-rational.
Observe that when δi :=

1
N , i = 0, . . . , N − 1, we get ϕi =

i
N , i = 0, . . . , N , and therefore

x(α) =
∑∞

n=1
αn

Nn is an N -adic representation.
The following remark collects basic properties of Q-representations.

Remark 5.2.1 (Details Are Left to the Reader as an Exercise).

(a) For every α, we have x(α) ≤ xk(α)+dk(α) ≤ 1, k ∈ N. In particular, x(α) ≤ 1. Moreover,
xk+1(α) + dk+1(α) ≤ xk(α) + dk(α), k ∈ N.

(b) If x(α) = xk(α) is Q-rational with αk ≥ 1, then x(α) = x(β), where β :=
(α1, . . . , αk−1, αk − 1, N − 1, N − 1, . . . ).

(c) Every number x ∈ Imay be written in the form (Q-representation) x = x(α) for some α. If
x is not Q-rational, then the Q-representation is uniquely determined. If x = x(α) = xk(α)
is Q-rational with αk ≥ 1, then x has exactly two different Q-representations (as in (b)).

5.2.1 Continuity of Functions Given via Q-Representation

Let N , δi, i = 0, . . . , N − 1, ϕi, i = 0, . . . , N , dk(α), xk(α), x(α) be as before. Put Ξ
 :=
{0, . . . , N − 1}
, 
 ∈ N.

Fix a sequence (σn)
∞
n=1 ⊂ N with n ≤ σn ≤ σn+1. Let gn : Ξσ(n) −→ C, Mn :=

maxΞσ(n)
|gn|, n ∈ N, and assume that

∑∞
n=1 Mn < +∞. We assign to each x = x(α) ∈ I

the value f(x) :=
∑∞

n=1 gn(α1, . . . , ασ(n)), and we assume that f(x) is independent of the
different Q-representations of x. More precisely, we assume that

gk(α1, . . . , ασ(k)) +

∞∑

n=k+1

gn(α1, . . . , αk, 0, . . . , 0︸ ︷︷ ︸
(σ(n)−k)×

)

= gk(α1, . . . , αk−1, αk − 1, αk+1, . . . , ασ(k))

+

∞∑

n=k+1

gn(α1, . . . , αk−1, αk − 1, N − 1, . . . , N − 1︸ ︷︷ ︸
(σ(n)−k)×

),

k ∈ N, (α1, . . . , ασ(k)) ∈ Ξσ(k), αk > 0.

Lemma 5.2.2. Under the above assumptions, we have f ∈ C(I).
Proof . Step 1o. Right continuity of f . Fix an x = x(α) ∈ [0, 1) with the Q-representation
chosen such that sup{n ∈ N : αn ≤ N − 2} = +∞. For an arbitrary ε > 0, let p ∈ N be
such that

∑∞
n=p+1 Mn ≤ ε

2 . Let k ≥ σ(p) be such that αk+1 ≤ N − 2. Take an arbitrary
x′ = x(β) ∈ (x, x(α) + dk(α)). Then αn = βn, n = 1, . . . , k.

Indeed, suppose that α1 < β1. Then x(β) < xk(α) + dk(α) ≤ ϕα1 + δα1 ≤ ϕβ1 ≤ x(β);
a contradiction. If β1 < α1, then x(β) ≤ ϕβ1 + δβ1 ≤ ϕα1 ≤ x(α); a contradiction. Thus
α1 = β1.
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Consequently, we get x(α̂) < x(β̂) < xk−1(α̂) + dk−1(α̂), where α̂ := (α2, α3, . . . ). A finite
induction finishes the proof.

Finally,

|f(x′)− f(x)| ≤
∞∑

n=p+1

|gn(β1, . . . , βσ(n))− gn(α1, . . . , ασ(n))| ≤ 2

∞∑

n=p+1

Mn ≤ ε.

Step 2o. Left continuity of f—Exercise. ��

5.2.2 Bolzano-Type Functions Defined via Q-Representation

Let N ∈ N2, ϕi, Φi, i = 0, . . . , N , be as in § 5.1. Define

δi := ϕi+1 − ϕi, Δi := Φi+1 − Φi, i = 0, . . . , N − 1.

Assume that MΔ := max{|Δ0|, . . . , |ΔN−1|} < 1.
We are going to define the Bolzano-type function f from § 5.1 via Q-representation (with

Q := (δ0, . . . , δN−1)) in the sense of § 5.2.1. The definition from § 5.1 immediately implies
that

f(x(α)) = f
( ∞∑

n=1

ϕαndn−1(α)
)
= Φα1 +

∞∑

n=2

ΦαnΔα1 · · ·Δαn−1 ,

α = (αn)
∞
n=1 ⊂ {0, . . . , N − 1};

notice that since MΔ < 1, the series is convergent. On the other hand, we have

f(x(α)) =

∞∑

n=1

gn(α1, . . . , αn),

where

g1(α1) := Φα1 , gn(α1, . . . , αn) := ΦαnΔα1 · · ·Δαn−1 , n ∈ N2.

Thus we are in the situation of § 5.2.1 with σ(n) := n and Mn ≤Mn−1
Δ .

Notice that if 0 = Φ0 < Φ1 < · · · < ΦN−1 < ΦN = 1, then the above series

Φα1 +

∞∑

n=2

ΦαnΔα1 · · ·Δαn−1

may be considered a (Δ0, . . . , ΔN−1)-representation of f(x(α)).

Example 5.2.3. Let us illustrate the above procedure with the example of the classical
Bolzano function B. We have

N = 4, ϕ1 =
3

8
, ϕ2 =

1

2
, ϕ3 =

7

8
, Φ1 =

5

8
, Φ2 =

1

2
, Φ3 =

9

8
.
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We get

δ0 =
3

8
, δ1 =

1

8
, δ2 =

3

8
, δ3 =

1

8
, Δ0 =

5

8
, Δ1 = −1

8
, Δ2 =

5

8
, Δ3 = −1

8
.

Recall that MΔ = 5
8 < 1. Let ki

8 := ϕi,
Ki

8 := Φi, i = 0, 1, 2, 3. Then for α = (αn)
∞
n=1 ⊂

{0, 1, 2, 3}, the representation of the point x = x(α) ∈ I may be written in the form

x = x(α) = ϕα1 +

∞∑

n=2

ϕαnδα1 · · · δαn−1 =

∞∑

n=1

1

8n
kαn3

βn(α),

where β1(α) := 0, βn(α) := #{i ∈ {1, . . . , n − 1} : αi ∈ {0, 2}}, n ≥ 2. Consequently, the
value B(x) may be written in the form

B(x) = B(x(α)) = Φα1 +

∞∑

n=2

ΦαnΔα1 · · ·Δαn−1

=

∞∑

n=1

1

8n
Kαn5

βn(α)(−1)n−1−βn(α).

The above formula may easily be used to show that B ∈ ND(I) (cf. Theorem 5.1.3).
Indeed, let μ : {0, 1, 2, 3} −→ {0, 1, 2, 3} be given as μ(0) := 2, μ(1) := 3, μ(2) := 0, μ(3) := 1.

Observe that δμ(s) = δs, Δμ(s) = Δs, and
Kμ(s)−Ks

kμ(s)−ks
= 1, s = 0, 1, 2, 3.

Take a point x = x(α) ∈ I. For m ∈ N2, define αm = (αm
n )∞n=1:

αm
n = αn, n �= m, αm

m := μ(αm).

Obviously, βn(α
m) = βn(α), n ∈ N. Put xm := x(αm). Then

xm − x =
1

8m
(kμ(αm) − kαm)3βm(α).

In particular, xm −→ x when m −→ +∞. Moreover,

B(xm)−B(x) =
1

8n
(Kμ(αm) −Kαm)5βm(α)(−1)m−1−βm(α).

Thus

ΔB(x, xm) =
(Kμ(αm) −Kαm)5βm(α)(−1)m−1−βm(α)

(kμ(αm) − kαm)3βm(α)

=
(5
3

)βm(α)

(−1)m−1−βm(α).

There are the following two possibilities:
• βm(α)↗ +∞. Then |ΔB(x, xm)| −→ +∞, and consequently, a finite derivative B′(x)

does not exist.
• The sequence (βm(α))∞m=1 is bounded, i.e., βm(α) = β0 = const for m ≥ m0. Then

ΔB(x, xm) =
(5
3

)β0

(−1)m−1−β0 =: (−1)mc0, m ≥ m0

(c0 �= 0), which easily implies that a finite or infinite derivative B′(x) does not exist.
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Notice that the above example may be generalized to other Bolzano-type functions (cf.,
e.g., [Sin28]).

5.3 Examples of Bolzano-Type Functions

5.3.1 The Hahn Function

In 1899, E. Steinitz (cf. [Ste99]) considered the case ϕj = j
N , j = 1, . . . , N , MΔ < 1, and

Σ = {1, . . . , N} (i.e., |Φi − Φi−1| > 1
N , i = 1, . . . , N). Based on this construction, H. Hahn

studied the case N = 6, Φ1 = 1/2, Φ2 = 0, Φ3 = 1/2, Φ4 = 1, Φ5 = 1/2 (see also [Hah17];
cf. Fig. 5.3). In virtue of Theorem 5.1.2 it follows that f ∈ ND(I), where f is the Bolzano
type function associated to the above data.

In his book [Pas14], M. Pasch asked the following question: is there a function g ∈ ND(I)
such that for every x ∈ (0, 1), the finite limit limh→0 |Δg(x, x + h)| exists? A first positive
answer was found by W. Sierpiński (see [Sie14b]), but his construction was very sophisticated.
H. Hahn used his example from above to give a short proof.

Theorem 5.3.1. If f denotes the Hahn function, then f ∈ ND(I), and for every x ∈ (0, 1),
the finite limit limh→0 |Δg(x, x + h)| exists.
Proof . Fix an x ∈ (0, 1) and write x =

∑∞
j=1

cj
6j , where infinitely many of the cj are different

from 5. Fix an n ∈ N and put xn :=
∑n

j=1
cj
6j and x′

n := xn+
1
6n . Then xn ≤ x ≤ x′

n. We may
assume that f(xn) �= f(x′

n), and we discuss only the case f(xn) < f(x′
n) (the inverse case is

done is the same way). Then by construction of f , we have

f(xn) = f(xn + 2
6n+1 ), f(x′

n) = f(xn + 4
6n+1 ),

f(xn + 1
6n+1 ) = f(xn + 3

6n+1 ) = f(xn + 5
6n+1 ) =

1
2 (f(xn) + f(x′

n)).

Moreover,

f(xn) ≤ f(x) ≤ 1
2 (f(xn) + f(x′

n)), xn ≤ x ≤ xn + 3
6n+1 ,

1
2 (f(xn) + f(x′

n)) ≤ f(x) ≤ f(x′
n), xn + 3

6n+1 ≤ x ≤ x′
n.

Hence, if y ∈ (f(xn), f(x
′
n)), then f−1(y) has at least two elements in [xn, xn + 3

6n+1 ] or
in [xn + 3

6n+1 , x′
n]. In particular, there exists a point ξn ∈ [xn, x′

n] with f(ξn) = f(x) and
0 < |ξn − x| < 1

6n . ��
Corollary 5.3.2. Let f be as above. Then there is no x ∈ (0, 1) such that both one-sided
derivatives f ′

+(x) and f ′
−(x) exist and satisfy |f ′

+(x)| = |f ′
−(x)| = +∞.

Remark 5.3.3. Note that for the classical Bolzano function B, there are points x ∈ (0, 1)
such that B′

−(x) = −B′
+(x) = +∞ (cf. Theorem 10.1.1).

5.3.2 The Kiesswetter Function

In 1966, K. Kiesswetter introduced the following function (see [Kie66]), which belongs to the
class ND(I). Let M := {0, 1, 2, 3} and let X : M −→ R be given by
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Fig. 5.3 The first four steps of the construction of the Hahn function

X(j) :=

{
j − 2, if j �= 0

0, if j = 0
.

If x ∈ I is given as x =
∑

j∈N

xj

4j with xj ∈M , then put

K(x) :=

∞∑

n=1

(−1)sn X(xn)

2n
,

where sn := #{k ∈ N : k < n, xk = 0}. Note that K is well defined (Exercise), i.e., is
independent of the representation of x.

Looking at its graph, we see that K is a Bolzano-type function with the following data:
N = 4, ϕj = j/4, Φ1 = −1/2, Φ2 = 0, and Φ3 = 1/2 (cf. Fig. 5.4). Then MΔ < 1 and
Σ = {1, 2, 3, 4}. Hence applying Theorem 5.1.2, we get

Proposition 5.3.4. The Kiesswetter function belongs to ND(I).
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Fig. 5.4 The first six steps of the construction of the Kiesswetter function K
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Exercise 5.3.5. Prove the proposition using the arithmetic definition of K (this is the proof
usually presented in the literature).

Remark 5.3.6. Note that K is not α-Hölder continuous if α > 1/2.
Indeed, take xk = 1/4k and yk = 2/4k, k ∈ N2. Then

K(xk)−K(yk) = 1/2k = 2(2α−1)k|xk − yk|α,

where the constant 2(2α−1)k is unbounded if k −→∞.

One may try to generalize the Kiesswetter function in a straightforward way substituting
the base 4 (resp. 2) by a base a ∈ N2 (resp. b ∈ N2) and defining

I � x =

∞∑

j=1

xj

aj

f�−→
∞∑

j=1

(−1)sj(x)X(xj)

bj
,

where s1(x) = 0, sj(x) := #{k ∈ {1, . . . , j − 1} : xk = 0}, j ∈ N2, and X : Ma −→ R

is a bounded function (Ma := {0, 1 . . . , a − 1}). Note that because of the nonuniqueness of
the a-adic representation, the first thing to do is to prove under what conditions on X the
function f is well defined.

Lemma 5.3.7. Let a, b, and f be as above. Then the following statements are equivalent:

(i) f is well defined;

(ii) X fulfills the following conditions:

X(1) = −X(a− 1)

b− 1
+

bX(0)

b + 1
,

X(j) = X(j − 1) +
X(a− 1)

b− 1
− X(0)

b + 1
, j = 2, . . . , a− 1. (5.3.1)

Proof . Recall that the only case in which the a-adic representation is not unique is that in
which x is a-rational, i.e., in which x has the following two representations:

x =

n∑

j=1

xj

aj
=

n−1∑

j=1

xj

aj
+

xn − 1

an
+

∞∑

j=n+1

a− 1

aj
,

where n ∈ N and xn ≥ 1. The fact that f is well defined is equivalent to

n−1∑

j=1

(−1)sjX(xj)

bj
+

(−1)snX(xn)

bn
+

∞∑

j=n+1

(−1)sjX(xj)

bj

=

n−1∑

j=1

(−1)s′jX(xj)

bj
+

(−1)s′nX(xn − 1)

bn
+

∞∑

j=n+1

(−1)s′jX(a− 1)

bj
,

where the sj ’s (resp. s′j ’s) correspond to the first (resp. second) representation of x, j ∈ N.
Note that sj = s′j if j ≤ n.

Case 1o. Let xn = 1. Then sj = sn + j − n− 1 and s′j = sn + 1, j > n. Therefore, the fact
that f(x) is well defined is equivalent to
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(−1)snX(1)

bn
+ X(0)

∞∑

j=n+1

(−1)sn+j−n−1

bj

=
(−1)snX(0)

bn
+ X(a− 1)

∞∑

j=n+1

(−1)sn+1

bj
.

Exploiting the sums in the last equality leads to X(1) = −X(a−1)
b−1 + bX(0)

b+1 .
Case 2o. Let xn > 1. Then sj = sn + j − n − 1 and s′j = sn, j > n. As before, we obtain

that f(x) is well defined if and only if

X(xn) = X(xn − 1) +
X(a− 1)

b− 1
− X(0)

b + 1
.

It follows that for all a-rational x with xn > 1, the value f(x) is well defined if and only if all
the second equations in (5.3.1) are satisfied. ��
Corollary 5.3.8. If the two equations in (5.3.1) are satisfied, then

b− a + 2

b− 1
X(a− 1) =

b− a + 2

b + 1
X(0).

Since we are interested in the functions f ∈ ND(I), the constant functions f have to be
excluded.

Lemma 5.3.9. Let a, b, and f be as above and let X satisfy the equations (5.3.1) from

Lemma 5.3.7, i.e., f is well defined. Then f is identically constant on I if and only if X(a−1)
b−1 =

X(0)
b+1 .

Proof . Step 1o. Let f be a constant function. Then f(0) = f(1). Using the definition of f
gives

X(0)

b + 1
=

∞∑

j=1

(−1)j−1 X(0)

bj
= f(0) = f(1) =

∞∑

j=1

X(a− 1)

bj
=

X(a− 1)

b− 1
.

Step 2o. Assume that the equality of Lemma 5.3.9 is true. Then (5.3.1) implies that

X(1) = X(2) = · · · = X(a− 1) =
b− 1

b + 1
X(0).

Take an x ∈ I with x =
∑∞

j=1
xj

aj . Put cj :=
(−1)sjX(xj)

bj . Then cj =
X(0)
b+1

(
(−1)sj

bj−1 − (−1)sj+1

bj

)
.

Finally, the definition of f leads to

f(x) = lim
n→∞

n∑

j=1

cj = lim
n→∞

X(0)

b + 1

(
1− (−1)sn+1

bn

)
=

X(0)

b + 1
.

Since x was arbitrarily chosen from I, we see that f is identically constant on I. ��
Remark 5.3.10. Let a, b, f , and X be as in Lemma 5.3.7.

• If b �= a− 2, then f is identically constant.

• If b = a − 2, then a ≥ 4. Moreover, the condition for j = a − 1 in the second equation
in (5.3.1) is an automatic consequence of the equations for j = 2, . . . , a− 2.
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Theorem 5.3.11 ([LM14]). Let a ≥ 4, b = a− 2. Assume that X satisfies all the equations

from (5.3.1) together with X(a−1)
b−1 �= X(0)

b+1 . If f is the associated well-defined function from
above, then:

(a) |f(x)− f(y)| ≤ C|x − y| log b
log a , in particular f is continuous;

(b) f ∈ ND(I).

Proof . (a) Take two distinct points x, y in I with x < y. Then there exists an n ∈ N such
that 1

an+1 ≤ y−x ≤ 1
an . Let tj :=

j
an and put Jj := [tj−1, tj], j = 1, . . . , an, where t0 = 0.

Then both points x and y lie either in the same interval Jm or in adjacent intervals.
Suppose first that x, y ∈ Jm for some m, 1 ≤ m ≤ an. Then x = tm−1 +

∑∞
j=n+1

xj

aj and

y = tm−1 +
∑∞

j=n+1
yj

aj . Hence

|f(x)− f(y)| =
∣∣∣

∞∑

j=n+1

(−1)sjX(xj)

bj
−

∞∑

j=n+1

(−1)s′jX(yj)

bj

∣∣∣

≤ 2M

bn(b − 1)
≤ 2Mb

b− 1
|x− y| log b

log a ,

where M denotes the maximum of the function |X |.
The remaining case is a simple consequence of the triangle inequality and the former
reasoning.

(b) Fix a non-a-rational point x =
∑∞

j=1
xj

aj ∈ I. Define

an :=
n∑

j=1

xj

aj
, bn :=

n∑

j=1

xj

aj
+

∞∑

j=n+1

a− 1

aj
.

Note that an < x < bn and bn − an = 1
an . Therefore, an −→ x and bn −→ x. Then

|f(bn)− f(an)| = 1

bn

∣∣∣
X(a− 1)

b− 1
− X(0)

b + 1

∣∣∣ =
C

bn

with C > 0. Hence, |Δf(an, bn)| = C(ab )
n −→∞. Applying Remark 2.1.2(a) gives that f

is not differentiable at x. The case in which x is an a-rational point is left as an Exercise.
��

Summarizing, the above theorem describes all Kiesswetter functions in ND(I) that are
built using the bases a, b ∈ N2 and the functions sj : Ma −→ R from above.

Recently, other types of functions in ND(I) similar to the Kiesswetter function have been
studied in [YG04] and [Yon10]. We give only the main definitions and results; details are left
to the reader.

Remark 5.3.12. (a) A Kiesswetter-type function defined via the quinary representation (see
[YG04]).
Let M := {0, 1, 2, 3, 4}, U, α : M −→ R be such that |U(j)| ≤ 2 and α(j) ∈ {0, 1}, j ∈ M .

Then if x ∈ I is written as x =
∑∞

n=1
xn

5n , then f(x) is defined as

f(x) :=
∞∑

n=1

(−1)α(x1)+···α(xn−1)
U(xn)

3n
.
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Obviously, this series is absolutely convergent. It is easily seen that under each of the following
conditions, the definition of f is independent of the quinary representation:

• U(j) :=

{
2− j, if j ∈M \ {4}
0, if j = 4

, α(j) :=

{
1, if j = 4

0, if j �= 4
.

• U(j) :=

{
j − 2, if j ∈M \ {0}
0, if j = 0

, α(j) :=

{
1, if j = 0

0, if j �= 0
.

• U(j) :=

{
2− j, if j ∈M \ {0}
0, if j = 0

, α(j) :=

{
1, if j = 0

0, if j �= 0
.

• U(j) :=

{
j − 2, if j ∈M \ {4}
0, if j = 4

, α(j) :=

{
1, if j = 4

0, if j �= 4
.

Let f be the function defined via a pair U, α from above. Then f ∈ ND(I), and if x, y ∈ I,
x ≤ y, then

1

c
|x− y| log 3

log 5 ≤ max
x≤ξ≤η≤y

|f(ξ)− f(η)| ≤ c|x− y| log 3
log 5 ,

where c ≥ 1.

(b) Another Kiesswetter-type function can be defined via the septenary representation of x
(see [Yon10]).

Let M := {0, 1, . . . , 6}, U, α : M −→ R be functions satisfying α(M) ⊂ {0, 1} and |U | ≤ 2.
If I � x =

∑∞
n=1

xn

7n , put

f(x) :=

∞∑

n=1

(−1)α(x1)+···+α(xn−1)
U(xn)

3n
.

If the functions U and α satisfy certain conditions (we skip details here), then f is well defined
and a continuous function on I. Here we give only one example, namely

U(j) :=

{
2− j, if j ∈M \ {5, 6}
j − 6, if j = 5, 6

, α(j) :=

{
1, if j = 5

0, if j �= 5
.

In this case, we have f ∈ ND(I); moreover, if 0 ≤ x < y ≤ 1, then

1

c
|x− y| log 3

log 7 ≤ max
x≤ξ≤η≤y

|f(ξ)− f(η)| ≤ c|x− y| log 3
log 7

for a suitable constant c > 1.

5.3.3 The Okamoto Function

Fix an α ∈ (0, 1) and define a Bolzano-type function Fα with respect to the data N = 3,
ϕj := j/3, and Φ1 := α, Φ2 := 1− α; cf. Fig. 5.5. The function Fα is studied by H. Okamoto
in [Oka05] (see also [Kob09, OW07]). We call it the Okamoto function.
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Remark 5.3.13. Note that:

• F2/3 is the function studied in N. Bourbaki (see [Bou04], page 35, Problem 1-2) and in
[Kat91];

• F5/6 is studied by F.W. Perkins in [Per27];

• F1/3 = id |I (in particular, it is everywhere differentiable).

Observe that MΔ = max{α, |1−2α|} < 1. Thus, Fα is a continuous function on I. Moreover,
we have:

• if α ∈ (23 , 1), then MΔ = α and Σ = {1, 2, 3};
• if α = 2

3 , then MΔ = 2
3 and Σ = {1, 3}.

Note that condition (5.1.1) is also satisfied. Therefore, applying Theorem 5.1.2, we have the
following result.

Proposition 5.3.14. If 2/3 ≤ α < 1, then Fα ∈ ND(I).

Moreover, we have the following behavior of Fα (Fig. 5.6).

Lemma 5.3.15. If α ∈ (0, 1/2], then Fα is nondecreasing; in particular, it is almost every-
where differentiable.

Proof . The proof of being nondecreasing is left as an Exercise (use induction). ��
Let p(t) := 54t3−27t2−1 and denote by α0 the uniquely defined real zero of this polynomial.

Note that α0 ≈ 0.5592 < 2/3. Then we have the following result.

Proposition 5.3.16. Let α ∈ [α0, 2/3). Then Fα has no finite derivative at almost all
x ∈ (0, 1).

Note that this result was proved in [Oka05] if α ∈ (α0, 2/3). The case α = α0 is due to
K. Kobayashi (see [Kob09]). The proof is based on § 5.2.2 and on a refinement of the Borel
result on normal numbers (cf. Definition A.9.1), the law of iterated logarithms. Let x ∈ (0, 1)
with the following triadic representation:

x =

∞∑

n=1

ξn(x)

3n
, where ξn(x) ∈ {0, 1, 2}.

If

c(t) :=

{
1, if t ∈ {0, 2}
−2, if t = 1

,

then put for n ∈ N

Sn(x) :=

n∑

j=1

c(ξj(x)).

Lemma 5.3.17 (Law of iterated logarithms). For almost all x ∈ (0, 1) the following is true:

lim sup
n→∞

Sn(x)√
4n log(logn)

= 1, lim inf
n→∞

Sn(x)√
4n log(logn)

= −1.



5.3 Examples of Bolzano-Type Functions 81

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 5.5 The first six steps of the construction of the Okamoto function with α = 2/3
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Fig. 5.6 Okamoto functions with α = α0 ≈ 0.5592, 7/12, 2/3, 5/6, respectively

Proof . Since the proof is based on probabilistic methods, it is skipped. For a proof, see, for
example, [HW41].1 ��
Proof of Proposition 5.3.16. Step 1o. Fix a point x for which the former lemma holds. Then it

follows that there are infinitely many n’s (resp. m’s) such that Sn(x)√
n

> 1 (resp. Sm(x)√
m

< −1).
Therefore, we obtain a strictly increasing sequence (rn)n∈N ⊂ N such that

Srn(x) ≥
√

rn and ξrn+1(x) = 1, n ∈ N.

Step 2o. Put

yn =

rn∑

j=1

ξj(x)

3j
.

Then
1

3rn+1
≤ x− yn ≤ 1

3rn
.

1 In fact, a weaker result is sufficient to prove Proposition 5.3.16, namely, that the set {x ∈ (0, 1) :
there are infinitely many n such that Sn(x)/

√
n > 1 and ξn+1(x) = 1} has full measure 1. This result can

be proved also via probabilistic methods. Nevertheless, it would be interesting to have a direct proof.
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Applying now Sect. 5.2.2, we get

Fα(x) = Φx1 +

∞∑

j=2

ΦxjΔx1 · · ·Δxj−1 , Fα(yn) = Φx1 +

rn∑

j=2

ΦxjΔx1 · · ·Δxj−1 ,

where xj := ξj(x),

Φs :=

⎧
⎪⎨

⎪⎩

0, if s = 0

α, if s = 1

1− α, if s = 2

, Δs :=

⎧
⎪⎨

⎪⎩

α, if s = 0

1− 2α, if s = 1

α, if s = 2

.

Hence,

|ΔFα(x, yn)| ≥ 3rn
∣∣∣

∞∑

j=rn+1

ΦxjΔx1 · · ·Δxj−1

∣∣∣

≥ 3rn
(
Φxrn+1 |Δx1 · · ·Δxrn

| −
∞∑

j=rn+2

|Φx1Δx1 · · ·Δxj−1 |
)

(∗)
≥ 3rn |Δx1 · · ·Δxrn

|
(
α− (2α− 1)

∞∑

j=1

αj
)

=
α(2 − 3α)

1− α
3rn |Δx1 · · ·Δxrn

| = α(2− 3α)

1− α
exp

( rn∑

j=1

log |3Δxj |
)
,

where in (∗), the fact that xrn+1 = 1 has been used.
Evaluating now the Δ’s leads to

log |3Δ0| = log |3Δ2| = log(3α),

log |3Δ1| = log(3(2α− 1)) = log 54α3−27α2

9α2 ≥ −2 log(3α);

use that α lies on the right side of the zero of the polynomial p. Hence,

|ΔFα(x, yn)| ≥ α(2− 3α)

1− α
exp

(
log(3α)Srn(x)

)

≥ α(2− 3α)

1− α
(3α)

√
rn −→

n→∞ +∞,

giving that Fα has no finite derivative at the point x. ��
Remark 5.3.18.

(a) Using again § 5.2.2, it is easy to see that if α ∈ [1/2, α0), then Fα is differentiable at
every point x = (2k + 1)/3N , k = 0, . . . , 3N − 1, with Fα(x) = 0 (Exercise; use that in
the triadic representation of x we have ξj(x) = 1, j ∈ NN). This example shows that the
assumptions on Σ in Theorem 5.1.2 cannot be dropped.

(b) Even more is true, namely, if α < α0, then Fα is differentiable almost everywhere on I

(see [Oka05]).

(c) In [OW07], one finds the following result. Suppose that α ∈ (0, 1/2), α �= 1/3. Then Fα is a
continuous, strictly increasing, and singular function (i.e., F ′

α is zero almost everywhere).
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Remark 5.3.19. Using ideas underlying the nowhere differentiability of functions of Bolzano
type, F.W. Perkins proved in [Per29] the following result.

Let f ∈ C(I) be such that

∃δ>0 ∀0≤x0<x3≤1:f(x0) 
=f(x3) ∃x0<x1<x2<x3 :
f(x1)− f(x2)

f(x3)− f(x0)
> δ.

Then there exists a continuous increasing function Φ : I −→ I such that f ◦ Φ ∈ ND(I).

5.4 Continuity of Functions Given by Arithmetic Formulas

Parallel to the Q-representation, we have another tool to define Bolzano-type functions,
namely the Cantor representation of real numbers; cf. § A.1.

Fix a sequence (qn)
∞
n=1 ⊂ N2 and put

Ξ
 := {(a1, . . . , a
) : aj ∈ {0, . . . , qj − 1}, j = 1, . . . , 
}, 
 ∈ N.

For a sequence (σn)
∞
n=1 ⊂ N with n ≤ σn ≤ σn+1, let ϕn : Ξσ(n) −→ C, Mn := maxΞσ(n)

|ϕn|,
n ∈ N. Assume that

∑∞
n=1 Mn < +∞. We assign to each x =

∑∞
n=1

an

q1···qn
∈ I (with

an ∈ {0, . . . , qn − 1}) the value f(x) :=
∑∞

n=1 ϕn(a1, . . . , aσ(n)), and we assume that f(x) is
independent of the different representations of x, i.e., that

ϕk(a1, . . . , aσ(k)) +

∞∑

n=k+1

ϕn(a1, . . . , ak, 0, . . . , 0︸ ︷︷ ︸
(σ(n)−k)×

)

= ϕk(a1, . . . , ak−1, ak − 1, ak+1, . . . , aσ(k))

+
∞∑

n=k+1

ϕn(a1, . . . , ak−1, ak − 1, qk+1 − 1, . . . , qσ(n) − 1),

k ∈ N, (a1, . . . , aσ(k)) ∈ Ξσ(k), ak > 0.

Lemma 5.4.1. Under the above assumptions, we have f ∈ C(I).
Proof . Step 1o. Right continuity of f . Fix an x =

∑∞
n=1

an

q1···qn
∈ [0, 1) with the representation

chosen such that sup{n ∈ N : an ≤ qn − 2} = +∞. Take an ε > 0, and let p ∈ N be such
that

∑∞
n=p+1 Mn ≤ ε

2 . Let k ≥ σ(p) be such that ak+1 ≤ qk+1− 2. We will use notation from
Proposition A.1.1. Put

x∗ := Sk(x) +

∞∑

n=k+1

qn − 1

q1 · · · qn = Sk(x) +
1

q1 · · · qk > x.

Take an arbitrary x′ =
∑∞

n=1
a′
n

q1···qn
∈ (x, x∗). Then a′

n = an for n = 1, . . . , k.

Indeed, it suffices to prove that Sk(x) = Sk(x
′). Suppose that Sk(x

′) < Sk(x). Then
x′ ≤ Sk(x

′) + 1
q1···qk

≤ Sk(x) ≤ x; a contradiction. If Sk(x
′) > Sk(x), then x′ ≥ Sk(x

′) ≥
Sk(x) +

1
q1···qk

= x∗; a contradiction.
Consequently,

|f(x′)− f(x)| ≤
∞∑

n=p+1

|ϕn(a
′
1, . . . , a

′
σ(n))− ϕn(a1, . . . , aσ(n))| ≤ 2

∞∑

n=p+1

Mn ≤ ε.

Step 2o. Left continuity of f—Exercise. ��
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5.5 Sierpiński Function

For x =
∑∞

n=1
an

5n ∈ I, where an ∈ {0, . . . , 4}, define the Sierpiński function S : I −→ R,

S(x) :=

∞∑

n=1

εnbn
3n

,

where

bn := an − 2
⌊an

3

⌋
,

ε1 := 1, εn :=

{
1, if #{j ∈ {1, . . . , n− 1} : aj = 2} ∈ 2N0

−1, if #{j ∈ {1, . . . , n− 1} : aj = 2} ∈ 2N0 + 1
.

Remark 5.5.1. The Sierpiński function is well defined, i.e., S(x) is independent of the
representation of x.

Indeed, for

x =

k∑

n=1

an

5n
=

k−1∑

n=1

an

5n
+

ak − 1

5k
+

∞∑

n=k+1

4

5n
=: x′

with ak > 0, we have

S(x) =
( k−1∑

n=1

εnbn
3n

)
+

εkbk
3k

,

S(x′) =
( k−1∑

n=1

εnbn
3n

)
+

εkb
′
k

3k
+

∞∑

n=k+1

ε′nb′n
3n

=
( k−1∑

n=1

εnbn
3n

)
+

εkb
′
k

3k
+

ε′k+1

3k
,

where b′k = ak − 1 − 2�ak−1
3 �, b′k+m = 2, and ε′k+m =

{
εk, if ak − 1 �= 2

−εk, if ak − 1 = 2
, m ∈ N. It

remains to verify that 2�ak

3 � = 1 + 2�ak−1
3 � − εkε

′
k+1, which is easily seen by discussing the

concrete cases ak = 1, 2, 3, 4.

Theorem 5.5.2 (cf. [Sie14a]). S ∈ ND±(I).

Proof . Put f := S.
Step 1o. Continuity of f follows from Lemma 5.4.1 and Remark 5.5.1 with qn := 5, σn := n,

ϕn(a1, . . . , an) :=
εnbn
3n (Mn = 2

3n ).

Step 2o. Nowhere differentiability of f .
Let x0 ∈ (0, 1] be given as x0 =

∑∞
j=1

aj

5j , where aj �= 0 for infinitely many j’s. Fix an

n ∈ N2 with an �= 0. Put xn :=
∑n−1

j=1
aj

5j . Then

0 ≤ x0 − xn ≤ 1/5n−1 and |f(xn)− f(x0)| =
∣∣∣

∞∑

j=n

εjbj
3j

∣∣∣.

If an = 1 or an = 3, then bn = 1 and εn = εn+1. Thus

|Δf(x0, xn)| ≥ 5n−1
( bn
3n

+
bn+1

3n+1
−

∞∑

j=n+2

2

3j

)
≥ 2

9

(5
3

)n−1

.
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If an = 2 or an = 4, then bn = 2. Therefore,

|Δf(x0, xn)| ≥ 5n−1
( 2

3n
−

∞∑

j=n+1

2

3j

)
=

1

3

(5
3

)n−1

.

Hence f has no finite left-sided derivative at the point x0.
Let x0 ∈ [0, 1) be given as x0 =

∑∞
j=1

aj

5j . Assume that there are infinitely many j’s with
aj ∈ {0, 1, 3}. Note that this assumption is fulfilled for x0 = 0. Fix an n with an ∈ {0, 1, 3}
and put

yn :=

∞∑

j=1

a′
j

5j
, where a′

j :=

{
4, if j = n

aj , if j �= n
.

Then 0 < yn − x0 ≤ 4/5n and |f(yn) − f(x0)| ≥ 1/3n. Thus |Δf(x0, yn)| ≥ (1/4)(5/3)n,
implying that f has no finite right-sided derivative at the point x0. Now assume that there
is a j0 such that for all j ≥ j0, we have aj ∈ {2, 4}, but there are infinitely many j’s with
aj < 4. Take an n > j0 with an = 2 and εn = 1 (note that there are infinitely many n’s with
this property). Put

yn :=

∞∑

j=1

a′
j

5j
, where a′

j :=

{
4, if j ≥ n

aj, if j < n
.

Then 0 < yn − x0 ≤ 4/5n and bj = b′j = 2 for j ≥ j0, −εn+1 = εn = ε′n+k, k ≥ 1. Thus,

f(yn)− f(x0) = 2
2εn
3n+1

+ 2

∞∑

j=n+2

εn − εj
3j

≥ 4

3n+1
.

Hence, Δf(x0, yn) ≥ (1/3)(5/3)n. Therefore, f has no finite right-sided derivative at x0. ��

5.6 The Pratsiovytyi–Vasylenko Functions

Let N ∈ N2, δi, i = 1, . . . , N − 1, Q, and N ′ ∈ N2, δ′i, i = 1, . . . , N ′ − 1, Q′ be two systems
as in § 5.2. We write xQ(α) (resp. xQ′(α)) for the Q- (resp. Q′-) representation. Suppose
that we are given a function that assigns to each sequence α = (αn)

∞
n=1 ⊂ {0, . . . , N − 1} a

sequence β(α) = (βn)
∞
n=1 ⊂ {0, . . . , N ′ − 1}. Then we may define the function f : I −→ I,

f(xQ(α)) := xQ′(β(α)). Of course, one must guarantee that f is well defined, i.e., that f(x)
is independent of the particular Q-representation of x.

The following function constructed in [PV13] may be thought of as a generalization of the
Sierpiński function from § 5.5.

Assume that N is odd, N ≥ 5, N ′ = 3, and let γ : {0 . . . , N − 1} −→ {0, 1, 2},

γ(i) :=

⎧
⎪⎨

⎪⎩

0, if i = 0

1, if 1 ≤ i ≤ N − 2

2, if i = N − 1

.

For α = (αn)
∞
n=1 ⊂ {0, . . . , N − 1}, put

c1(α) := 0, ck+1(α) :=

{
ck, if αk ∈ {0, 1, 3, . . . , N − 2, N − 1}
1− ck, if αk ∈ {2, 4, . . . , N − 3} , k ∈ N,

β(α) = (βn)
∞
n=1 ⊂ {0, 1, 2},



5.7 Petr Function 87

β1 := γ(α1), βk :=

{
γ(αk), if ck(α) = 0

2− γ(αk), if ck(α) �= 0
,

f : I −→ I, f(xQ(α)) := xQ′(β(α)).

Then (see [PV13]):

• f is well defined and continuous;

• if min{δ′0, δ′2} ≥ max{δ0, δN−1}, then f has no finite derivative at Q-rational points;

• if min{δ′0, δ′1, δ′2} ≥ max{δ0, . . . , δN−1}, then f has no finite derivative at Q-irrational points;

• if N = 5, δ0 = · · · = δ4 = 1/5, and δ′0 = δ′1 = δ′2 = 1/3, then f coincides with the Sierpiński
function, and the former conditions are fulfilled.

5.7 Petr Function

For x =
∑∞

n=1
an

10n ∈ I, where an ∈ {0, . . . , 9}, define the Petr function P : I −→ R,

P (x) :=

∞∑

n=1

εnbn
2n

,

where

bn ∈ {0, 1}, bn ≡ an(mod 2),

ε1 := 1, εn :=

{
−εn−1, if an−1 ∈ {1, 3, 5, 7}

εn−1, otherwise
, n ≥ 2.

Remark 5.7.1.

(a) The Petr function is well defined.
Indeed, for

x =
k∑

n=1

an

10n
=

k−1∑

n=1

an

10n
+

ak − 1

10k
+

∞∑

n=k+1

9

10n
=: x′

with ak > 0, we have

P (x) =
( k−1∑

n=1

εnbn
2n

)
+

εkbk
2k

,

P (x′) =
( k−1∑

n=1

εnbn
2n

)
+

εk(1− bk)

2k
+

∞∑

n=k+1

εk
2n

=
( k−1∑

n=1

εnbn
2n

)
+

εkbk
2k

.

(b) For n ∈ N2, we have εn = ϕ(an−1) · · ·ϕ(a1), where ϕ : {0, . . . , 9} −→ {−1,+1},

ϕ(p) :=

{
−1, if p ∈ {1, 3, 5, 7}
+1, otherwise

.

Theorem 5.7.2 (cf. [Pet20]). P ∈ ND∞((0, 1)).
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Proof . Put f := P .
Step 1o. Continuity of f follows from Lemma 5.4.1 and Remark 5.7.1(a) with qn := 10,

σn := n, ϕn(a1, . . . , an) :=
εnbn
2n (Mn = 1

2n ).

Step 2o. Nowhere differentiability of f .
Fix an x =

∑∞
n=1

an

10n ∈ (0, 1) with sup{n ∈ N : an ≤ 8} = +∞. We are going to prove
that for arbitrary 
 ∈ N, there exist h, h′ ∈ R such that |h|, |h′| ≤ 2

10�
and

|Δf(x, x + h)| ≥ 5


4
, Δf(x, x + h′) = 0,

which immediately implies that a finite or infinite derivative f ′(x) does not exist.
Fix an 
 ∈ N and let k ≥ 
 be such that ak ≤ 8. Define h := μk

10k +
μk+1

10k+1 , where μk, μk+1 ∈
{−1, 0,+1} and the pair (μk, μk+1) is chosen according to the following table:

ak\ak+1 0, . . . , 7 8 9

0, . . . , 7 (1, 1) (1,−1) (0,−1)
8 (−1, 1) (−1,−1) (1,−1)

Observe that an + μn ∈ {0, . . . , 9}, n ∈ {k, k + 1}, and

ϕ(ak)ϕ(ak+1) = ϕ(ak + μk)ϕ(ak+1 + μk+1).

Put x′ := x + h =
∑∞

n=1
a′
n

10n ∈ (0, 1). Let f(x′) =
∑∞

n=1
ε′nb

′
n

2n . We get

a′
n = an for n = 1, . . . , k − 1, ε′n = εn for n = 1, . . . , k,

a′
n = an for n ≥ k + 2, ε′n = εn for n ≥ k + 2.

Thus, either

• |f(x + h)− f(x)| = | 1
2k
± 1

2k+1 | ≥ 1
2k+1 (if μk �= 0) or

• |f(x + h)− f(x)| = 1
2k+1 (if μk = 0).

Now we define h′:

• if ak ≤ 6, then h′ := 2
10k ;

• if ak ∈ {7, 8}, then h′ := − 2
10k

.

Then in both cases, we get f(x + h′) = f(x). ��
Remark 5.7.3. Using analogous ideas, K. Rychlik constructed in [Ryc23] an example of a
continuous nowhere differentiable function in the field of p-adic numbers.

Exercise 5.7.4. Prove the following version of the Petr theorem (cf. [Pet20]; see also [Sin35],
p. 51).

For x =
∑∞

n=1
an

10n ∈ I, where an ∈ {0, . . . , 9}, define

f(x) :=

∞∑

n=1

εnbn
4n

,



5.8 Wunderlich–Bush–Wen Function 89

where bn is chosen according to the table

an 0 1 2 3 4 5 6 7 8 9

bn 0 1 2 1 0 1 2 1 2 3

and

ε1 := 1, εn :=

{
−εn−1, if an−1 ∈ {2, 3, 6}

εn−1, otherwise
, n ≥ 2.

Then f ∈ ND∞((0, 1)).

5.8 Wunderlich–Bush–Wen Function

Fix b ∈ N2, λ > 1, and c ∈ R. Define ϕ(u) := (1 − λ)(u − c), u ∈ R. For x =
∑∞

n=1
an

bn ∈ I,
where an ∈ {0, . . . , b− 1}, define the Wunderlich–Bush–Wen function U : I −→ R,

U(x) :=

∞∑

n=1

bn
λn

,

where

b1 := 1, bn+1 :=

{
bn, if an = an+1

ϕ(bn), if an �= an+1

, n ∈ N.

Remark 5.8.1.

(a) The function U is well defined.
Indeed, if

x =

k∑

n=1

an

bn
=
( k−1∑

n=1

an

bn

)
+

ak − 1

bk
+

∞∑

n=k+1

b− 1

bn
=: x′

with ak > 0, then

U(x) −
k−1∑

n=1

bn
λn

=
bk
λk

+
∞∑

n=k+1

ϕ(bk)

λn
=

bk
λk

+
ϕ(bk)

λk(λ− 1)
=

c

λk
,

U(x′)−
k−1∑

n=1

bn
λn

=
b′k
λk

+

∞∑

n=k+1

ϕ(b′k)
λn

=
b′k
λk

+
ϕ(b′k)

λk(λ− 1)
=

c

λk
.

Notice that the function ϕ(u) := (1−λ)(u− c) is the most natural function for which the
function U is well defined.

(b) U(0) = U(1) = 1
λ−1 .

(c) Define

sn(x) :=

{
0, if n = 1

#{i ∈ {2, . . . , n} : ai−1 �= ai}, if n ∈ N2

.
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Then (Exercise)

bn =
1

λ

(
(−1)sn(x)(λ− 1)sn(x)(λ− c(λ− 1)) + c(λ− 1)

)
, n ∈ N.

(d) Since sn(x) ≤ n− 1, we have

|bn| ≤
{
(λ− 1)n(1 + |c|) + |c|, if λ ≥ 2

1 + 2|c|, if 1 < λ ≤ 2
, n ∈ N.

Consequently, there exists a C = C(λ, c) > 0 such that

|bn|
λn
≤ Cθn, n ∈ N,

where

θ = θ(λ, c) :=

{
1− 1

λ , if λ ≥ 2
1
λ , if 1 < λ ≤ 2

.

Theorem 5.8.2 (cf. [Wen00]). If b ∈ N3, λ ∈ ( b
b−1 , b), and c �= λ

λ−1 , then U ∈ ND±(I).

Remark 5.8.3. (a) The case in which b = 3, λ = 2, and c = 1 was discussed by W. Wun-
derlich in [Wun52], where he proved that U ∈ ND(I) (see also [Swi61]).

(b) The case in which b ≥ 3, λ = 2, and c = 1 was discussed by K.A. Bush in [Bus52], where
he proved that U ∈ ND(I).

(c) Assume that b = 3, λ = 2, and c = 1. Then U ′
+(0) = −∞.

Indeed, take a k ∈ N and let 1/3k+1 ≤ x < 1/3k. Then x =
∑∞

n=k+1
an

3n with ak+1 �= 0,
and hence

U(x) =
k∑

n=1

1

2n
+

∑

n=k+2

bn
2n
≤ 1− 1

2k
+

1

2k+1
= 1− 1

2k+1
.

Consequently,

ΔU(0, x) ≤ −
1

2k+1

1
3k

= −1

2

(3
2

)k

−→
k→+∞

−∞.

Proof of Theorem 5.8.2. Put f := U .
Step 1o. Continuity of f follows from Lemma 5.4.1 and Remark 5.8.1(a) with qn := b,

σn := n, ϕn(a1, . . . , an) :=
bn
λn (Mn ≤ Cθn).

Step 2o. Nondifferentiability of f .
We are going to prove that for every x, a finite right-sided derivative f ′

+(x) does not exist.
The case of the left-sided derivative is left for the reader as an Exercise.

Fix an x ∈ [0, 1) and suppose that f ′
+(x) ∈ R exists. We may assume that for every 
 ∈ N,

there exists a k = k(
) ≥ 
 such that ak+1 ≤ b− 2 and k(
 + 1) > k(
). Put

Ak :=
( k∑

n=1

an

bn

)
+

b− 1

bk+1
, Bk := Ak +

b− 1

bk+2
.

Then x < Ak < Bk, Bk − x < 1
bk , and

1
bk+2 < Bk − Ak = b−1

bk+2 < 1
bk+1 . Hence Bk − Ak >

1
b2 (Bk − x). Thus (by Remark 2.1.4)

lim

→+∞

Δf(Ak(
), Bk(
)) = f ′
+(x).
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On the other hand, we have

f(Ak) =
( k∑

n=1

bn
λn

)
+

b′k+1

λk+1
+

∞∑

n=k+2

ϕ(b′k+1)

λn

=
( k∑

n=1

bn
λn

)
+

b′k+1

λk+1
+ ϕ(b′k+1)

1

(λ − 1)λk+1
=
( k∑

n=1

bn
λn

)
+

c

λk+1
,

f(Bk) =
( k∑

n=1

bn
λn

)
+

b′k+1

λk+1
+

b′k+1

λk+2
+

∞∑

n=k+3

ϕ(b′k+1)

λn

=
( k∑

n=1

bn
λn

)
+

b′k+1

λk+1
+

b′k+1

λk+2
+ ϕ(b′k+1)

1

(λ− 1)λk+2

=
( k∑

n=1

bn
λn

)
+

b′k+1

λk+1
+

c

λk+2
.

Hence, using Remark 5.8.1(c), we get

f(Bk)− f(Ak) =
b′k+1

λk+1
+

c

λk+2
− c

λk+1

=
1

λk+2
(−1)sk+1(Ak)(λ − 1)sk+1(Ak)(λ− c(λ− 1)).

Finally,

|Δf(Ak, Bk)| ≥ 1

b

( b

λ

)k+2

(λ− 1)sk+1(Ak)|λ− c(λ− 1)|

≥ 1

b

(b
λ

)k+2

·
{
(λ− 1)k+2|λ− c(λ− 1)|, if λ ≤ 2

|λ− c(λ− 1)|, if λ ≥ 2

}
−→

k→+∞
+∞;

a contradiction. ��

5.9 Wen Function

L. Wen in [Wen01] proposed another type of a nowhere differentiable function based on Cantor
series (see also [Sin27]).

Fix a sequence (qn)
∞
n=1 ⊂ N2. For x =

∑∞
n=1

an

q1···qn
∈ I, where an ∈ {0, . . . , qn− 1}, define

the Wen function W1 : I −→ R,

W1(x) :=

∞∑

n=1

bn
n(n + 1)

,

where b1 := 1 and

bn+1 :=

{
− bn

n , if (an > 0, an+1 = 0) or (an < qn − 1, an+1 = qn+1 − 1)

bn, otherwise
.
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Remark 5.9.1. (a) The Wen function is well defined.
Indeed, for

x =
k∑

n=1

an

q1 · · · qn =
( k−1∑

n=1

an

q1 · · · qn
)
+

ak − 1

q1 · · · qk +
∞∑

n=k+1

qn − 1

q1 · · · qn =: x′

with ak > 0, we have

W1(x)−
k−1∑

n=1

bn
n(n + 1)

=
bk

k(k + 1)
− bk

k

∞∑

n=k+1

1

n(n + 1)
= 0,

W1(x
′)−

k−1∑

n=1

bn
n(n + 1)

=
b′k

k(k + 1)
− b′k

k

∞∑

n=k+1

1

n(n + 1)
= 0.

(b) |bn| ≥ 1
(n−1)! , n ∈ N.

Theorem 5.9.2 (cf. [Wen01]). If (qn)
∞
n=1 ⊂ N3 and q1···qn

n! −→ +∞, then W1 ∈ ND±(I).

Proof . Put f := W1.
Step 1o. Continuity of f follows from Lemma 5.4.1 and Remark 5.9.1(a) with σn := n,

ϕn(a1, . . . , an) :=
bn

n(n+1) (Mn ≤ 1
n(n+1) ).

Step 2o. Nowhere differentiability of f .
We are going to prove that for every x, a finite right-sided derivative f ′

+(x) does not exist.
The case of the left-sided derivative is left for the reader as an Exercise.

Fix an x ∈ [0, 1) and suppose that f ′
+(x) ∈ R exists. We may assume that for every 
 ∈ N,

there exists a k = k(
) ≥ 
 such that ak < qk − 1. We may assume that k(
 + 1) > k(
). Put

Ak :=
( k−1∑

n=1

an

q1 · · · qn
)
+

ak + 1

q1 · · · qk , Bk := Ak +

∞∑

n=k+1

qn − 2

q1 · · · qn .

Then x < Ak < Bk,

Bk −Ak <
1

q1 · · · qk ,

Bk − x <
1

q1 · · · qk +

∞∑

n=k+1

qn − 2

q1 · · · qn <
2

q1 · · · qk ,

Bk −Ak =

∞∑

n=k+1

qn − 2

q1 · · · qn =
1

2

∞∑

n=k+1

2qn − 4

q1 · · · qn

≥ 1

2

∞∑

n=k+1

qn − 1

q1 · · · qn =
1

2q1 · · · qk .

Hence Bk −Ak > 1
4 (Bk − x). Thus (by Remark 2.1.4)

lim

→+∞

Δf(Ak(
), Bk(
)) = f ′
+(x).
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On the other hand, we have

f(Ak) =
( k∑

n=1

bn
n(n + 1)

)
− b′k

k

∞∑

n=k+1

1

n(n + 1)
=

( k∑

n=1

bn
n(n + 1)

)
− b′k

k(k + 1)
,

f(Bk) =
( k∑

n=1

bn
n(n + 1)

)
+ b′k

∞∑

n=k+1

1

n(n + 1)
=

( k∑

n=1

bn
n(n + 1)

)
+

b′k
k + 1

.

Hence, |f(Bk)− f(Ak)| = |b′k|
k ≥ 1

k! . Finally,

|Δf(Ak, Bk)| ≥ q1 · · · qk
k!

−→
k→+∞

+∞;

a contradiction. ��

5.10 Singh Functions

We present three interesting examples (Theorems 5.10.2, 5.10.4, 5.10.6) of nowhere differen-
tiable functions due to A.N. Singh [Sin30, Sin35].

Fix p ∈ 2N+ 1, m ∈ N2, r ∈ N, r ≤ m. For x =
∑∞

n=1
an

pn ∈ I, where an ∈ {0, . . . , p− 1},
define the Singh function S1 : I −→ R,

S1(x) :=

∞∑

n=1

bn
pn

,

where

bn :=

{
a(n−1)m+r, if An ∈ 2N0

p− 1− a(n−1)m+r, if An ∈ 2N0 + 1

with

An := (a1 + · · ·+ ar−1) + (ar+1 + · · ·+ am+r−1)

+ (am+r+1 + · · ·+ a2m+r−1) + · · ·+ (a(n−2)m+r+1 + · · ·+ a(n−1)m+r−1);

if r = 1, we put b1 := a1, define An only for n ≥ 2, and skip the first group (a1 + · · ·+ ar−1)
in the definition of An.

Remark 5.10.1. The function S1 is well defined.
Let

x =

k∑

n=1

an

pn
with ak ≥ 1, x′ :=

( k−1∑

n=1

an

pn

)
+

ak − 1

pk
+

∞∑

n=k+1

p− 1

pn
.

Let A′
n, b′n be the sequences constructed for x′. There are the following two cases:

• ∃s∈N0 : k = sm + r. Then (−1)An = (−1)A′
n for all n ∈ N. If As+1 is even, then

b = (b1, . . . , bs, ak, 0, 0, . . . ), b′ = (b1, . . . , bs, ak − 1, p− 1, p− 1, . . . ).
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If As+1 is odd, then

b = (b1, . . . , bs, p− 1− ak, p− 1, p− 1, . . . ), b′ = (b1, . . . , bs, p− ak, 0, 0, . . . ).

It is clear that in both cases, we have S1(x) = S1(x
′).

• ∀s∈N0 : k �= sm + r. Write k = sm + r + t with s ∈ N0 and t ∈ {1, . . . ,m − 1}. Then
(−1)An = (−1)A′

n for n = 1, . . . , s+1, and (−1)An = −(−1)A′
n for all n ≥ s+2. If As is even,

then b = b′ = (b1, . . . , bs+1, 0, 0, . . . ). If As is odd, then b = b′ = (b1, . . . , bs+1, p−1, p−1, . . . ).
So in both cases, we have S1(x) = S1(x

′).

Theorem 5.10.2 (cf. [Sin35]). S1 ∈ ND∞((0, 1)).

Proof . Put f := S1.
Step 1o. Continuity of f follows from Lemma 5.4.1 and Remark 5.10.1 with qn := p,

σn := (n− 1)m + r, ϕn(a1, . . . , aσn) :=
bn
pn (Mn ≤ p−1

pn ).

Step 2o. Nowhere differentiability of f . Fix an x =
∑∞

n=1
an

pn with sup{n ∈ N : an ≤
p− 2} = +∞. Consider the following cases:
• The set S := {s ∈ N0 : asm+r ≤ p − 2} is infinite. For s ∈ S, take x′ := x + 1

psm+r .

Then bn = b′n for n �= s + 1 and

b′s+1 =

{
asm+r + 1, if As+1 ∈ 2N0

(p− 1)− (asm+r + 1), if As+1 ∈ 2N0 + 1
.

Hence

|Δf(x, x′)| =
1

ps+1

1
psm+r

= ps(m−1)−1+r −→
S�s→+∞

+∞.

• The set S := {s ∈ N0 : asm+r ≥ 1} is infinite. Then for s ∈ S, we take x′ := x− 1
psm+r

and argue as above (Exercise).
Observe that at least one of the above two possibilities holds. Thus a finite derivative f ′(x)

does not exist.
• There exists a t ∈ {1, . . . ,m− 1} such that the set S := {s ∈ N0 : asm+r+t ≤ p− 3} is

infinite. For s ∈ S take x′ := x+ 2
psm+r+t and then f(x) = f(x′).

• There exists a t ∈ {1, . . . ,m − 1} such that the set S := {s ∈ N0 : asm+r+t ≥ 2} is
infinite. For s ∈ S, take x′ := x− 2

psm+r+t and then f(x) = f(x′).
Observe that if at least one of the above two possibilities holds (e.g., p ≥ 5), then an

infinite derivative f ′(x) does not exist.
• It remains to consider the case p = 3 and an = 1 for n � 1. Then we take x′ :=

x + 1
psm+r+1 − 1

psm+r+2 , s� 1, and we get f(x) = f(x′). ��

Let (qn)
∞
n=1 = (3, 5, 3, 5, . . . ). Observe that q1 · · · q2r = 15r, q1 · · · q2r+1 = 3 · 15r. For

x =
∑∞

n=1
an

q1···qn
with an ∈ {0, . . . , qn − 1}, define the Singh function S2 : I −→ R,

S2(x) :=

∞∑

n=1

bn
3n

,
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where

b1 := a1, bn :=

{
a2n+1, if An ∈ 2N0

2− a2n+1, if An ∈ 2N0 + 1
, n ∈ N2,

with An := a2 + a4 + · · ·+ a2n.

Remark 5.10.3. The function S2 is well defined.
Let

x =

k∑

n=1

an

q1 · · · qn with ak ≥ 1,

x′ : =
( k−1∑

n=1

an

q1 · · · qn
)
+

ak − 1

q1 · · · qk +

∞∑

n=k+1

qn − 1

q1 · · · qn .

Let A′
n, b′n be the sequences constructed for x′. There are the following two cases:

• k = 2s + 1 is odd. Then (−1)A′
n = (−1)An for all n ∈ N2.

If As is even, then

b = (b1, . . . , bs−1, ak, 0, 0, . . . ), b′ = (b1, . . . , bs−1, ak − 1, 2, 2, . . . ),

which implies that S2(x) = S2(x
′).

If As is odd, then

b = (b1, . . . , bs−1, 2− ak, 2, 2, . . . ), b′ = (b1, . . . , bs−1, 3− ak, 0, 0, . . . ),

which also implies that S2(x) = S2(x
′).

• k = 2s is even. Then An = A′
n for n = 1, . . . , s− 1, and (−1)An = −(−1)A′

n for n ≥ s.
If As is even, then b′ = b = (b1, . . . , bs−1, 0, 0, . . . ), which gives S2(x) = S2(x

′).
If As is odd, then b′ = b = (b1, . . . , bs−1, 2, 2, . . . ). Thus once again, S2(x) = S2(x

′).

Theorem 5.10.4 (cf. [Sin35]). S2 ∈ ND∞((0, 1)).

Proof . Put f := S2.
Step 1o. Continuity of f follows from Lemma 5.4.1 and Remark 5.10.3 with (qn)

∞
n=1 =

(3, 5, 3, 5, . . . ), σn := 2n + 1, ϕn(a1, . . . , aσn) :=
bn
3n (Mn ≤ 4

3n ).

Step 2o. Nowhere differentiability of f . Fix an x =
∑∞

n=1
an

q1···qn
with sup{n ∈ N : an ≤

qn − 2} = +∞. Consider the following cases:
• The set S := {s ∈ N : a2s+1 ≤ 1} is infinite. For s ∈ S, take x′ := x + 1

q1···q2s+1
=

x + 1
3·15s . Then bn = b′n for n �= s and

b′s =

{
a2s+1 + 1, if As ∈ 2N0

1− a2s+1, if As ∈ 2N0 + 1
.

Hence

|Δf(x, x′)| =
1
3s

1
3·15s

= 3 · 5s −→
S�s→+∞

+∞.

• The set S := {s ∈ N : a2s+1 ≥ 1} is infinite. Then for s ∈ S, we take x′ := x− 1
q1···q2s+1

and argue as above (Exercise).
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Observe that at least one of the above two possibilities holds. Thus a finite derivative f ′(x)
does not exist.
• The set S := {s ∈ N : a2s ≤ 1} is infinite. For s ∈ S, take x′ := x + 2

q1···q2s
and then

f(x) = f(x′).
• The set S := {s ∈ N : a2s ≥ 2} is infinite. For s ∈ S, take x′ := x − 2

q1···q2s
and then

f(x) = f(x′).
Observe that if at least one of the above two possibilities holds, and therefore, an infinite

derivative f ′(x) does not exist. ��

Let R := 2r, r ∈ 2N2 + 1 (e.g., r = 5). For x =
∑∞

n=1
an

Rn with an ∈ {0, . . . , R− 1}, define
the Singh function S3 : I −→ R,

S3(x) :=

∞∑

n=1

εnbn
(2R)n

,

where

bn := 2a2n−1 + ψ(a2n),

ψ(t) :=

⎧
⎪⎨

⎪⎩

0, if t ∈ {0, 2, 4, . . . , r − 1}
1, if t ∈ {1, 3, 5, . . . , 2r − 1}
2, if t ∈ {r + 1, r + 3, . . . , 2r − 2}

, n ∈ N,

ε1 := 1, εn := εn−1ϕ(a2n−2),

ϕ(t) :=

{
1, if t ∈ {0, 2, 4, . . . , r − 1, r, r + 2, r + 4, . . . , 2r − 1}
−1, if t ∈ {1, 3, 5, . . . , r − 2, r + 1, r + 3, . . . , 2r − 2} , n ∈ N2.

Notice that εnbn depends on a2n−2, a2n−1, and a2n (n ∈ N2).

Remark 5.10.5. The function S3 is well defined.
Let

x =

k∑

n=1

an

Rn
with ak ≥ 1, x′ :=

( k−1∑

n=1

an

Rn

)
+

ak − 1

Rk
+

∞∑

n=k+1

R− 1

Rn
.

Let ε′n, b′n be the sequences constructed for x′. There are the following two cases:
• k = 2s− 1. Then

ε′ = ε = (ε1, . . . , εs−1, εs, εs, . . . ),

b = (b1, . . . , bs−1, 2ak, 0, 0, . . . ),

b′ = (b1, . . . , bs−1, 2(ak − 1) + 1, 2R− 1, 2R− 1, . . . ),

which immediately gives S3(x) = S3(x
′).

• k = 2s. Then

ε = (ε1, . . . , εs, εs+1, εs+1, . . . ), ε′ = (ε1, . . . , εs, ε
′
s+1, ε

′
s+1, . . . ),

ε′s+1 = εsϕ(ak − 1),

b = (b1, . . . , bs−1, 2a2s−1 + ψ(ak), 0, 0, . . . ),

b′ = (b1, . . . , bs−1, 2a2s−1 + ψ(ak − 1), 2R− 1, 2R− 1, . . . ).
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Consequently, the equality S3(x) = S3(x
′) reduces to the identity ψ(t + 1) = ψ(t) + ϕ(t),

t ∈ {0, . . . , R− 2}, which may be easily verified (Exercise).

Theorem 5.10.6 (cf. [Sin30, Sin35]). S3 ∈ ND∞((0, 1)).

Proof . Put f := S3.
Step 1o. Continuity of f follows from Lemma 5.4.1 and Remark 5.10.5 with qn = R,

σn := 2n, ϕn(a1, . . . , a2n) :=
εnbn
(2R)n (Mn ≤ 1

(2R)n−1 ).

Step 2o. Nowhere differentiability of f . Fix an x =
∑∞

n=1
an

Rn with sup{n ∈ N : an ≤ R −
2} = +∞. We are going to prove that for infinitely many n ∈ N, there exist ε′n, ε′′n ∈ {−1,+1}
such that for x′

n := x+ε′n
2

R2n , x
′′
n := x+ε′′n

r
R2n , we have a2n+2ε′n, a2n+rε′′n ∈ {0, . . . , R−1}

and

ψ(a2n + 2ε′n) =ψ(a2n), ϕ(a2n + 2ε′n) = ϕ(a2n),

ψ(a2n + rε′n) =ψ(a2n) + 1, ϕ(a2n + rε′′n) = ϕ(a2n).

Consequently,

f(x′
n) = f(x), |Δf(x, x′′

n)| = rn−1,

which obviously will imply that a finite or infinite f ′(x) does not exist.
Consider the four sets

S1 :={n ∈ N : a2n ∈ {0, . . . , r − 3}},
S2 :={n ∈ N : a2n ∈ {r − 2, r − 1}},
S3 :={n ∈ N : a2n ∈ {r, . . . , 2r − 3}},
S4 :={n ∈ N : a2n ∈ {2r − 2, 2r − 1}},

and note that at least one of them is infinite. For n ∈ Si, define the numbers ε′n, ε′′n according
to the following table:

n ε′n ε′′n

n ∈ S1 +1 +1

n ∈ S2 −1 +1

n ∈ S3 +1 −1
n ∈ S4 −1 −1

It remains to check (Exercise) that ε′n, ε′′n (defined above) fulfill our requirements. ��

Remark 5.10.7. ? Based on the above ideas, the reader may try to create his or her own

nowhere differentiable functions ?



Chapter 6

Other Examples

Summary. It is not surprising that there are many examples of nowhere differentiable functions that are

outside the above three main types discussed so far. We will present only two of them.

6.1 Schoenberg Functions

During the discussion of so-called space-filling curves, other examples of nowhere differentiable
functions occurred. Here we restrict ourselves to presenting Schoenberg’s curve. A few more
details will be given in the remark at the end.

Theorem 6.1.1. Let

Φ(x) :=
1

2

∞∑

n=0

1

2n
p(32nx), Ψ(x) := Φ(3x), x ∈ R,

where

p(x) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if x ∈ [0, 1/3]∪ [5/3, 2]

3x− 1, if x ∈ [1/3, 2/3]

1, if x ∈ [2/3, 4/3]

5− 3x, if x ∈ [4/3, 5/3]

, p(x + 2) = p(x), x ∈ R.

Then Φ, Ψ ∈ ND(R) (cf. Fig. 6.1).

The first proof of Theorem 6.1.1 was given in [Als81]. The one presented here can be found
in [Sag92].

Proof of Theorem 6.1.1. We have only to show that Φ ∈ ND(R). Observe that Φ(x + 2) =
Φ(x). Thus, it suffices to prove that Φ′(x) does not exist for x ∈ [0, 2). Suppose that a finite
derivative Φ′(x0) exists for some x0 ∈ [0, 2).
• If x0 = 0, then we have

ΔΦ(0, 1/9k) = 9k
1

2

∞∑

n=0

1

2n
p(9n−k).

© Springer International Publishing Switzerland 2015
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Fig. 6.1 Schoenberg function I 	 x �−→ 1
2

∑∞
n=0

1
2n

p(32nx)

Note that

p(9n−k) =

{
0, if n < k

1, if n ≥ k
.

Hence

ΔΦ(0, 1/9k) = 9k
1

2

∞∑

n=k

1

2n
=

(9
2

)k

−→ +∞;

a contradiction.
• If x0 ∈ (0, 2), then let Nk ∈ N0 be such that 9kx0 ∈ [Nk, Nk + 1). Put ak := Nk

9k
,

bk := Nk+1
9k

, k ∈ N. Then ΔΦ(ak, bk) −→ Φ′(x0) ∈ R (cf. Remark 2.1.2). Let A := {k ∈ N :
Nk ∈ 2N0}, B := {k ∈ N : Nk ∈ 2N0 + 1}. Of course, at least one of the sets A, B is infinite.

– If A is infinite, then for k ∈ A, we get

Φ(bk)− Φ(ak) =
1

2

∞∑

n=0

1

2n
p(9n−kNk + 9n−k)− 1

2

∞∑

n=0

1

2n
p(9n−kNk)

=
1

2

k−1∑

n=0

1

2n

(
p(9n−kNk + 9n−k)− p(9n−kNk)

)
+

1

2

∞∑

n=k

1

2n

≥ −1

2

k−1∑

n=0

1

2n
3 · 9n−k +

1

2k
= − 3

2 · 9k
k−1∑

n=0

(9
2

)n

+
1

2k

= − 3

7 · 9k
((9

2

)k

− 1
)
+

1

2k
.
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Hence

ΔΦ(ak, bk) ≥ −3

7

((9
2

)k

− 1
)
+
(9
2

)k

=
3

7
+

4

7

(9
2

)k

−→
A�k→+∞

+∞;

a contradiction.
– If B is infinite, then for k ∈ B, an analogous argument gives (Exercise)

ΔΦ(ak, bk) ≤ −3

7
− 4

7

(9
2

)k

−→
B�k→+∞

−∞;

a contradiction.

��
Notice that the Schoenberg curve

I � t
γ�−→ (Φ(t), Ψ(t)) ∈ I× I

is a so-called space-filling curve, i.e., γ(I) = I× I. More precisely, we have the following result.

Proposition 6.1.2 (cf. [Sch38]). Let C ⊂ I stand for the standard Cantor ternary set. Then
γ(C) = I× I.

Proof . Every t ∈ C has a ternary representation of the form t =
∑∞

k=1
2tk
3k

, where tk ∈ {0, 1}.
We have

32nt =
( 2n∑

k=1

33n−k2tk

)
+

∞∑

s=1

2t2n+s

3s
=: An(t) + Bn(t),

32n+1t =
( 2n+1∑

k=1

33n+1−k2tk

)
+

∞∑

s=1

2t2n+1+s

3s
=: Cn(t) + Dn(t),

where An(t), Cn(t) ∈ 2N0. In particular, p(32nt) = p(Bn(t)) and p(32n+1t) = p(Dn(t)).
Observe that

max
{ ∞∑

s=2

2t2n+s

3s
,

∞∑

s=2

2t2n+1+s

3s

}
≤

∞∑

s=2

2

3s
=

1

3
.

Consequently, p(Bn(t)) = t2n+1 and p(Dn(t)) = t2n+2. Thus,

γ(t) =
(1
2

∞∑

n=0

p(32nt)

2n
,
1

2

∞∑

n=0

p(32n+1t)

2n

)
=
( ∞∑

n=1

t2n−1

2n
,

∞∑

n=1

t2n
2n

)
.

This shows that for every point P0 = (ξ0, η0) ∈ I×I with binary representations ξ0 =
∑∞

n=1
ξn
2n ,

η0 =
∑∞

n=1
ηn

2n , we have P0 = γ(t0), where t0 := 2ξ1
3 + 2η1

32 + 2ξ2
33 + 2η2

34 + · · · ∈ C. ��
Remark 6.1.3. (a) The Schoenberg curve γ = (Φ, Ψ) : I −→ I× I belongs to a large class of

space-filling curves whose coordinate functions Φ, Ψ are nowhere differentiable; cf. [Sag94].

(b) Notice the following surprising result.



102 6 Other Examples

Theorem 6.1.4 ([Mor87]). The following statements are equivalent:

(i) there exists a mapping f = (f1, f2) : R −→ R
2 such that f(R) = R

2, and for each
x ∈ R, at least one of the finite derivatives f ′

1(x), f ′
2(x) exists;

(ii) the continuum hypothesis is true.

One can also prove (cf. [Mor87]) that if f is as in (i), then f1 and f2 are not Lebesgue
measurable.

6.2 Second Wen Function

Parallel to nowhere differentiable functions given by series, there are also functions given by
infinite products. We present an example of such a function due to L. Wen.

Theorem 6.2.1 (cf. [Wen02]). Let

W2(x) :=

∞∏

n=1

(1 + an sin(πbnx)), x ∈ R,

where 0 < an < 1,
∑∞

n=1 an < +∞, pk ∈ 2N, bn := p1 · · · pn, limn→+∞ 2n

anpn
= 0.

Then W2 ∈ ND±(R) (Fig. 6.2).

Proof . Put f := W2. Since
∑∞

n=1 supx∈R |an sin(πbnx)| ≤ ∑∞
n=1 an < +∞, we easily

conclude that the product
∏∞

n=1(1 + an sin(πbnx)) is uniformly convergent to a
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Fig. 6.2 Wen function I 	 x �−→
∞∏

n=1
(1 + an sin(πbnx)) with an := 2n, bn :=

√
6

n(n+1)
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continuous function. Fix an x0 ∈ R. We are going to show that a finite f ′
+(x0) does not

exist. A proof for f ′
−(x0) is left for the reader as an Exercise. Let Nn ∈ Z be such that

bnx0 ∈ [Nn, Nn + 1), n ∈ N. Define xn := Nn+1
bn

, x′
n := Nn+3/2

bn
, n ∈ N. Then

x0 < xn < x′
n, x′

n − x0 ≤ 3

2bn
,

1

2bn
= x′

n − xn ≥ 1

3
(x′

n − x0) >
1

3
(xn − x0).

Define

A :=

∞∏

n=1

(1 − an), B :=

∞∏

n=1

(1 + an), Ik(x) :=

k∏

n=1

(1+ an sin(πbnx)),

x ∈ R, k ∈ N.

Observe that for n > k, we get

sin(πbnxk) = sin(πpn · · · pk+1(Nk + 1)) = 0,

sin(πbnx′
k) = sin(πpn · · · pk+1(Nk + 3/2)) = 0.

If n = k, then

sin(πbkxk) = sin(π(Nk + 1)) = 0,

sin(πbkx
′
k) = sin(π(Nk + 3/2)) = (−1)Nk+1.

Consequently,

f(x′
k)− f(xk) = Ik−1(x

′
k)(1 + ak(−1)Nk+1)− Ik−1(xk)

= Ik−1(x
′
k)− Ik−1(xk) + ak(−1)Nk+1Ik−1(x

′
k).

If n < k, then

| sin(πbnx′
k)− sin(πbnxk)| ≤ πbn(x

′
k − xk) = πbn

1

2bk
≤ π

2pk
.

Thus an sin(πbnx′
k) = an sin(πbnxk) + σk,n, where |σk,n| < π

2pk
. Then

|Ik−1(x
′
k)− Ik−1(xk)|

=
∣∣∣
k−1∏

n=1

(1 + an sin(πbnxk) + σk,n)−
k−1∏

n=1

(1 + an sin(πbnxk))
∣∣∣

=
∣∣∣

∑

Q,Q′⊂{1,...,k−1}=Q∪Q′

Q∩Q′=∅, #Q′≥1

∏

n∈Q

(1 + an sin(πbnxk))
∏

n∈Q′
σk,n

∣∣∣

≤ (2k−1 − 1)B
π

2pk
<

πB2k−1

pk
.

Hence

|f(x′
k)− f(xk)| ≥ |akIk−1(x

′
k)| −

πB2k−1

pk
≥ akA− πB2k−1

pk
.
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Thus,

|Δf(xk, x
′
k)| ≥ 2akbk

(
A− πB

2

2k

akpk

)
−→

k→+∞
+∞.

Finally, since

|Δf(xk, x
′
k)| ≤

|f(x′
k)− f(x0)|
x′
k − xk

+
|f(xk)− f(x0)|

x′
k − xk

≤ 3(Δf(x0, x
′
k) +Δf(x0, xk)),

we easily conclude that a finite f ′
+(x0) does not exist. ��
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Topological Methods



Chapter 7

Baire Category Approach

Summary. While in Part I, some concrete functions were discussed, this chapter shows how Baire category

methods lead to a description of typical continuous functions on the interval I = [0, 1]. In Sect. 7.2, we prove

that most (in the categorial sense) of the continuous functions on I belong to ND±(I), while in Sect. 7.5, it

is shown that the set ND∞
± (I) of all continuous functions on I having nowhere a unilateral (finite or infinite)

derivative is a thin set (in the categorial sense). Nevertheless, later, in Sect. 11.1, we will see that ND∞
± (I) is

not empty.

7.1 Metric Spaces and First Baire Category

The idea of this section is to collect and recall some information that will be used in this
chapter.

Definition 7.1.1. A metric space is a pair (X, d), where X is a nonempty set and the
function d : X ×X −→ R+ is a metric, i.e., d is symmetric, satisfies the triangle inequality
(i.e., d(x, y) ≤ d(x, z) + d(z, y), x, y, z ∈ X), and is positive definite (i.e., d(x, y) = 0 if and
only if x = y).

The metric space mainly discussed in this section is the set C(I,C) together with its stan-
dard metric d(f, g) := ‖f − g‖I.

Let X be a metric space (in case there is no confusion, we will always omit noting the
metric d). Then d induces on X the structure of a topological space specifying the open sets
of X . Recall that a subset M ⊂ X is called open if for every x ∈ M , there exists a positive
r ∈ R such that the ball Bd(x, r) := {y ∈ X : d(x, y) < r} is a subset of M . A set M is said
to be closed if X \M is open. A point a ∈ M is an interior point of M if some ball Bd(a, r)
with center a is contained in M .

A subset M ⊂ X is called dense in X if M = X , where M is the closure of M , i.e.,
M = {x ∈ X : ∀r∈(0,∞) : Bd(x, r) ∩M �= ∅}. On the other hand, M is called nowhere dense

if intM = ∅, where intL := {x ∈ L : ∃r∈(0,∞) : Bd(x, r) ⊂ L} denotes the interior of L,
L ⊂ X .

Recall that the set of (real-valued) polynomials is dense in C(I) (Exercise; use Bernstein
polynomials).

© Springer International Publishing Switzerland 2015
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Definition 7.1.2. Let X be a metric space. A subset M ⊂ X is said to be of the first (Baire)
category (or meagre) if M =

⋃∞
j=1 Mj , where Mj are nowhere dense subsets of X . A set M

is said to be of second (Baire) category if it is not of first category. Moreover, M is said to
be residual in X if X \M is of first category.

Sets of first Baire category may be thought as small sets.

Theorem 7.1.3 (The Baire Theorem). If X = (X, d) is a complete metric space (i.e., every
Cauchy sequence with respect to d converges to a point of X), then X is of second Baire
category.

Note that C(I,C) is a complete metric space with the metric from above (Exercise). In
particular, if M ⊂ C(I,C) is a set of first Baire category, then C(I,C) \M �= ∅.

We say that a function f ∈ C(I,C) is typical (with respect to a certain property (P)) if f
satisfies (P) and if the set {g ∈ C(I,C) : g does not fulfill (P )} is of first Baire category in
C(I,C).

7.2 The Banach–Jarnik–Mazurkiewicz Theorem

The main result in this section is the following: the typical continuous function on I has
everywhere on I an infinite upper or lower right Dini derivative; in particular, it is nowhere
differentiable on I. To be more precise we have the following result.

Theorem 7.2.1 (The Banach–Jarnik–Mazurkiewicz Theorem). There exists a subset S ⊂
C(I) of first category such that if f ∈ C(I) \ S, then the following properties hold:

(a) f ∈M(I); in particular, f has nowhere on [0, 1) (resp. on (0, 1]) a finite right (resp. left)
derivative;

(b) there exists a set E ⊂ I with L(E) = 1 such that

D+f(x) = D−f(x) = +∞, D+f(x) = D−f(x) = −∞, x ∈ E;

(c) for every x ∈ (0, 1) and α ∈ R, there exists a sequence (hj)
∞
j=1 ⊂ R∗ with limj→+∞ hj = 0

such that

lim
j→+∞

f(x + hj)− f(x)

hj
= α,

i.e., every number in R is a derived number of f at x. In particular, nowhere on (0, 1)
does the two-sided derivative of f , finite or infinite, exist.

Remark 7.2.2. (i) The first statement is due to [Ban31]; a weaker form may be found in
[Maz31]. The remaining facts are contained in [Jar33].

(ii) Recall that a point x ∈ I with the property in (b) is called a knot point of f . Thus (b)
implies that a typical function in C(I) has almost everywhere a knot point.

(iii) While the theorem states that the typical function f ∈ C(I) has nowhere a finite unilat-
eral derivative, nothing is said about infinite one-sided derivatives. We will discuss such
functions later, beginning with Sect. 7.5.

Proof of Theorem 7.2.1. (a) Put

S+
1 := {f ∈ C(I) : ∃x∈[0,1) : max{|D+f(x)|, |D+f(x)|} < +∞}.
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We will prove that S+
1 is of first category in C(I). Define

E+
k := {f ∈ C(I) : ∃a∈[0,1−1/k] : |Δf(a, a+ t)| ≤ k, 0 < t ≤ 1− a}, k ∈ N2.

Obviously, E+
k is closed in C(I), and S+

1 =
⋃∞

k=1 E+
k (Exercise). It remains to verify that

the sets E+
k are without interior points.

Indeed, fix a k0 and assume that E+
k0
⊃ B(f, 2r), where f ∈ E+

k0
, r > 0, and B(f, 2r) :=

{g ∈ C(I) : ‖g − f‖I < 2r}. Since the real-valued polynomials are dense in C(I), we may take
a polynomial p̃ with ‖f − p̃‖I < r. Then B(p, r) ⊂ E+

k0
, where p := p̃|I.

Let g ∈ C(I) be such that g has finite right-sided derivatives on [0, 1) and

‖g‖I < r, |g′+(x)| > ‖p′‖I + k0, x ∈ [0, 1).

Note that such a g always exists (Exercise; use continuous piecewise linear functions).
Then h := g + p ∈ B(p, r) ⊂ E+

k0
and

|h′
+(x)| ≥ |g′+(x)| − |p′(x)| > ‖p′‖I + k0 − ‖p′‖I = k0, x ∈ [0, 1).

Hence, h /∈ E+
k0
; a contradiction.

A similar argument shows that the set

S−
1 := {f ∈ C(I) : ∃x∈(0,1] : max{|D−f(x)|, |D−f(x)|} < +∞}

is also of first category in C(I) (Exercise). Thus, S1 := S+
1 ∪ S−

1 is of first category.
Before starting to prove the remaining two statements let us introduce a special “zigzag”

function zr,s on I, where s ∈ (0, 1/2) and r > 0. Define

zr,s(t) :=

{
2rψ( t

2s ), if 0 ≤ t ≤ 2Ns

0, if 2Ns < t ≤ 1
,

where N := � 1
2s� and ψ(x) = dist(x,Z).

(b) Put

E+(f) := {x ∈ [0, 1) : D+f(x) < +∞}, S+
2 := {f ∈ C(I) : L(E+(f)) > 0}.

We will show that S+
2 is of first category.

For n ∈ N3, put

E+
n (f) :=

{
x ∈

[
0, 1− 1

n

]
: Δf(x, x + h) ≤ n, 0 < h ≤ 1

n

}
.

Then E+(f) =
⋃

n∈N3
E+

n (f). Hence, L(E+(f)) > 0 if and only if there exist an n ∈ N3 and
a k ∈ N with L(E+

n (f)) ≥ 1/k. Put

Vn,k := {f ∈ C(I) : L(E+
n (f)) ≥ 1/k}.

Then S+
2 =

⋃
n∈N3

⋃
k∈N

Vn,k. Observe that the sets Vn,k are closed in C(I). Indeed, let
(fj)j∈N ⊂ Vn,k with fj =⇒ f ∈ C(I). By assumption, L(E+

n (fj)) ≥ 1/k, j ∈ N. If x ∈ E+
n (fj)

for infinitely many j’s, then x ∈ E+
n (f). Therefore,
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∞⋂

s=1

∞⋃

j=s

E+
n (fj) ⊂ E+

n (f).

Hence we have L(E+
n (f)) ≥ 1/k, i.e. f ∈ Vn,k.

It remains to verify that each of the sets Vn,k has no interior point. Assume the contrary.
Then one Vn,k contains a ball B(f0, 2r), and therefore (as in (a)) there exists a polynomial p̃
such that B(p, r) ⊂ Vn,k, where p := p̃|I. Put

q := sup
{∣∣∣

p(x + h)− p(x)

h

∣∣∣ : x ∈ I, h ∈ R∗, 0 ≤ x + h ≤ 1
}

and note that q < +∞. Now fix an s ∈ (0,min{ 1
4n , r

8qk}) with n < r
8ks . Let zr,s be the

corresponding “zigzag” function. Then g := p + zr,s ∈ B(p, r) ⊂ Vn,k.
Take a t ∈ [0, 1− 1

n ] such that zr,s(t) < r(1− 1
2k ). Then one finds a point h′ ∈ (0, 2s] with

zr,s(t + h′) = r. Note that 0 < h′ ≤ 1
n . Moreover,

Δg(t, t + h′) = Δp(t, t + h′) +Δzr,s(t, t + h′)

≥ 1

h′
(
r − r

(
1− 1

2k

)
− qh′

)
≥ r

8sk
> n.

In particular, t /∈ E+
n (g).

By the geometry of the “zigzag” function, it is easily seen that

L(E+
n (g)) ≤ L

({
t ∈

[
0, 1− 1

n

]
: zr,s(t) ≥ r

(
1− 1

2k

)})
≤ 1

2k
<

1

k
.

Thus g /∈ Vn,k; a contradiction.

(c) Put

S3 :=
{
f ∈ C(I) : ∃α0∈R

, ∃a∈(0,1), ∀(hj)∞j=1⊂R∗, limj→∞ hj=0 :

Δf(a, a + hj) �−→ α0

}
.

We want to verify that S3 is a set of first category in C(I). To this end, define

S3,n,α,β := {f ∈ C(I) : ∃a∈(1/n,1−1/n), ∀h∈R∗, |h|<1/n :

Δf(a, a + h) ≤ α or Δf(a, a + h) ≥ β},

where n ∈ N3, α, β ∈ Q, α < β.
Note that S3,n,α,β ⊂ S3. Indeed, let f ∈ S3,n,α,β and choose a ∈ (1/n, 1 − 1/n) according

to the above definition. Suppose that f /∈ S3. Then there exists a sequence (hj)
∞
j=1 ⊂ R∗,

hj −→ 0, such that Δf(a, a + hj) −→ α+β
2 . Therefore, for all large j, we have that |hj| < 1

n
and α < Δf(a, a + hj) < β; a contradiction.

Next we observe that the sets S3,n,α,β are closed in C(I). To see this, take a sequence
(fj)

∞
j=1 ⊂ S3,n,α,β with fj =⇒ f ∈ C(I). Choose points aj ∈ [ 1n , 1 − 1

n ] such that for all

h ∈ R∗, |h| < 1
n , one of the following inequalities holds:

Δfj(aj , aj + h) ≤ α or Δfj(aj , aj + h) ≥ β.
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We may assume that aj −→ a ∈ [1/n, 1 − 1/n] by taking an appropriate subsequence. Fix
an h ∈ R∗, |h| < 1/n. Without loss of generality, we may even assume that the first of the
above inequalities holds for all j. By uniform convergence and continuity, we conclude that
this kind of inequality remains true for the limit function f . Hence, f ∈ S3,n,α,β, proving that
S3,n,α,β is closed.

Finally, we have that

S3 =
⋃

n∈N3

⋃

α∈Q

⋃

Q�β>α

S3,n,α,β.

According to the remark above, it suffices to verify only the inclusion ⊂. Indeed, let f ∈ S3.
Then we find a point a ∈ (0, 1) and a value α ∈ R such that if (hj)

∞
j=1 ⊂ R∗ with hj −→ 0,

then the sequence (Δf(a, a + hj))
∞
j=1 does not converge to α.

Let α be a real number. Suppose that f does not belong to the set on the right-hand side.
Then choose a strictly increasing sequence (nj)

∞
j=1 ⊂ N3 with a ∈ [ 1

n1
, 1− 1

n1
] and sequences

of rational numbers (αj)
∞
j=1, (βj)

∞
j=1 such that αj ↗ α and βj ↘ α. By assumption, there

are hj ∈ R∗, |hj | < 1
j , such that

αj ≤Δf(a, a + hj) ≤ βj , j ∈ N,

which immediately implies that Δf(a, a+ hj) −→ α; a contradiction. The cases α = ±∞ are
left as an Exercise.

To complete the proof, we show that the sets S3,n,α,β have no interior points. Indeed,
suppose that B(f, 2r) ⊂ S3,n,α,β. Then by the Weierstrass approximation theorem, one finds
a polynomial p̃ such that p := p̃|I ∈ B(f, r), implying that B(p, r) ⊂ S3,n,α,β. Let q := ‖p‖I.
Next, we choose a positive number s such that

(i) s < min{ 1
4n , r

4q+2|α+β|},
(ii) |Δp(t, t + h)− p′(t)| < β−α

2 for all 0 ≤ t ≤ 1 and 0 < |h| ≤ 2s.

Let zr,s be the “zigzag” function from above. Fix a point t ∈ [ 1n , 1− 1
n ]. Then p+zr,s ⊂ B(p, r).

Note that 1− 1
n + 2s < 2s( 1

2s − 1) ≤ 2Ns. Therefore,

{zr,s(t + h)− zr,s(t) : 0 < h ≤ 2s} = [−zr,s(t), r − zr,s(t)].

Taking into account the special form of our “zigzag” function, we conclude that

[−zr,s(t)

2s
,
r − zr,s(t)

2s

]
⊂
{
Δzr,s(t, t + h) : 0 < h ≤ 2s

}
.

By a similar argument, we obtain

[
− r − zr,s(t)

2s
,
zr,s(t)

2s

]
⊂
{
Δzr,s(t, t + h) : 0 > h ≥ −2s

}
.

Using the inequality max{zr,s(t), r − zr,s(t)} ≥ r/2, it follows that

[
− r

4s
,

r

4s

]
⊂

{
Δzr,s(t, t + h) : 0 < |h| ≤ 2s

}
=: M.

Finally, the choice of s implies that [−q− |α+β|
2 , q + |α+β|

2 ] ⊂M . Therefore, we obtain an h′,
0 < |h′| ≤ 2s < 1/n, such that

Δzr,s(t, t + h′) = −p′(t) +
α + β

2
.
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Finally, applying property (ii) yields

∣∣∣Δ(p + zr,s)(t, t + h′)− α + β

2

∣∣∣ <
β − α

2
.

Hence,
α < Δ(p + zr,s)(t, t + h′) < β,

meaning that p + zr,s /∈ S3,n,α,β; a contradiction. ��
Remark 7.2.3. Observe that the set S in Theorem 7.2.1 may contain a function, say F ,
with F ′

+(a) = ±∞ for some a ∈ [0, 1), i.e., functions in S may have infinite right derivatives.
So it remains open, at least for the moment, whether there exists a function f ∈ C(I) that
has nowhere a one-sided derivative, finite or infinite.

Remark 7.2.4. (a) In [Jar33], also a more general differentiation is discussed. Let ϕ : R −→
R with hϕ(h) > 0 for h ∈ R∗ and limR∗�h→0 ϕ(h) = 0, e.g., ϕ(t) = t. For an f ∈ C(I) and
x ∈ (0, 1), put

Dϕ(x) := lim sup
R∗�h→0

f(x + h)− f(x)

ϕ(h)
, Dϕ(x) := lim inf

R∗�h→0

f(x + h)− f(x)

ϕ(h)
.

For example, it is shown that the set

{f ∈ C(I) : Dϕ(x) = +∞ = −Dϕf(x), x ∈ (0, 1)}

is residual in C(I).
(b) In [Kos72], P. Kostyrko studied symmetric derivatives. Let g ∈ C(I) and x ∈ (0, 1). Then

the symmetric differential quotient at x is given by

Δsg(x, h) :=
g(x + h)− g(x− h)

2h
, x ∈ (0, 1), x± h ∈ I.

Then the set

M := {f ∈ C(I) : lim sup
R∗�h→0

Δsf(x, h) = +∞ = − lim inf
R∗�h→0

Δsf(x, h)

for all x ∈ (0, 1)}

is residual in C(I). The proof is based on an example, due to L. Filipczak (see [Fil69]),
of a function that belongs to M . Later, other concrete functions belonging to M were
constructed by P. Kalášek (see [Kal73]).

(c) In [Pet58], V. Petr
◦
uv generalized the symmetric derivatives. Let g ∈ C(I) and ϕ :

(0,∞) −→ (0,∞) with limh→0+ ϕ(h) = 0. For an x ∈ (0, 1), define

Dϕ
+g(x) := lim sup

h→0+

g(x + h)− g(x− h)

ϕ(h)
,

D+
ϕ g(x) := lim inf

h→0+

g(x + h)− g(x− h)

ϕ(h)
.
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Then the set

M := {f ∈ C(I) : Dϕ
+f(x) = +∞ = −D+

ϕ f(x) for all x ∈ (0, 1)}

is residual in C(I).

7.3 Typical Functions in the Disk Algebra

In this section, we will discuss recent results for the disk algebra A(D) (see [Esk14, EM14])
that are in the spirit of the discussions above.

Recall that the disk algebra A(D) is given by

A(D) := {f ∈ C(D,C) : f |D is holomorphic},

where D denotes the open unit disk in the complex plane, i.e., D := {z ∈ C : |z| < 1}. For
more details, see Appendix A.2.

Now we can formulate a recent result on typical functions of the disk algebra (see [Esk14,
EM14]).

Theorem 7.3.1. Let E denote the set of all functions f ∈ A(D) such that the functions uf ,
uf (θ) := Re f(eiθ), and vf , vf (θ) := Im f(eiθ) are nowhere differentiable on R. Then E is
residual in the Banach space A(D) equipped with the supremum norm.

Before beginning the proof, let us introduce a notational convention. If f ∈ C(T,C), then
we set uf(θ) := Re f(eiθ) and vf (θ) := Im f(eiθ), θ ∈ R. Obviously, these functions are
2π-periodic continuous functions. Conversely, if u is a 2π-periodic continuous function (u ∈
C2π(R,R)), then we set hu : D −→ R, the continuous function on D that coincides on T

with T � eiθ �−→ u(θ) and is harmonic in D (see Proposition A.2.3). Moreover, let h̃u be the

conjugate harmonic function to hu with h̃u(0) = 0 (see Proposition A.2.4). When h̃u extends

to a continuous function on D, we arrive at the function f̃u := hu+ ih̃u ∈ A(D) with u
˜fu

= u.

Proof of Theorem 7.3.1. Step 1o. It suffices to prove that the set

E+ := {f ∈ A(D) : uf ∈ ND(R)}

is residual in A(D). Indeed, suppose that E+ is residual in A(D), i.e., A(D) \E+ =
⋃∞

n=1 Fn,
where the closure of Fn has empty interior, n ∈ N. Then E = E+ ∩ (iE+), and since A(D) �
g �−→ ig ∈ A(D) is a homeomorphism, iE+ is also residual, which immediately shows that E
itself is residual.

Step 2o. We say that a function u ∈ C2π(R,R) satisfies the condition (Dn) if for every
θ ∈ R, there exists a y ∈ (θ, θ + 1

n ) such that |Δu(θ, y)| > n, n ∈ N. Moreover, put

En := {f ∈ A(D) : uf satisfies condition (Dn)}, n ∈ N.

We claim that the set En is open in A(D). Indeed, let (fj)∞j=1 ⊂ A(D) \ En with fj −→ f ∈
A(D). Put uj := ufj and u := uf . Then (uj)

∞
j=1 is uniformly convergent to u. Moreover, using

the periodicity of the functions uj, we see that there are points θj ∈ [0, 2π] such that

|uj(y)− uj(θj)| ≤ n|y − θj |, y ∈ (θj , θj +
1

n
).
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By a compactness argument, we may assume (extracting a subsequence if necessary) that
θj −→ θ ∈ [0, 2π]. If θ < y < θ+ 1

n , then for all sufficiently large j, we have θj < y < θj +1/n
and thus |uj(y)−uj(θj)| ≤ n|y− θj |. Hence, the uniform convergence leads to |u(y)−u(θ)| ≤
n|y − θ|, showing that u does not satisfy condition (Dn) or that f /∈ En.

Step 3o. Fix an n and let f ∈ A(D). Define f0(z) :=
∑∞

n=0(
1
2 )

nz99
n

, z ∈ D. Obviously,
f0 ∈ A(D) and uf0(x) =

∑∞
n=0(

1
2 )

n cos(99nx) for ∈ R. Then f − f0 ∈ A(D), and therefore, if
ε > 0 is given, then one finds a complex polynomial p such that ‖f−f0−p‖

D
< ε (Exercise).

If we fix a θ ∈ R, then |Δup(θ, y)| ≤ M on (θ, θ + 1
n ) for a sufficiently large M . Now recall

that max{|D+uf0(x)|, |D+uf0(x)|} = +∞, x ∈ R (see Theorem 3.5.1). Thus there exists a
yn ∈ (θ, θ + 1

n ) with Δuf0(θ, yn) > n + M , which finally gives that f0 + p ∈ En. Hence
A(D) \ En is nowhere dense in A(D).

Step 4o. To conclude the proof, it remains only to mention that E ⊃ ⋂
n∈N

En. ��
Remark 7.3.2. (a) The use of the existence of the concrete function f0 ∈ E in the proof

above led to a simple proof of Theorem 7.3.1. In [Esk14], another proof is given that is
not based on the Weierstrass function but on some kind of “zigzag” functions.

(b) Similar results (with respect to directional derivatives) are also known for the boundary
values of functions in A(Dn).

The following result may be understood in contrast to Theorem 7.3.1, namely that the
set of 2π-periodic continuous nowhere differentiable functions u with a “good” associated
harmonic conjugate h̃u is small in C2π(R).
Proposition 7.3.3. The set

L := {u ∈ C2π(R,R) : h̃u ∈ C(D,C), u, v
˜f ∈ ND(R)},

where f̃ = f̃u = hu + ih̃u, is dense and of first category in C2π(R,R) (equipped with the
supremum norm).

Proof . Step 1o. To prove that L is dense in C2π(R,R), fix a function u ∈ C2π(R) and a positive
ε. Since hu is continuous on D, there exists an r ∈ (0, 1) such that |hu(z) − hu(rz)| < ε/2,
z ∈ D. Put ur(θ) := Rehr(e

iθ).

Denote by h̃u the harmonic conjugate to hu. Then the harmonic conjugate to hr, hr(z) :=

hu(rz), is given by D � z
˜hr�−→ h̃u(rz), which obviously extends to a continuous function on

D. Put f := hr + ih̃r. Then f ∈ A(D) with uf(θ) = ur(θ), θ ∈ R. Applying Theorem 7.3.1,
we obtain a function g ∈ A(D) such that

‖f − g‖
D

< ε/2 and ug, vg ∈ ND(R).

Moreover, we have

‖u− ug‖R ≤ ‖u− ur‖R + ‖ur − ug‖R ≤ ε/2 + ‖f − g‖
D

< ε.

Hence, L is dense in C2π(R).
Step 2o. For n ∈ N put Ln := {u ∈ C2π(R) : ‖h̃u‖D ≤ n}. Obviously, L ⊂ ⋃∞

n=1 Ln. Note
that Ln is a closed subset of C2π(R). Indeed, let (uj)

∞
j=1 ⊂ Ln with uj −→ u in C2π(R).

Then (hj)
∞
j=1, hj := huj , converges uniformly to hu on T and thus on D (use the maximum

principle for harmonic functions). Moreover, ‖h̃j‖D ≤ n, where h̃j := h̃uj , j ∈ N. By virtue of
the Carathéodory inequality (see Proposition A.2.6), we have
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|h̃u(z)− h̃j(z)| ≤ 2
1 + |z|
1− |z|‖hj − hu‖D −→j→∞

0,

implying that ‖h̃u‖D ≤ n, i.e., u ∈ Ln.
Step 3o. It remains to show that Ln has no interior points, or equivalently, that C2π(R)\Ln

is dense in C2π(R), n ∈ N. Indeed, fix an n ∈ N, a function u ∈ C2π(R), and a positive ε.
Then u − u∗ ∈ C2π(R), where u∗ is the function from Example A.2.5. By virtue of the
theorem of Fejér (see Proposition A.2.7), we obtain a complex polynomial p ∈ C[z] such that

|u(θ) − u∗(θ) − Re p(eiθ)| < ε, θ ∈ R. Moreover, ‖h̃u∗ + Im p‖D = ∞. Thus, the function
R � θ �−→ u∗ +Re p(eiθ) does not belong to Ln. ��

7.4 The Jarnik–Marcinkiewicz Theorems

The main result here deals with derived numbers instead of differentiability.

Theorem 7.4.1 (cf. [Mar35]). Let (hj)
∞
j=1 ⊂ R∗ be a sequence converging to 0. Denote by M

the set of all f ∈ C(I) such that for every measurable almost everywhere finite function g on
I, there exist a subsequence (hjk)

∞
k=1 of (hj)

∞
j=1 and a full-measure set Eg ⊂ (0, 1) such that

lim
k→∞

Δf(x, x + hjk) = g(x), x ∈ Eg.

Then M is residual in C(I).
Remark 7.4.2. (a) If we take g to be the constant function λ ∈ R, then λ is a derived

number of f for almost all a ∈ I. Hence, one may read this result as follows: the typical
function in C(I), although very wildly behaved, possesses some kind of regularity, i.e., for
each real λ, its behavior near every point outside of some null set is similar to its behavior
near every other point relative to the sequence (hk)

∞
k=1.

(b) We may also think of f as a universal primitive for all measurable, almost everywhere
finite functions g on I. Note that according to a result of W. Sierpiński (see [Sie35]), we
have for every measurable, almost everywhere finite function on I and for every sequence
(hj)

∞
j=1 ⊂ R∗ with limj→∞ hj = 0, a function f on I such that Δf(x, x + hj) −→

j→∞
g(x),

x ∈ (0, 1). Note that this result is true without some exceptional set.
(c) According to the footnote in [Mar35], Theorem 7.4.1 is due to S. Saks.

The proof of Theorem 7.4.1 requires some preparation.

Lemma 7.4.3. Let Ek ⊂ I, k ∈ N, be measurable sets with
∑∞

k=1 L(Ek) < +∞. Then there
exists a subset E ⊂ I, L(E) = 0, such that if x ∈ I \ E, then there exists an index jx with
x /∈ ⋃

j≥jx
Ej .

Lemma 7.4.3 is a standard result from measure theory; nevertheless, we repeat its simple
proof.

Proof . Put A := {x ∈ I : x ∈ Ek for infinitely many k}. We have to show that L(E) = 0.
Put g(x) :=

∑∞
k=1 χEk

(x), x ∈ I, where χEk
denotes the characteristic function of the set

Ek, i.e., χEk
= 1 on Ek, while χEk

= 0 on I \ Ek. Note that g is the limit function of
an increasing sequence of integrable functions with convergent integrals. Then, applying the
theorem on monotone convergence leads to the fact that g is an integrable function, i.e., g is
almost everywhere finite, which immediately implies that L(A) = 0 (observe that x ∈ A iff
g(x) = +∞). ��



116 7 Baire Category Approach

Moreover, we quote the following results, which will be used in the proof. For their proofs,
the reader is asked to consult the corresponding books on measure theory, such as [Rud74].

Theorem 7.4.4 (Lusin’s Theorem). Suppose f is a measurable real-valued function on I.
Then there exists an g ∈ C(I) such that L({x ∈ I : f(x) �= g(x)}) < ε.

Theorem 7.4.5 (Egorov’s Theorem). Let (fj)
∞
j=1 be a sequence of measurable functions on

I that converges at every point in I and let ε > 0. Then there is a measurable set E ⊂ I with
L(I \ E) < ε such that (fj)

∞
j=1 converges uniformly on E.

Let P denote the set of all real-valued polynomials with rational coefficients. Obviously, P
is a countable set. So we fix an enumeration of P , i.e., P = {pj ∈ P : j ∈ N}, where pj �= pk
if j �= k.

Lemma 7.4.6. Let (hj)
∞
j=1 ⊂ R∗ be a sequence with limhj = 0 and let f ∈ C(I). Then the

following statements are equivalent:

(i) for every measurable, almost everywhere finite function g on I there exist a subsequence
(hjk)

∞
k=1 ⊂ (hj)

∞
j=1 and a set Eg ⊂ (0, 1) with L(Eg) = 1 such that

lim
k→∞

Δf(x, x + hjk) = g(x), x ∈ Eg;

(ii) for every pair (k, n) ∈ N
2, there exist infinitely many indices s > n such that

L
({

x ∈ (0, 1) : x + hs ∈ I,
∣∣∣Δf(x, x + hs)− pk(x)

∣∣∣ ≥ 1

n

})
<

1

n
;

(iii) for every pair (k, n) ∈ N
2, there exists an index s > n such that

L
({

x ∈ (0, 1) : x + hs ∈ I,
∣∣∣Δf(x, x + hs)− pk(x)

∣∣∣ ≥ 1

n

})
<

1

n
.

Proof . (i)=⇒(ii): Fix k, n ∈ N. Since pk is a measurable function on I, we may choose a
subsequence (hjs)

∞
s=1 ⊂ (hj)

∞
j=1 such that

Δf(·, ·+ hjs) −→
s→∞ pk almost everywhere on (0, 1).

Now fix an index s′n ∈ N with n < s′n such that |hjs | < 1
4n for all s ≥ s′n. Then the sequence

(Δf(x, x+ hjs))s≥s′n is defined on ( 1
4n , 1− 1

4n ) =: Jn and converges there almost everywhere
to pk.

By virtue of Egorov’s theorem (see Theorem 7.4.5), there exists a set Ek,n ⊂ Jn, L(Ek,n) <
1
2n , such that the former sequence converges uniformly on Jn \ Ek,n to pk. In particular, we
find an index sn > s′n such that for all s ≥ sn, one has

∣∣∣Δf(x, x + hjs)− pk(x)
∣∣∣ <

1

n
, x ∈ Jn \ Ek,n, s ≥ sn.

It remains to note that js > n for all s ≥ sn.
(ii)=⇒(iii): There is nothing to prove.
(iii)=⇒(i): We begin with a measurable, almost everywhere finite function g on J . Applying

Lusin’s theorem (see Theorem 7.4.4), we see that there exists a sequence (gj)
∞
j=1 ⊂ C(I) such

that

L(Ej) <
1

2j
, where Ej := {x ∈ I : g(x) �= gj(x)}, j ∈ N.
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Then according to Lemma 7.4.3, one may find a set E0 ⊂ I, L(E0) = 0, such that every
x ∈ I \ E0 lies in only a finite number of the sets Ej . In other words, for every x ∈ I \ E0,
there exists an index j′x such that x /∈ ⋃

j≥j′x
Ej , i.e., g(x) = gj(x) if j ≥ j′x.

Applying the Weierstrass approximation theorem, we obtain a sequence of polynomials
(qj)

∞
j=1 with ‖gj − qj‖I < 1

j , j ∈ N. Then it is easy to construct a subsequence (pkj )
∞
j=1 ⊂

(pk)
∞
k=1 such that ‖pkj − qj‖I < 1

j , j ∈ N. Hence, for every x ∈ I \E0, we have that if j ≥ j′x,
then |g(x)− pkj (x)| < 2

j . Thus the sequence (pkj )
∞
j=1 converges on I \ E0 pointwise to g.

Using the assumption in (iii), there are strictly increasing sequences (mj)
∞
j=1 and (sj)

∞
j=1

of natural numbers with sj+1 > 2mj+1 > sj > 2mj such that

L
({

x ∈ (0, 1) : x + hsj ∈ I,
∣∣∣Δf(x, x + hsj )− pkj (x)

∣∣∣ ≥ 1

2mj

})
<

1

2mj
.

Note that (hsj )
∞
j=1 is a subsequence of (hj)

∞
j=1.

Put

Sj := {x ∈ (0, 1) : x + hsj ∈ I, |Δf(x, x + hsj )− pkj (x)| <
1

2mj
}.

As above, using Lemma 7.4.3, we see that there exists a set S0 ⊂ (0, 1), L(S0) = 0, such that
if x ∈ (0, 1) \ S0, then there exists a j′′x ∈ N such that x ∈ ⋂

j≥j′′x
Sj .

Fix a point x ∈ (0, 1) \ (E0 ∪ S0). Then there exists an index jx > max{j′x, j′′x} such that
x + hsj ∈ (0, 1), j ≥ jx. Thus if j ≥ jx, then

|Δf(x, x + hsj )− g(x)| ≤ |Δf(x, x + hsj )− pkj (x)|+ |pkj (x)− g(x)|
<

1

2mj
+

2

j
−→
j→∞

0.

Hence, the sequence (Δf(x, x + hsj ))j∈N converges to g(x) for almost every x ∈ (0, 1). ��
Lemma 7.4.7. Let f1, f2 ∈ C(I). Moreover, it is assumed that f2 is almost everywhere
differentiable on I. If ε > 0, then there exists a continuous function h on I, almost everywhere
differentiable on I, such that ‖f1 − h‖I < ε and h′ = f ′

2 almost everywhere on I.

Remark 7.4.8. (a) This lemma was used by M. Lusin to prove that a finite measurable
function is almost everywhere the primitive of a continuous function (see the footnote in
[Mar35]).

(b) Even more is true: every measurable finite function f on I possesses a uniformly smooth
primitive F , i.e., there exists a function F on I, uniformly smooth, such that F ′ = f almost
everywhere. Recall that F is said to be uniformly smooth on I if F is continuous and

F (x + h) + F (x− h)− 2F (x)

h
= o(1) as h −→ 0,

uniformly in x ∈ (0, 1) (see [Hov09]).

Proof of Lemma 7.4.7. Take a partition t0 = 0 < t1 < · · · < tN = 1 of I such that on
each of the intervals Jk := [tk, tk+1], one has sup{|f(x) − f(y)| : x, y ∈ Jk} < ε

2 , where
f := f1− f2. Fix a k ∈ {0, . . . , N − 1}. On Jk choose a continuous monotone function gk with
gk(tk) = f(tk), gk(tk+1) = f(tk+1), and g′k = 0 almost everywhere on Jk (use, for example,
the Cantor ternary function; see [KK96]). Put g(x) := gk(x) if x ∈ Jk. Then g is a continuous
function on I, and if x ∈ Jk, then

|f(x)− g(x)| ≤ |f(x)− f(tsk)|+ |f(tsk)− g(x)| ≤ ε,
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where tsk ∈ {tk, tk+1} is the endpoint of Jk with f(tsk) = max{f(tk), f(tk+1)}. Hence, h :=
f2 + g satisfies the properties claimed in the lemma. ��
Proof of Theorem 7.4.1. For (k, n) ∈ N

2, put

Mk,n :=
{
f ∈ C(I) : ∀s>n :

L
({

x ∈ (0, 1) : x + hs ∈ I, |Δf(x, x + hs)− pk(x)| ≥ 1

n

})
≥ 1

n

}
.

Note that C(I) \M =
⋃

k,n∈N
Mk,n. So we have to show that each of the sets Mk,n is closed

and without interior points.
Fix a pair (k, n).
Step 1o. Take a sequence (fj)

∞
j=1 ∈Mk,n such that fj =⇒

j→∞
f0 ∈ C(I) and fix an s > n. Put

Sj :=
{
x ∈ (0, 1) : x + hs ∈ I, |Δfj(x, x + hs)− pk(x)| ≥ 1

n

}
, j ∈ N0.

We wish to show that S∗ :=
⋂∞

m=1

⋃

≥m S
 ⊂ S0. Indeed, let x ∈ S∗. Then for every

m ∈ N, we find an index 
m ≥ m such that x ∈ S
m . Without loss of generality, we may
assume that 
m+1 > 
m (otherwise, take a suitable subsequence). Then x + hs ∈ I and
|Δf
m(x, x + hs)− pk(x)| ≥ 1

n , m ∈ N. Passing to the limit gives x ∈ S0.
What remains is to observe that L(S∗) ≥ 1

n (Exercise). Hence, f0 ∈Mk,n.
Step 2o. Take a function f ∈ C(I) and a positive ε. Applying Lemma 7.4.7 for the data

pk, f, ε, one obtains a continuous function h on I, almost everywhere differentiable, such that
‖f − h‖I < ε and h′ = pk almost everywhere. It remains to observe that h ∈Mk,n. ��

A generalization of Theorem 7.4.1 is due to V. Jarnik. To be able to state his result, let
us first recall that a measurable set E ⊂ [0, 1) has right upper density α, α ∈ [0, 1], at a point
x ∈ [0, 1) if

lim sup
h→0

L(E ∩ (x, x + h))

h
= α.

Theorem 7.4.9 (cf. [Jar34]). Let M be the set of all f ∈ C(I) for which there exists a
measurable set E ⊂ [0, 1), L(E) = 1, satisfying the following property: if x ∈ E and λ ∈ R,
then there is a measurable set Ex ⊂ I with right upper density 1 at x such that

lim
Ex\{x}�y→x+

f(y)− f(x)

y − x
= λ.

Then M is residual in C(I).
Remark 7.4.10. λ is called an essential right derivative of f at x.

Proof of Theorem 7.4.9. Step 1o. Let f ∈ C(I) and let (a, b) be an open interval in R. We
say that the interval is essential for f if there exists a set Bf ⊂ I, L(Bf ) = 0, such that if
x ∈ [0, 1)\Bf , then we can find a measurable set Ex ⊂ I with right upper density 1 at x such
that

Δf(x, y) ⊂ (a, b) for all y ∈ Ex, x < y.
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We enumerate all the intervals with rational endpoints, i.e., one gets a sequence of intervals(
(ak, bk)

)∞
k=1

. Put
Mk = {f ∈ C(I) : (ak, bk) is essential for f}.

We claim that
⋂∞

k=1 Mk ⊂ M . Indeed, fix a function f ∈ ⋂∞
k=1 Mk. Using the fact that

Ik := (ak, bk) is essential for f , we see that there exist sets Bk := Bf,k ⊂ I, L(Bk) = 0, such
that for every k and x ∈ [0, 1) \ Bk, we obtain a set Ek,x ⊂ I of right upper density 1 at x
such that Δf(x, y) ⊂ Ik whenever y ∈ Ek,x, x < y.

Put Bf :=
⋃∞

k=1 Bf,k ⊂ I. Obviously, Bf is, as a countable union of Lebesgue zero sets,
again a Lebesgue zero set. Now fix a point x ∈ [0, 1) \Bf and a λ ∈ R. Choose a subsequence(
(akn , bkn)

)
n∈N

of the above intervals such that limn→∞ akn = limn→∞ bkn = λ. Since x /∈
Bf,kn , we have the measurable set En := Ekn,x ⊂ I of right upper density 1 at x such that
Δf(x, y) ⊂ Ikn whenever y ∈ En, x < y.

Recall that if n ∈ N, then there is a sequence (sn,
)
∞

=1 ⊂ (0, 1) with lim
→∞ sn,
 = 0 such

that L(En ∩ (x, x + sn,
))

sn,

= 1.

Let h1 := s1,1. Obviously, L(E1∩(x, x+h1)) > 0 = (1− 1
1 )h1. Assume that a positive number

hn, n ≥ 1, with L(En ∩ (x, x+ hn)) > (1− 1
n )hn has been constructed. Then choose an 
n so

large that

sn+1,
n <
hn

n
and L(En+1 ∩ (x, x + sn+1,
n)) >

(
1− 1

n + 1

)
sn+1,
n .

Put hn+1 := sn+1,
n .
Finally, we introduce the following measurable set:

E = Ex :=

∞⋃

n=1

(x + hn+1, x + hn) ∩ En.

Using the estimate

1 ≥ L(E ∩ (x, x + hn))

hn

≥ L(En ∩ (x, x + hn))

hn
− L(En ∩ (x, x + hn+1))

hn
≥

(
1− 2

n

)
−→
n→∞ 1,

it immediately follows that E has right upper density 1 at x.
Recall that akn < Δf(x, y) < bkn if y ∈ En ∩ (x + hn+1, x + hn). Thus, limE\{x}�y→x+

Δf(x, y) = λ. Since x ∈ [0, 1) \Bf has been arbitrarily chosen, we get f ∈M .
Thus it remains to show that all the sets Mk are residual in C(I) (Exercise).
Step 2o. Fix a k ∈ N. Let f ∈ C(I). Put

Ak(f) :=
{
x ∈ [0, 1) : {y ∈ I : y > x, Δf(x, y) ⊂ Ik}

has right upper density less than 1 at x
}
.

Note that f /∈Mk if and only if L(Ak(f)) > 0.



120 7 Baire Category Approach

Moreover, for s ∈ N, set

Bk,s(f) :=
{
x ∈ [0, 1) : if 0 < u ≤ min{1/s, 1− x},

then L({y ∈ (x, x + u] : Δf(x, y) ⊂ Ik}) ≤ (1− 1/s)u
}
.

Then Ak(f) =
⋃


,s∈N
Bk,s(f) (Exercise). Note that L(Ak(f)) > 0 if and only if

L(Bk,s(f)) > 0 for some s.
Finally, put

Ck(
, s) := {f ∈ C(I) : L(Bk,s(f)) ≥ 1/
}, 
, s ∈ N.

Then C(I) \Mk =
⋃


,s∈N
Ck(
, s). Thus it remains to show that the sets Ck(
, s) are nowhere

dense in C(I).
Step 3o. We will prove that each of the sets Ck(
, s) is closed in C(I). Indeed, fix 
, s and take

a sequence (fj)
∞
j=1 ⊂ Ck(
, s) with fj =⇒ f ∈ C(I). It suffices to show that L(Bk,s(f)) ≥ 1/
.

Put F :=
⋂∞

m=1

⋃
j≥m Bk,s(fj). Since L(bk,s(fj) ≥ 1/
, it follows that L(F ) ≥ 1/
. So

it remains to verify that F ⊂ Bk,s(f). To do so, fix a point x ∈ F . Then there exists a
subsequence (fjm)∞m=1 such that x ∈ Bk,s(fjm) for all m ∈ N.

Fix a u ∈ (0, 1
s ], x + u ≤ 1. Then

L({y ∈ (x, x + u] : Δfkm(x, y) �⊂ Ik}) ≥ u

s
.

Put

G(x, u) :=
∞⋂

m=1

⋃

κ≥m

{y ∈ (x, x + u] : Δfkκ
(x, y) �⊂ Ik}.

Then L(G(x, u)) ≥ u
s .

Moreover, using the uniform convergence and the fact that R \ Ik is closed, we see that

G(x, u) ⊂ {y ∈ (x, x + u] : Δf(x, x + y) �⊂ Ik}.

Therefore, the measure of the set on the right is greater than or equal to u
s . Recall that u was

arbitrarily chosen with the above conditions. Therefore, x ∈ Bk,s(f).
Step 4o. It remains to prove that all the sets Ck(
, s) do not have interior points. Indeed, fix


, s ∈ N and assume that the function f ∈ C(I) is an interior point of Ck(
, s), i.e., that there
exists a positive r such that the open ball B(f, 2r) with center f and radius 2r is contained in
Ck(
, s). Choose a real-valued polynomial p such that ‖p− f‖I < r. Then B(p, r) ⊂ Ck(
, s).

Take a large positive number t such that

|Δp(x, y)| < t− |ck| and ‖p′‖I < t− |ck|,

where ck := ak+bk
2 . Moreover, fix a natural number m such that t < mr and if 0 < |y−x| ≤ 1

m ,

then max{|Δp(x, y)− p′(x)|, |p′(x)− p′(y)|} < bk−ak

4 .
We now introduce the following function g ∈ C(I):

g(x) :=

⎧
⎪⎨

⎪⎩

0, if x = σ
m , σ = 0, 1, . . . ,m

g̃(x), if σ
m ≤ x ≤ σ+1

m − 1
2
m , σ = 0, . . . ,m− 1

ĝ(x), if σ+1
m − 1

2
m ≤ x ≤ σ+1
m , σ = 0, . . . ,m− 1

,
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where

g̃(x) : =
(
− p′(

σ

m
) + ck

)(
x− σ

m

)
,

ĝ(x) : = 2

(
− p′(

σ

m
) + ck

)(
1− 1

2


)(σ + 1

m
− x

)
.

Then

‖g‖I ≤ 1

m
(‖p′‖I + |ck|)(1− 1

2

) <

t

m
< r.

Thus p + g ∈ Ck(
, s), and so L(Bk,s(p + g)) ≥ 1

 .

Now fix a point x ∈ [ σm , σ+1
m − 1

2
m) for an arbitrary σ ∈ {0, . . . ,m− 1} and take a point
u with 0 < u ≤ min{ 1s , σ+1

m − 1
2
m − x}. If x < y ≤ x + u, then

|Δ(p + g)(x, y)− ck| ≤ |Δp(x, y)− p′(x)|+ |p′(x) − p′(
σ

m
)| < bk − ak

2
.

In other words, Δ(p + g)(x, y) ∈ Ik, which implies that

L({y ∈ (x, x + u) : Δ(p + g)(x, y) ⊂ Ik}) ≥ u.

Hence, x /∈ Bk,s(p + g).
So we end with the following inclusion:

Bk,s(p + g) ⊂
m−1⋃

σ=0

(σ + 1

m
− 1

2
m
,
σ + 1

m

)
,

which immediately leads to 1

 ≤ L(Bk,s(p + q)) ≤ 1

2
 ; a contradiction. ��

7.5 The Saks Theorem

So far, we have seen that the typical continuous function on I has neither an infinite two-sided
derivative nor a finite one-sided derivative on I. To be more precise, the complement of this
set of functions is of first category in C(I). So the question remains whether there exists a
function f ∈ C(I) that has nowhere a unilateral derivative, finite or infinite. Functions with
this property are called Besicovitch functions, because the first example of such a function
was found by A.S. Besicovitch in [Bes24]. For a while, there was hope of proving the existence
of such a function by showing that the set B(I) of Besicovitch functions is a residual one
in C(I). But in [Sak32], S. Saks showed that B(I) is a set of first category. Unfortunately,
his proof used very advanced tools, and therefore we will omit it. The proof we are going
to present is due to F.S. Cater (see [Cat86]); it uses only simple tools, as we will see. Other
proofs have been given by D. Preiss (see [Bru84]) and by K.M. Garg (see [Gar70]). Note that
this result suggests that a priori there is no direct way to apply Baire category theory to
prove the existence of a Besicovitch function. We will return to this problem in Chap. 11.

Theorem 7.5.1 (The Saks Theorem). The set

B(I) = {f ∈ C(I) : f has nowhere a finite or infinite unilateral derivative}

of all Besicovitch functions is of first category in C(I).
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Obviously, it is enough to study the functions with right-sided derivatives −∞. The proof
of Theorem 7.5.1 is by the following lemmas.

Lemma 7.5.2. The set

F1 := {f ∈ C(I) : L({x ∈ (0, 1) : D+f(x) < 0}) > 0}

is of first category in C(I).
Remark 7.5.3. Note that by Remark 2.1.7, the set

Af := {x ∈ (0, 1) : D+f(x) < 0}

is Borel measurable.

Proof of Lemma 7.5.2. Let

S := {(a, b, d) ∈ Q
3 : 0 < a < b < b + d < 1}.

For (a, b, d) ∈ S, put

F (a, b, d) :=
{
g ∈ C(I) : L({x ∈ (a, b) : g(x) ≥ g(ξ), x < ξ ≤ x + d}) >

b− a

2

}
.

It suffices to prove that

(a) F1 ⊂
⋃

(a,b,d)∈S F (a, b, d),

(b) F (a, b, d) is closed and without interior points.

Indeed, to verify (a), fix an f ∈ F1 and a point c ∈ Af . Then there exists a positive h0

with c + h0 ≤ 1 such that

sup
{
Δf(c, c + h) : 0 < h ≤ h0

}
<

1

2
D+f(c) < 0.

Thus f(c) > f(ξ) for c < ξ ≤ c + h0.
Let

Ak :=
{
x ∈ (0, 1) : x +

1

k
≤ 1 and f(x) ≥ f(ξ), x ≤ ξ ≤ x +

1

k

}
, k ∈ N2.

Then Ak ⊂ Ak+1 and Af ⊂
⋃

k∈N2
Ak. Since L(Af ) > 0, there exists a k0 ∈ N2 with

L(Ak0 ) > 0. For simplicity, we write A = Ak0 . Take an open set U ⊂ (0, 1), A ⊂ U , such that
L(U \A) < L(A)/3. Then L(U) < 4L(A)/3.

Now write U =
⋃

j∈M⊂N
Jj , where Jj are the pairwise disjoint connected components of

U . Note that Jj are open intervals. Therefore,

L(U) =
∑

j∈M

L(Jj) <
4L(A)

3
=

4

3

∑

j∈M

L(A ∩ Jj).

Thus one of the intervals Jj , say Jj0 = J = (a0, b0), is such that

b0 − a0 = L(J) < 4L(A ∩ J)/3.

Finally, one may choose a, b ∈ Q, a0 < a < b < b0, such that b−a
2 < L(A ∩ (a, b)). Hence,

f ∈ F (a, b, d) with d := min{ 1
k0

, 1− b}.
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(b) Step 1o. We will show that the set F (a, b, d) is closed in C(I). Indeed, let (gj)
∞
j=1 ⊂

F (a, b, d) and assume that this sequence is uniformly convergent to a g ∈ C(I). Put

Ej := {x ∈ (a, b) : gj(x) ≥ gj(ξ), x ≤ ξ ≤ x + d}.

Then L(Ej) ≥ b−a
2 . Define E :=

⋂∞
k=1

⋃∞
j=k Ej . Then

b − a

2
≤ L(Ek) ≤ L

( ∞⋃

j=k

Ej

)
−→
k→∞

L(E).

Let x ∈ E. Then x ∈ Ejk for a strictly increasing sequence (jk)
∞
k=1 ⊂ N. Thus gjk(x) ≥ gjk(ξ),

x ≤ ξ ≤ x + d, which immediately implies that g(x) ≥ g(ξ) for all ξ ∈ [x, x + d]. Hence,
g ∈ F (a, b, d).

Step 2o. It remains to verify that F (a, b, d) has no interior points. Let us assume the
contrary, i.e., that B(f, ε) ⊂ F (a, b, d) for some f ∈ F (a, b, d) and ε > 0. Choose a partition
a = t0 < t1 < · · · < tn = b such that tj − tj−1 < d and sup{f(t) : t ∈ [tj−1, tj]} − inf{f(t) :
t ∈ [tj−1, tj ]} < ε/4. Then there exists a “zigzag” function h ∈ C(I), 0 ≤ h ≤ ε

2 , such that

h(tj) = ε/2, j = 0, . . . , n, and L(N(h) ∩ (a, b)) > b−a
2 , where N(h) denotes the zero set of h.

Then g := f + h ∈ B(f, ε) ⊂ F (a, b, d).
Let x ∈ (tj−1, tj) with h(x) = 0. Then tj ∈ (x, x + d), and therefore,

(f + h)(x) = f(x) < f(tj) + ε/4 < (f + h)(tj).

Hence,

N(h) ∩ (a, b) ⊂ {x ∈ (a, b) : (f + h)(x) < sup{(f + h)(ξ) : x ≤ ξ ≤ x + d}}.

On the other hand, we know that

L({x ∈ (a, b) : g(x) ≥ g(ξ), x ≤ ξ ≤ x + d}) ≥ b− a

2
,

which implies that L((a, b)) > (b− a); a contradiction. ��
Lemma 7.5.4. The set

F2 := {f ∈ C(I) : f |J is monotone for some open subinterval J ⊂ I}

is of first category in C(I).
Proof . We only mention that the sets {f ∈ C(I) : f |(a,b) is monotone}, where 0 < a < b < 1
are rational numbers, are closed sets in C(I) without interior points. Details are left for the
reader (Exercise). ��
Corollary 7.5.5. The set F1 ∪F2 is of first category in C(I).

So far we know that “most” of the functions f ∈ C(I) are nowhere monotone and Af is of
zero measure.

Lemma 7.5.6. Let f ∈ C(I) \ (F1 ∪F2). Then there exists a set M ⊂ I such that

(a) f ′
+(x) = −∞ for all x ∈M ;

(b) M ∩ J has the cardinality of the continuum for every open subinterval J ⊂ I.
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Proof . Choose open sets Un ⊃ Af , Un ⊂ I, with L(Un) < 1/2n, n ∈ N, and put

F (x) := x +

∞∑

n=1

∫ x

0

χUn(t)dt, x ∈ I, n ∈ N,

where χUn means the characteristic function of Un. Note that the series is a uniformly con-
vergent series of continuous functions. Hence, F ∈ C(I). By a simple calculation, one sees that
D+F (x) ≥ 1, x ∈ I, and F ′(x) = +∞ for x ∈ Af .

Take an open interval J ⊂ I. Since f is not monotone on J , there are points rJ = r, sJ = s ∈
J with r < s and f(r) > f(s). Then there exists a positive number ε such that (f + εF )(r) >
(f + εF )(s). Let y be between these two numbers and set xy := sup{t ∈ (r, s) : (f + εF )(t) =
y}. Obviously, r < xy < s. In particular, (f + εF )(t) < y whenever xy < t < s. Therefore,
D+(f + εF )(xy) ≤ 0. By virtue of D+F (xy) ≥ 1, we get D+f(xy) ≤ −ε, i.e., xy ∈ Af . Thus,
F ′
+(xy) = +∞. Using D+(f + εF )(xy) ≤ 0 leads to D+f(xy) = −∞. Hence, f ′

+(xy) = −∞.
Let MJ := {xy ∈ (ry, sy) : y ∈ (

(f + εF )(s), (f + εF )(r)
)} and M :=

⋃
J MJ . According

to the construction above, each of the sets MJ is uncountable. Thus its cardinality is that of
the continuum. Hence, M satisfies the properties stated in the lemma. ��

What we have proved shows that the set of functions without infinite unilateral derivatives
is contained in a set of first category, i.e., most of the functions in C(I) are not Besicovitch
functions. Therefore, it seems difficult to find a concrete Besicovitch function or to show at
least, by an abstract argument, their existence. Nevertheless, a clever modification of the
categorial argument, as will be done in Chap. 11, will prove the existence of Besicovitch
functions.

Remark 7.5.7. From the reasoning above, we see that the set of f ∈ C(I) that have a dense
set of knot points is residual in C(I); see Theorem 7.2.1(b). One has only to observe that the
sets

{f ∈ C(I) : L({x ∈ (0, 1) : D+f(x) < m}) > 0}, m ∈ N,

are of first category. Hence, the set

{f ∈ C(I) : D+f(x) = +∞ for almost all x ∈ [0, 1)}

is a residual one.

7.6 The Banach–Mazurkiewicz Theorem Revisited

Recall that M(I) is a residual set in C(I), i.e., C(I) \M(I) is small in the categorial sense.
There exists a stronger notion of being small, which even has a nice geometric interpretation.
It concerns the sizes of pores in C(I) \M(I) near a function f ∈ C(I) \M(I).

Definition 7.6.1. Let X = (X, d) be a metric space, A ⊂ X , and x ∈ X .

(a) A is said to be porous at x if

p(x,A) := lim sup
R→0+

γ(x,R,A)

R
> 0,
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where
γ(x,R,A) := sup{r > 0 : ∃z∈X : Bd(z, r) ⊂ Bd(x,R) \A}

(p(x,A) := 0 if there is no positive r as above for certain R).
(b) A is said to be porous if A is porous at every point a ∈ A.
(c) A is called σ-porous if A can be written as A =

⋃∞
j=1 Aj , where all the sets Aj are porous.

Remark 7.6.2. (a) There are, in fact, two notions of porosity at a point, namely that of the
previous definition and so-called lower porosity, where the lim sup in the above definition
is substituted by lim inf. Therefore, porosity in the sense of the above definition is also
called upper porosity. Since we are dealing only with the notion defined above, we will
simply speak of porous sets.

(b) Porosity in R was used by A. Denjoy in 1920 (under a different notation). The theory
of σ-porous sets began with investigations of the boundary behavior of functions by
E.P. Dolženko (see [Dol67]). It seems that he was the first to use the term “porous.”

(c) Let A ⊂ X be a porous set. Then A is nowhere dense in X . Therefore, every σ-porous
set is meagre or of first category (Exercise).

(d) If A ⊂ R
n is porous, then its Lebesgue measure is zero (use the Lebesgue density theorem).

But there exists a closed nowhere dense set A ⊂ R
n of Lebesgue measure zero that is not

σ-porous. For a proof see [Zaj87].

(e) Let X be a complete metric space without isolated points. Then there exists a closed
nowhere dense set A ⊂ X that is not σ-porous (see [Zaj87]). Therefore, saying that a set
is σ-porous is, in general, a stronger statement than claiming that it is of first category.

(f) For more information on porous sets, see [Zaj87] and [Zaj05].

(g) Moreover, a set A ⊂ X is porous at a point x if and only if there exists a positive � such
that for every ε > 0, there are R ∈ (0, ε] and z ∈ X such that Bd(z, �R) ⊂ Bd(x,R) \ A
(Exercise).

Theorem 7.6.3 (cf. [Ani93]). Let

M := {f ∈ C(I) : f without a finite or infinite derivative in (0, 1)}.

Then M(I) ∩M has a σ-porous complement in C(I).
Proof . Step 1o. Put

M±(I) :=
{
f ∈ C(I) : max{|D±f(x)|, |D±f(x)|} = +∞

for all x ∈ I \
{1± 1

2

}}
.

Then M(I) = M+(I) ∪M−(I).
It suffices to prove that M+(I) has a σ-porous complement in C(I). For n ∈ N2, put

An :=
{
f ∈ C(I) : ∃x∈[0,1− 1

n ] : |Δf(x, x + t)| ≤ nt, t ∈
(
0,

1

n

]}
.

Note that
⋃

n∈N2
An = C(I) \M+(I).

Fix an n ∈ N2. It remains to prove that An is porous at each of its functions. Fix a function
f ∈ An and a number ε ∈ (0, 1). Then there exists a positive δ such that |f(x′)− f(x′′)| < ε
for all x′, x′′ ∈ I with |x′ − x′′| < δ.
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Take a positive a with a < min{ εn , δ}. For x ∈ (0, 2a], put ua(x) := 2ψ( x
2a ), where

ψ(t) = dist(t,Z), and extend this function to the whole of R with a period of 2a. For simplicity,
denote the extension again by ua. If x ∈ R, then there exists an interval Ia(x) ⊂ [a8 , a] of
length a

8 such that |ua(x + t) − ua(x)| ≥ t
3a for all t ∈ Ia(x). Indeed, we have only to study

points x ∈ [0, 2a]. If x ∈ [0, 3a
4 ) ∪ [a, 7a

4 ), then take Ia(X) = [a8 , a
4 ]. If x ∈ [ 3a4 , a) ∪ [ 7a4 , 2a],

then Ia(x) = [ 7a8 , a] does the job.
In particular, ua|I ∈ C(I), ‖ua‖I = 1, and |Δua(x, x+ t)| ≥ 1

3a whenever x ∈ [0, 1− 1
n ] and

t ∈ Ia(x). Put g := 75εua and f∗ := g+ f . Then B(f∗, ε)∩An = ∅. In fact, for h ∈ B(f∗, ε),
x ∈ [0, 1− 1

n ], and t ∈ Ia(x) we have

|h(x + t) − h(x)| ≥ |g(x + t)− g(x)| − |(h− g)(x + t)− (h− g)(x)|
− |(h− f∗)(x + t)− (h− f∗)(x)| ≥ 75εt

3a
− ε− 2ε ≥ εt

8
> nt.

Hence, h /∈ An. Moreover, recall that ‖f∗−f‖I = ‖g‖I = 75ε. Therefore, B(f∗, ε) ⊂ B(f, 76ε)\
An, which implies that An is porous at f and, since f was arbitrarily chosen, that An is porous.

Step 2o. Let

S := {f ∈ C(I) : lim inf
t→0+

Δsf(x, t) = −∞, lim sup
t→0+

Δsf(x, t) = +∞,

x ∈ (0, 1)}.

Obviously, S ⊂M .
For n ∈ N3 put

A±
n :=

{
f ∈ C(I) : ∃x∈[ 1n ,1− 1

n ] : ±Δsf(x, t) ≤ n, t ∈
(
0,

1

n

]}
.

Then C(I) \ S =
⋃

n∈N3
(A+

n ∪A−
n ).

Fix an n ∈ N3. Then A+
n is porous. Indeed, take a function f ∈ A+

n and a positive ε.
Choose δ > 0 such that |f(x′)− f(x′′)| < ε for all x′, x′′ ∈ I with |x′ − x′′| < δ. Moreover, fix
a positive a with a < min{ 1

6n , δ
12 , ε

2n}.
Similarly to what was done in Step 1o, we find a continuous function ua on R with period

7a, |ua| ≤ 1 = |ua(a)| on R, and for every x ∈ R, an interval Ia(x) ⊂ [a, 6a] of length equal
to a

10 such that ua(x + t) − ua(x − t) ≥ t
100a , t ∈ Ia(x). In fact, ua is given on [0, 7a] by the

piecewise linear function whose graph connects the points (0, 0), (a,−1), (3a, 1), and (7a, 0)
by segments and that is extended to R by ua(x + 7a) = ua(x), x ∈ [0, 7a] (Exercise).

Put f∗ := 400εua and g := f + f∗. Then B(g, ε) ⊂ B(f, 401ε) \ A+
n (Exercise), giving

that A+
n is porous.

In a similar way, it is shown that also A−
n is porous. Therefore, the complement of S in

C(I) is σ-porous. ��
Remark 7.6.4. (a) Looking at the proof of the former theorem shows that even the set S

(see Step 2o of the proof) has a σ-porous complement in C(I).
(b) V. Aniusu also proved that the set of continuous functions having nowhere on I a finite

one-sided approximate derivative has a porous complement in C(I).
Remark 7.6.5. The complement of the set ND∞

± cannot be σ-porous because of
Theorem 7.5.1.
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7.7 The Structure of ND(I)

In the Scottish book, S. Banach asked for a description of the structure of the set D of all
differentiable functions on I. In [Maz31], S. Mazurkiewicz proved that the complement of D
in C(I) is analytic, but D itself is not. Recall that a set is called analytic (or a Souslin set)
if it is the continuous image of a Borel set. On the other hand, due to R.D. Mauldin (see
[Mau79]), the set ND(I) also has an analytic complement in C(I), but it is not a Borel set
in C(I).
Theorem 7.7.1. (a) C(I)\ND(I) is an analytic set, i.e., it is the continuous image of some

Borel set.

(b) ND(I) is not a Borel set in C(I).
Proof . (a) Recall that a function f ∈ C(I) has a finite derivative at a point x ∈ I if and only if

for every n ∈ N, there exists an m ∈ N such that if h1, h2 ∈ R∗ with max{|h1|, |h2|} < 1
m

and x+ h1, x+ h2 ∈ I, then

|Δf(x, x + h1)−Δf(x, x + h2)| ≤ 1

n
.

Let En,m denote the set of all pairs (f, x) ∈ C(I) × I satisfying the above condition.
Note that En,m is a closed subset of C(I) × I. Since C(I) \ ND(I) is the projection of⋂∞

n=1

⋃∞
m=1 En,m, it is an analytic set.

(b) The proof of the fact that ND(I) is not a Borel set is significantly more complicated. It
is based on the fact that there exists an analytic subset of the Cantor ternary set that is
not a Borel set. For further details, the reader is asked to consult [Mau79].

��
Thus far, it is known that the set ND(I) is residual in C(I). There were attempts to refor-

mulate this statement to say that “almost” all functions from C(I) are nowhere differentiable,
which finally led to the notion of prevalence (see [HSY92]). We will not give full details here
but only a bit of an idea of what is going on in this direction.

Theorem 7.7.2 (cf. [Hun94]). There exist two functions g, h ∈ C(I) such that for every
function f ∈ C(I), the set

Mf := {(λ, μ) ∈ R
2 : f + λg + μh ∈ ND(I)} ⊂ R

2

is of full Lebesgue measure.

In other words, the space C(I) can be partitioned into parallel planes such that in each
plane, almost all (in the sense of Lebesgue) functions are nowhere differentiable. In fact, the
plane is generated by the following two functions:

g(x) :=

∞∑

n=1

1

n2
cos(2nπx), h(x) :=

∞∑

n=1

1

n2
sin(2nπx), x ∈ I.

Note that g, h are exactly the functions whose existence is claimed in Theorem 7.7.2.

Lemma 7.7.3. There exists a positive number c such that if α, β ∈ R and J ⊂ I is a closed
interval of length ε ≤ 1

2 , then

max
J
{αg + βh} −min

J
{αg + βh} ≥ c

√
α2 + β2

(log ε)2
.
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Proof . Put F := αg + βh. Then

F (x) =
∞∑

n=1

1

n2

(
α cos(2nπx) + β sin(2nπx)

)
=

√
α2 + β2

∞∑

n=1

1

n2
cos(2nπx + θ),

where θ ∈ [0, 2π] is correctly chosen. Note that without loss of generality, we may assume
that α2 + β2 = 1.

Let J ⊂ I be a closed interval of length 1
2m . If k ∈ C(I), then

max
J

k −min
J

k ≥ 2mπ

∫

J

k(x) cos(2m+jπx + θ)dx, j ∈ N. (7.7.1)

Indeed, in order to prove (7.7.1), one may assume that

−min
J

k = max
J

k =: K ≥ 0

(add to both sides of (7.7.1) a suitable constant and use the fact that
∫
J
cos(2n+jπx)dx = 0,

j ∈ N). Then |k| ≤ K. Therefore,

∫

J

k(x) cos(2m+jπx + θ)dx ≤ K

∫

J

| cos(2m+jπx + θ)|dx = K
2

2mπ
,

which gives (7.7.1).
Continuing with the function F , (7.7.1) leads to

max
J

F −min
J

F ≥ 2mπ

∫

J

∞∑

n=1

1

n2
cos(2nπx + θ) cos(2m+jπx + θ)dx

=
∞∑

n=1

2mπ

n2

1

2

∫

J

(
cos

(
(2m+j − 2n)πx

)
+ cos

(
(2m+j + 2n)πx + 2θ

))
dx.

Since the length of J is 1
2m , the integral of cos

(
(2m+j ± 2n)πx + θ

)
over J is zero for n > m

unless n = m + j and the minus sign is chosen. Let n ≤ m and J = [a, a + 1
2m ]. Then

∫

J

cos
(
(2m+j ± 2n)πx

)
dx

=
sin

(
(2m+j ± 2n)π(a + 2−m) + θ

)− sin
(
(2m+j ± 2n)πa + θ

)

(2m+j ± 2n)π

≥ − 2n

2m(2m+j ± 2n)
.

Hence we obtain

max
J

F −min
J

F ≥ π

2(m + j)2
−

m∑

n=1

π

2n2

( 2n

2m+j − 2n
+

2n

2m+j + 2n

)

≥ π

2(m + j)2
− π

2m(2j − 1)

m∑

n=1

2n

n2
.
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To continue, one needs the inequality
∑m

n=1
2n

n2 ≤ 5 2m

m2 , which can be verified directly for
m = 1, 2, 3, 4 and then by induction for m ≥ 4 (Exercise). Therefore, the former inequality
may be rewritten as

max
J

F −min
J

F ≥ π

2(m + j)2
− 5π

m2(2j − 1)
.

In particular, for j = 10 and m ≥ 2, one is led to

max
J

F −min
J

F ≥ π

2(m + 10)2
− 5π

m2(210 − 1)
≥ π

2(6m)2
− π

200m2
=

2π

225m2
.

Finally, let J be an interval of length ε ≤ 1
2 . Choose m ∈ N2 such that 1

2m < ε ≤ 1
2m−1 .

Let Jm ⊂ J be an interval of length 2−m. Then

max
J

F −min
J

F ≥ max
Jm

F −min
Jm

F ≥ 2π

225m2
≥ π

450(m− 1)2
≥ (log 2)2π

450(log ε)2
,

proving the lemma. ��
The main step in verifying Theorem 7.7.2 is contained in the next result, dealing with

nowhere Lipschitz functions. Recall that the set of all nowhere Lipschitz functions is a Borel
set (see Remark 2.5.2(d)), while the set ND(I) is not.

Proposition 7.7.4. Let g, h be the functions from above. Then for every f ∈ C(I), the set

{(λ, μ) ∈ R
2 : f + λg + μh is nowhere Lipschitz on I} ⊂ R

2

is of full Lebesgue measure.

Proof . Obviously, it suffices to show that the set of (λ, μ) for which f+λg+μh is M -Lipschitz
at some point of I has measure zero. Denote this set by SM , i.e.,

SM = {(λ, μ) ∈ R
2 : f + λg + μh is M -Lipschitz at some x ∈ I}.

Fix an N ∈ N2 and cover I with N closed intervals J1, . . . , JN of lengths ε = εN := 1
N . Fix

such an interval Jk = J and denote by SM,J the subset of parameters (λ, μ) ∈ SM for which
the function f +λg+μh is M -Lipschitz at a point of J . We will discuss the diameter of SM,J .

Let (λj , μj) ∈ SM,J , put fj = f + λjg + μjh, and assume that fj is M -Lipschitz at the
point xj ∈ J , j = 1, 2. If x ∈ I, then

|fj(x)− fj(xj)| ≤M |x− xj | ≤Mε.

Thus, |f1(x) − f2(x) − (f1(x1) − f2(x2))| ≤ 2Mε, x ∈ I, and therefore, maxJ(f1 − f2) −
minJ (f1 − f2) ≤ 4Mε. Since f1 − f2 = (λ1 − λ2)g + (μ1 − μ2)h, Lemma 7.7.3 yields

c
√
(λ1 − λ2)2 + (μ1 − μ2)2

(log ε)2
≤ 4Mε,

where c does not depend on J . Then

diamSM,J ≤ 4Mε(log ε)2

c
.
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Thus SM,J sits in a ball of radius 4Mε(log ε)2

c . Therefore, the measure of SM,J is bounded

from above by π 16M2

c2 ε2(log ε)4. Since SM = ∪Nk=1SM,Jk
, it follows that the measure of SM is

bounded from above by Nπ 16M2

c2 ε2N (log εN )4. Letting N −→ ∞ finally shows that SM is of
measure zero. ��
Proof of Theorem 7.7.2. It remains to recall that a function f ∈ C(I) that is nowhere Lipschitz
on I belongs to ND(I). ��
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Chapter 8

Weierstrass-Type Functions II

Summary. In this chapter, using more advanced tools, we extend results stated in Chap. 3.

8.1 Introduction

Recall (§ 3.1) that

Wp,a,b,θ(x) :=

∞∑

n=0

an cosp(2πbnx + θn), x ∈ R,

where p ∈ N, 0 < a < 1, ab ≥ 1, θ := (θn)
∞
n=0 ⊂ R. The reader is asked to recall the list of all

partial results related to the function Wp,a,b,θ presented in Remark 3.1.1. Now our aim is to
prove the following general theorems:

(9) If ab ≥ 1, then Ca,b,Sa,b ∈ ND(R) (Theorems 8.2.1 and 8.2.12).

(10) If ab > 1, then W1,a,b,θ ∈M(R) ⊂ ND±(R) (Theorem 8.3.1). Using different tools, an
analogous result will be proved in Theorem 8.7.3.

(11) If b ∈ N2 and ab ≥ 1, then W1,a,b,θ ∈ ND±(R) (Theorem 8.4.1).

(12) If (p ∈ 2N0 + 1 and b > p) or (p ∈ 2N and b > p
2 ), then Wp,a,b,θ ∈ ND(R) (Theo-

rem 8.6.7).

(13) If ab > 1, then there exists a zero-measure set Ξ ⊂ R such that x is a knot point of the
function f := W1,a,b,θ (i.e., D+f(x) = D−f(x) = +∞, D+f(x) = D−f(x) = −∞) for
arbitrary θ ∈ R and x ∈ R \ Ξ (Theorem 8.7.4).

(14) Let ψ∗ ≈ 1.3518 ∈ (0, π
2 ) be such that tanψ∗ = π+ψ∗. If ab ≥ H := 1+ 1

cosψ∗ ≈ 5.6034,

then W1,a,b,θ ∈ M(R) ∩ ND∞(R) ⊂ ND±(R) ∩ ND∞(R) (Theorem 8.7.6). Observe
that the constant H is better than the original Weierstrass constant 1 + 3

2π ≈ 5.7123
(cf. Theorem 3.5.1).

It is clear that many cases remain undecided. The most important open problems are the
following:

? Is it true that if (p ∈ 2N0 + 1 and b > p) or (p ∈ 2N and b > p
2 ),

then Wp,a,b,θ ∈ ND±(R) ? This would be a simultaneous generalization of (10), (11),
and (12).

? Characterize the set of all p, a, b, θ such that Wp,a,b,θ ∈ ND∞(R) ? (cf. (14)).
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8.2 Hardy’s Method

This entire section is based on [Har16]. We wish to point out that nowadays, the main results
presented in this section, Theorems 8.2.1 and 8.2.12, are direct consequences of more general
results, e.g., of Theorem 8.6.7 or Theorem 8.7.3. Nevertheless, innovative for his time, Hardy’s
methods are in our opinion worth being presented.

Theorem 8.2.1 (cf. [Har16]). Assume that 0 < a < 1, ab > 1, α := − log a
log b . Then it is

impossible for the function t �−→ Ca,b(
t
2π ) to be o(|t − t0|α) when t −→ t0 for some t0 ∈ R.

Consequently,
• the constant α is the maximal number such that Ca,b is α-Hölder continuous at some

point t0 ∈ R (cf. Remark 3.2.1(g));
• a finite C′

a,b(t0) does not exist for every t0 ∈ R, and therefore, Ca,b ∈ ND(R).
An analogous result is true for the function Sa,b.

We will consider only the case of Ca,b. The case of Sa,b is left to the reader as an Exercise.
Put H+ := {s = σ + it ∈ C : σ > 0} and define

F (s) :=

∞∑

n=0

ane−sbn , s ∈H+.

Remark 8.2.2. (a) Since

|ane−sbn | = ane−σbn ≤ an, s = σ + it ∈H+, n ∈ N0,

the function F is well defined, F ∈ O(H+)∩C(H+,C), and |F (s)| ≤ A := 1
1−a , s ∈H+.

We have

F (s) =

∞∑

n=0

ane−σbn cos(tbn)− i

∞∑

n=0

ane−σbn sin(tbn)

=: G(s) + iH(s), s = σ + it ∈H+.

Let g(t) := G(it) = Ca,b(
t
2π ), t ∈ R.

(b) Using Remark 2.4.1, we see that

∂G

∂t
(s) = −

∞∑

n=1

(ab)ne−σbn sin(tbn),

∂G

∂σ
(s) = −

∞∑

n=1

(ab)ne−σbn cos(tbn), s = σ + it ∈H+.

For � > 0, define

ϕ
(s) :=

∞∑

n=0

bn
e−sbn , s ∈H+.
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Remark 8.2.3. (a) For each σ0 > 0, we have |bn
e−(σ+it)bn | ≤ |bn
e−σ0b
n | for σ ≥ σ0 and

t ∈ R. Since

|bn
e−σ0b
n |1/n = b
e−

1
nσ0b

n −→
n−→+∞ 0,

we conclude that the function ϕ
 is well defined, ϕ
 ∈ O(H+), and |ϕ
(σ+ it)| ≤ ϕ
(σ0)
for σ ≥ σ0, t ∈ R.

(b) By the Weierstrass theorem for holomorphic functions, we get

ϕ(p)

 (s) = (−1)p

∞∑

n=0

bn(
+p)e−sbn = (−1)pϕ
+p(s), s ∈H+, p ∈ N. (8.2.1)

(c) We have

ϕ1−α(σ + it0) =
∞∑

n=0

bn(1−α)e−(σ+it0)b
n

=
∞∑

n=0

(ab)ne−(σ+it0)b
n

.

Before going into detail, we will describe the main proof. G.H. Hardy mainly used results
on the solution of the Dirichlet problem for boundary values on the real axis; see Lemma 8.2.4.

Proof of Theorem 8.2.1. Suppose that Ca,b(
t
2π ) = g(t) = o(|t− t0|α) when t −→ t0.

(1) First we obtain an integral representation for the function G (Lemma 8.2.4), which gives
us formulas for ∂G

∂σ and ∂G
∂t (Remark 8.2.5).

(2) Using these formulas, we prove that ∂G
∂t (σ + it0) = o(σα−1) and ∂G

∂σ (σ + it0) = o(σα−1)
when σ −→ 0+ (Lemma 8.2.6).

(3) Hence, by Remarks 8.2.2(b) and 8.2.3(c), we conclude that ϕ1−α(σ+it0) = o(σα−1) when
σ −→ 0+.

(4) On the other hand, we will prove that |ϕ
(


bm +it)| ≥ 1

2 (


bm )−
, t ∈ R, m ∈ N, � ≥ �0 � 1

(Lemma 8.2.8).

(5) Lemma 8.2.9 will show that we always have ϕ
(σ + it) = O(1/σ
) when σ −→ 0+. In

particular, by Remark 8.2.3(b), ϕ
(p)
1−α(σ + it) = O(1/σ1−α+p) when σ −→ 0+ (p ∈ N).

(6) Now, by (3) and Lemma 8.2.11, we get ϕ
(p)
1−α(σ + it0) = o(1/σ1−α+p) when σ −→ 0+

(p ∈ N).

(7) Using once again Remark 8.2.3(b), we see that ϕ1−α+p(σ + it0) = o(1/σ1−α+p) when
σ −→ 0+ (p ∈ N).

(8) Taking p ∈ N such that 1− α + p ≥ �0, where �0 is as in (4), we get

(1− α + p

bm

)1−α+p∣∣∣ϕ1−α+p

(1− α + p

bm
+ it0

)∣∣∣ ≥ 1

2
, m ∈ N;

a contradiction. ��
Lemma 8.2.4 (Schwarz Integral Formula). Let P = Q+ iR ∈ O(H+)∩C(H+,C), |P | ≤ A,
q(t) := Q(it), t ∈ R. Then

Q(s) =
σ

π

∫ +∞

−∞

q(u)du

σ2 + (u − t)2
, s = σ + it ∈H+.

Proof . Fix an s = σ + it ∈ H+. For r > |s|, let Cr denote the closed contour of the form
[ir,−ir] ∪ Γr, where Γr(θ) = reiθ, θ ∈ [−π/2, π/2]. By the Cauchy formula, we obtain
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P (s) =
1

2πi

∫

Cr

P (ζ)

ζ − s
dζ =

1

2πi

∫

Cr

P (ζ)

ζ − s
dζ − 1

2πi

∫

Cr

P (ζ)

ζ + s
dζ

=
1

πi

∫

Cr

σP (ζ)

(ζ − s)(ζ + s)
dζ

=
1

πi

∫

[ir,−ir]

σP (ζ)dζ

(ζ − s)(ζ + s)
+

1

πi

∫

Γr

σP (ζ)dζ

(ζ − s)(ζ + s)
=: I ′r + I ′′r .

For r > 2|s|, we have

|I ′′r | ≤
1

π

∫ π/2

−π/2

σA

(12r)
2
rdu =

4σA

r
−→

r−→+∞ 0.

Consequently,

Q(s) = lim
r→+∞Re(I ′r) = − lim

r→+∞
σ

π

∫ r

−r

Re
( q(u) + iR(iu)

(iu− s)(iu + s)

)
du

= lim
r→+∞

σ

π

∫ r

−r

Re
(q(u) + iR(iu)

|iu− s|2
)
du =

σ

π

∫ +∞

−∞

q(u)du

σ2 + (u− t)2
. ��

Remark 8.2.5. (a) Taking P := 1, we get

1 =
σ

π

∫ +∞

−∞

du

σ2 + (u− t)2
, σ + it ∈H+.

(b) Let

h(σ, t, u) :=
σq(u)

σ2 + (u − t)2
, (σ, t, u) ∈H+ × R.

Observe that

∂h

∂σ
(σ, t, u) = q(u)

(u− t)2 − σ2

(σ2 + (u − t)2)2

and
∣∣∣
∂h

∂σ
(σ, t, u)

∣∣∣ ≤ A
|(u− t)2 − σ2|
(σ2 + (u− t)2)2

.

Moreover, for each (σ, t) ∈ H+, the last function is integrable with respect to u on R

(Exercise). This permits us to calculate ∂Q
∂σ by differentiating under the integral sign,

i.e.,

∂Q

∂σ
(s) =

1

π

∫ +∞

−∞

(u− t)2 − σ2

(σ2 + (u − t)2)2
q(u)du, s = σ + it ∈H+.

(c) Analogously,

∂h

∂t
(σ, t, u) = q(u)

2σ(u− t)

(σ2 + (u− t)2)2

and
∣∣∣
∂h

∂t
(σ, t, u)

∣∣∣ ≤ 2Aσ
|u− t|

(σ2 + (u− t)2)2
.
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Thus,

∂Q

∂t
(s) =

2σ

π

∫ +∞

−∞

u− t

(σ2 + (u− t)2)2
q(u)du, s = σ + it ∈H+.

(d) In view of (a), by differentiating with respect to σ, resp. t, we get

1

π

∫ +∞

−∞

(u − t)2 − σ2

(σ2 + (u− t)2)2
du = 0,

2σ

π

∫ +∞

−∞

u− t

(σ2 + (u− t)2)2
du = 0, σ + it ∈H+.

Lemma 8.2.6. If g(t)− g(t0) = o(|t− t0|α) when t −→ t0, then

∂G

∂t
(σ + it0) = o(σα−1),

∂G

∂σ
(σ + it0) = o(σα−1) when σ −→ 0 +.

Proof . Let γ := g − g(t0). Note that |γ| ≤ 2A. Take an ε > 0 and let δ > 0 be such that
|γ(u)| ≤ ε|u− t0|α for u ∈ [t0 − δ, t0 + δ]. Using Lemma 8.2.4 and Remark 8.2.5, we get

∂G

∂t
(σ + it0) =

2σ

π

∫ +∞

−∞

u− t0
(σ2 + (u− t0)2)2

g(u)du

=
2σ

π

∫ +∞

−∞

u− t0
(σ2 + (u− t0)2)2

γ(u)du.

Hence

∂G

∂t
(σ + it0) =

2σ

π

( ∫

|u−t0|≤δ

+

∫

|u−t0|>δ

) u− t0
(σ2 + (u− t0)2)2

γ(u)du

=: I ′σ + I ′′σ .

For |u− t0| > δ, we have

∣∣∣
u− t0

(σ2 + (u− t0)2)2
γ(u)

∣∣∣ ≤ 2A

|u− t0|3 ,

and the right-hand-side function is integrable on |u − t0| > δ. Hence, I ′′σ = O(σ) when
σ −→ 0+. On the other hand,

|I ′σ| ≤
2σ

π

∫

|u−t0|≤δ

|u− t0|ε|u− t0|α
(σ2 + (u− t0)2)2

du ≤ ε
2σ

π

∫ +∞

−∞

|u|α+1

(σ2 + u2)2
du

= εσα−1 2

π

∫ +∞

−∞

|v|α+1

(1 + v2)2
dv =: εσα−1C.

Finally,

σ1−α
∣∣∣
∂G

∂t
(σ + it0)

∣∣∣ ≤ εC + constσ2−α ≤ 2εC for 0 < σ  1.
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The proof for ∂G
∂σ (σ + it0) is analogous:

∂G

∂σ
(σ + it0) =

1

π

∫ +∞

−∞

(u − t0)
2 − σ2

(σ2 + (u− t0)2)2
g(u)du

=
1

π

∫ +∞

−∞

(u − t0)
2 − σ2

(σ2 + (u− t0)2)2
γ(u)du.

Hence

∂G

∂σ
(σ + it0) =

1

π

(∫

|u−t0|≤δ

+

∫

|u−t0|>δ

) (u− t0)
2 − σ2

(σ2 + (u− t0)2)2
γ(u)du

=: I ′σ + I ′′σ .

For |u− t0| > δ > σ, we have

∣∣∣
(u− t0)

2 − σ2

(σ2 + (u− t0)2)2
γ(u)

∣∣∣ ≤ 2A

|u− t0|2 ,

and the right-hand-side function is integrable on |u − t0| > δ. Hence, I ′′σ = O(1) when
σ −→ 0+. On the other hand,

|I ′σ| ≤
1

π

∫

|u−t0|≤δ

|(u− t0)
2 − σ2|ε|u− t0|α

(σ2 + (u− t0)2)2
du

≤ ε
1

π

∫ +∞

−∞

|u2 − σ2||u|α
(σ2 + u2)2

du = εσα−1 1

π

∫ +∞

−∞

|v2 − 1||v|α
(1 + v2)2

dv =: εσα−1C.

Finally,

σ1−α
∣∣∣
∂G

∂σ
(σ + it0)

∣∣∣ ≤ εC + constσ1−α ≤ 2εC for 0 < σ  1. ��

In view of Remark 8.2.2(b), the above lemma implies the following result.

Corollary 8.2.7. If g(t)− g(t0) = o(|t− t0|α) when t −→ t0, then

∞∑

n=0

(ab)ne−σbn sin(t0b
n) = o(σα−1),

∞∑

n=0

(ab)ne−σbn cos(t0b
n) = o(σα−1) when σ −→ 0 +.

Consequently,

∞∑

n=0

(ab)ne−(σ+it0)b
n

= o(σα−1) when σ −→ 0 +. (8.2.2)

Lemma 8.2.8. There exists a �0 > 0 such that for every � ≥ �0, we have

∣∣∣ϕ


( �

bm
+ it

)∣∣∣ ≥ 1

2

( �

bm

)−


, t ∈ R, m ∈ N.
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Proof . For m ∈ N and s = 

bm + it, write

ϕ
(s) =
(m−1∑

n=0

bn
e−sbn
)
+ bm
e−sbm +

∞∑

n=m+1

bn
e−sbn =: f1(s) + f2(s) + f3(s).

Obviously,

|ϕ
(s)| ≥ |f2(s)| − |f1(s)| − |f3(s)| = bm
e−

(
1− b−m
e
|f1(s)| − b−m
e
|f3(s)|

)
.

We are going to show that

b−m
e
|fk(s)| ≤ e−Bk


1− e−Bk

, k = 1, 3, (8.2.3)

where
B1 := log b− 1 + 1

b , B3 := − log b− 1 + b.

One can easily check (Exercise) that B1, B3 > 0. Consequently, for � ≥ �0 � 1, we get
(Exercise)

|ϕ
(s)| ≥ 1
2b

m
e−
 ≥ 1
2 (



bm )−
,

which will complete the proof. To prove (8.2.3), we proceed as follows:

b−m
e
|f1(s)| ≤
m−1∑

n=0

b(n−m)
e(1−bn−m)
 =

m−1∑

n=0

e−
((m−n) log b−1+bn−m)

=

m∑

k=1

e−
(k log b−1+b−k)
Exercise≤

m∑

k=1

e−
k(log b−1+b−1) <
e−B1


1− e−B1

;

b−m
e
|f3(s)| ≤
∞∑

n=m+1

b(n−m)
e(1−bn−m)
 =

∞∑

n=m+1

e−
((m−n) log b−1+bn−m)

=

∞∑

k=1

e−
(−k log b−1+bk)
Exercise≤

∞∑

k=1

e−
k(− log b−1+b) =
e−B3


1− e−B3

. ��

Lemma 8.2.9. For every � > 0, we have

|ϕ
(σ + it)| ≤ ϕ
(σ) = O(1/σ
) when σ −→ 0+, t ∈ R.

Consequently, by (8.2.1), for all � > 0 and p ∈ N0 we have

|ϕ(p)

 (σ + it)| ≤ ϕ
+p(σ) = O(1/σ
+p) when σ −→ 0+, t ∈ R.

Proof . 1 Fix a σ ∈ (0, 1) and let m ∈ N be such that τ := σbm ∈ [1, b). Then we get

σ
ϕ
(σ) =
∞∑

n=0

(σbn)
e−σbn =
(m−1∑

n=0

(σbn)
e−σbn
)
+

∞∑

n=m

(σbn)
e−σbn

≤
( m∑

k=1

(σbm−k)

)
+

∞∑

n=0

(σbm+n)
e−σbm+n

1 The authors would like to thank W. Jarnicki for helpful remarks related to the proofs of Lemmas 8.2.9
and 8.2.10.
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≤
( m∑

k=1

(τb−k)

)
+

∞∑

n=0

(τbn)
e−τbn

≤
( ∞∑

k=1

(b1−k)

)
+ τ
ϕ
(τ) ≤ 1

1− b−

+ b
ϕ
(1) = const . ��

Lemma 8.2.10. Let Φ : (0,+∞) −→ C be a C2 function such that

Φ(σ) = o(1), Φ′(σ) = O(1/σ), Φ′′(σ) = O(1/σ2) when σ −→ 0 +.

Then Φ′(σ) = o(1/σ) when σ −→ 0+.

Proof . We may assume that Φ : (0,+∞) −→ R. Suppose that σΦ′(σ) �−→ 0 when σ −→ 0+.
Since the function σ �−→ σΦ′(σ) is bounded near zero, there exists a sequence 1 ≥ σn ↘ 0
such that σnΦ′(σn) −→ 4c �= 0. We may assume that σnΦ′(σn) ≥ 2c > 0, n ∈ N. Let M > 1
be such that σ2Φ′′(σ) ≤ M , σ ∈ (0, 1 + c]. Put δn := cσn

M , τn := σn + δn ∈ (0, 1 + c], n ∈ N.
Obviously, τn ↘ 0. By the mean value theorem, for η ∈ (σn, τn), we get

|Φ′(η)− Φ′(σn)| = (η − σn)|Φ′′(ξn)| ≤ δn
M

ξ2n
≤ δn

M

σ2
n

=
c

σn
.

Hence Φ′(η) ≥ Φ′(σn) − c
σn
≥ 2c

σn
− c

σn
= c

σn
. Using once again the mean value theorem, we

get

Φ(τn)− Φ(σn) = δnΦ′(ηn) ≥ δn
c

σn
=

c2

M
> 0;

a contradiction. ��
Lemma 8.2.11. Let � > 0 and let Ψ : (0,+∞) −→ C be a C∞ function such that

Ψ(σ) = o(1/σ
), Ψ (p)(σ) = O(1/σ
+p) when σ −→ 0+, p ∈ N.

Then for each p ∈ N, we get Ψ (p)(σ) = o(1/σ
+p).

Proof . It suffices to prove that Ψ ′(σ) = o(1/σ
+1) when σ −→ 0+, and then replace Ψ by
Ψ ′. Define Φ(σ) := σ
Ψ(σ) and observe that Φ satisfies the assumptions of Lemma 8.2.10.
Indeed,

σΦ′(σ) = σ(�σ
−1Ψ(σ) + σ
Ψ ′(σ)) = �σ
Ψ(σ) + σ
+1Ψ ′(σ),

σ2Φ′′(σ) = σ2(�(�− 1)σ
−2Ψ(σ) + 2�σ
−1Ψ ′(σ) + σ
Ψ ′′(σ))

= �(�− 1)σ
Ψ(σ) + 2�σ
+1Ψ ′(σ) + σ
+2Ψ ′′(σ).

Hence, using Lemma 8.2.10, we conclude that

0 = lim
σ→0+

(�σ
Ψ(σ) + σ
+1Ψ ′(σ)) = lim
σ→0+

σ
+1Ψ ′(σ). ��

Now we move to the more difficult case ab = 1.

Theorem 8.2.12 (cf. [Har16]). Assume that b > 1, a := 1/b. Then C1/b,b, S1/b,b ∈ ND(R).

We will consider only the case of C1/b,b. The case of S1/b,b is left to the reader as an
Exercise. The idea of the proof is similar to that of the proof of Theorem 8.2.1.

We keep previous notation.
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Lemma 8.2.13. If a finite derivative g′(t0) exists, then

∂G

∂t
(σ + it0) −→ g′(t0),

∂2G

∂t2
(σ + it0) = o(1/σ) when σ −→ 0 +.

Proof . Write g(u) = g(t0) + g′(t0)(u − t0) + μ(u)(u − t0), where μ(u) −→ 0 when u −→ t0.
Note that the function μ is bounded. Take an ε > 0 and let δ > 0 be such that |μ(u)| ≤ ε,
u ∈ [t0 − δ, t0 + δ]. Then (using Remark 8.2.5) we get

∂G

∂t
(σ + it0) =

2σ

π

∫ +∞

−∞

u− t0
(σ2 + (u− t0)2)2

g(u)du

=
2σ

π

∫ +∞

−∞

u− t0
(σ2 + (u− t0)2)2

(
g(t0) + g′(t0)(u − t0) + μ(u)(u− t0)

)
du

= g′(t0)
2σ

π

∫ +∞

−∞

(u − t0)
2du

(σ2 + (u− t0)2)2
+

2σ

π

∫ +∞

−∞

(u − t0)
2μ(u)du

(σ2 + (u− t0)2)2
=: I ′σ + I ′′σ .

Moreover,

2σ

π

∫ +∞

−∞

(u− t0)
2du

(σ2 + (u− t0)2)2
=

2

π

∫ +∞

−∞

v2dv

(1 + v2)2

=
1

π

(
arctan v − v

1 + v2

)∣∣∣
+∞

−∞
= 1. (8.2.4)

Hence I ′σ = f ′(t0). On the other hand,

I ′′σ =
2σ

π

(∫

|u−t0|≤δ

+

∫

|u−t0|>δ

) (u− t0)
2μ(u)du

(σ2 + (u − t0)2)2
=: J ′

σ + J ′′
σ .

Similarly as in the proof of Lemma 8.2.6, one can easily prove that J ′′
σ = O(σ) when σ −→ 0+

(Exercise). It remains to estimate J ′
σ. In view of (8.2.4), we obtain

|J ′
σ| ≤ ε

2σ

π

∫

|u−t0|≤δ

(u− t0)
2du

(σ2 + (u− t0)2)2
≤ ε.

Finally, ∣∣∣
∂G

∂t
(σ + it0)− g′(t0)

∣∣∣ ≤ constσ + ε ≤ 2ε for 0 < σ  1,

which proves that ∂G
∂t (σ + it0) −→ g′(t0) when σ −→ 0+.

Analogously as in Remark 8.2.5, one can easily prove that ∂2G
∂t2 may be calculated by

differentiating under the integral sign (Exercise). Hence

∂2G

∂t2
(σ + it0) =

2σ

π

∫ +∞

−∞

3(u− t0)
2 − σ2

(σ2 + (u− t0)2)3
g(u)du

=
2σ

π

∫ +∞

−∞

3(u− t0)
2 − σ2

(σ2 + (u− t0)2)3

(
g(t0) + g′(t0)(u − t0) + μ(u)(u− t0)

)
du
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= g′(t0)
2σ

π

∫ +∞

−∞

(3(u− t0)
2 − σ2)(u − t0)

(σ2 + (u − t0)2)3
du

+
2σ

π

∫ +∞

−∞

(3(u − t0)
2 − σ2)(u − t0)

(σ2 + (u − t0)2)3
μ(u)du =: I ′σ + I ′′σ .

Moreover,

2σ

π

∫ +∞

−∞

(3(u− t0)
2 − σ2)(u − t0)

(σ2 + (u− t0)2)3
du =

2σ

π

∫ +∞

−∞

(3v2 − 1)v

(1 + v2)3
du = 0.

Thus I ′σ = 0. Now we estimate I ′′σ :

I ′′σ =
2σ

π

(∫

|u−t0|≤δ

+

∫

|u−t0|>δ

) (3(u− t0)
2 − σ2)(u − t0)

(σ2 + (u− t0)2)3
μ(u)du =: J ′

σ + J ′′
σ .

As above, we get J ′′
σ = O(σ) when σ −→ 0+. It remains to estimate J ′

σ. We have

σ|J ′
σ | ≤ ε

2σ2

π

∫

|u−t0|≤δ

|3(u− t0)
2 − σ2||u− t0|

(σ2 + (u− t0)2)3
du

≤ ε
2

π

∫ +∞

−∞

|3v2 − 1||v|
(1 + v2)3

dv =: const ε.

Finally,

σ
∣∣∣
∂2G

∂t2
(σ + it0)

∣∣∣ ≤ const1 σ2 + const2 ε,

which completes the proof. ��
Lemma 8.2.14. If a finite derivative g′(t0) exists, then ϕ1(σ+it0) = o(1/σ) when σ −→ 0+.

Proof . We have

∂G

∂t
(σ + it0) = −

∞∑

n=0

e−σbn sin(bnt0) =: Λ(σ),

∂2G

∂t2
(σ + it0) = −

∞∑

n=0

bne−σbn cos(bnt0), σ > 0. (8.2.5)

Observe that

Λ′(σ) =
∞∑

n=0

bne−σbn sin(bnt0), Λ′′(σ) = −
∞∑

n=0

b2ne−σbn sin(bnt0), σ > 0.

Consequently, by Lemma 8.2.9,

|Λ′(σ)| ≤ ϕ1(σ) = O(1/σ), |Λ′′(σ)| ≤ ϕ2(σ) = O(1/σ2) when σ −→ 0 +.

Now we apply Lemma 8.2.10 to the function Φ := Λ−g′(t0). In view of Lemma 8.2.13, we get
Λ′(σ) = o(1/σ) when σ −→ 0+. Finally, in view of Lemma 8.2.13 and (8.2.5), we conclude
that
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ϕ1(σ + it0) =

∞∑

n=0

bne−σbn cos(bnt0)− i

∞∑

n=0

bne−σbn sin(bnt0)

= o(1/σ) when σ −→ 0 + . ��

Proof of Theorem 8.2.12. Suppose that a finite derivative C ′
1/b,b(

t0
2π ) exists for some t0 ∈ R.

We take in Lemma 8.2.11 � := 1 and Ψ(σ) := ϕ1(σ + it0). By Lemma 8.2.14, ϕ1(σ + it0) =
o(1/σ) when σ −→ 0+. Lemma 8.2.9 implies that Ψ (p)(σ) = O(1/σ
+p) when σ −→ 0+
(p ∈ N). Thus, by Lemma 8.2.11, Ψ (p)(σ) = o(1/σ
+p) when σ −→ 0+, i.e., ϕ1+p(σ + it0) =
o(1/σ1+p) when σ −→ 0+ (p ∈ N). Let p ∈ N be such that 1 + p ≥ �0, where �0 is as in
Lemma 8.2.8. Then

(1 + p

bm

)1+p∣∣∣ϕ1

(1 + p

bm
+ it0

)∣∣∣ ≥ 1

2
, m ∈ N;

a contradiction. ��
Remark 8.2.15. Notice that for the case b ∈ N, G.H. Hardy gives in [Har16] simpler proofs
of Theorems 8.2.1 and 8.2.12 based on the Poisson integral formula.

8.3 Baouche–Dubuc Method

Theorem 8.3.1 (cf. [BD92]; see also Theorem 3.11.1). If ab > 1 and α := − log a
log b ∈ (0, 1),

then W1,a,b,θ is α-anti-Hölder continuous uniformly with respect to x ∈ R and θ (cf. Re-
mark 3.2.1(h)). In particular, W1,a,b,θ ∈M(R) ⊂ ND±(R) (cf. Remark 2.5.4(a)).

Remark 8.3.2. In fact, A. Baouche and S. Dubuc in [BD92] considered only the case θ = 0
and proved that W1,a,b,0 is weakly α-anti-Hölder continuous uniformly with respect to x ∈ R.

Proof of Theorem 8.3.1. By Remark 3.2.1(h), we have only to check that there exist ε >
0 and δ0 ∈ (0, 1] such that for all θ and δ ∈ (0, δ0), there exists a t ∈ (0, δ] such that
|W1,a,b,θ(t)−W1,a,b,θ(0)| > εδα.

Put f := W1,a,b,θ. Let L,m ∈ N, N ∈ 2N, be such that bL < N
2 and L < m. Let h := N

2bm .
To simplify notation, put An = 2πbn. Note that Amh = πN . Take an n ∈ N0. First observe
that

∫ h

0

cos(Amt + θm)dt =
1

Am
sin(Amt + θm)

∣∣∣
h

0

=
1

Am

(
sin(Amh + θm)− sin θm

)
= 0.

Let

I :=
2

h

∫ h

0

f(t) cos(2πbmt + θm)dt =
2

h

∫ h

0

(f(t)− f(0)) cos(Amt + θm)dt.

We have

2

h

∫ h

0

cos2(Amt + θm)dt =
1

h

(
t +

1

2Am
sin(2Amt + 2θm)

)∣∣∣
h

0

= 1 +
1

2Amh

(
sin(2Amh + 2θm)− sin(2θm)

)
= 1.
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Moreover, for n �= m, we get

2

h

∫ h

0

cos(Ant + θn) cos(Amt + θm)dt

=
1

h

∫ h

0

(
cos((An + Am)t + θn + θm) + cos((An −Am)t + θn − θm)

)
dt

=
1

h

( sin((An + Am)t + θn + θm)

An + Am
+

sin((An −Am)t + θm − θm)

An −Am

)∣∣∣
h

0

=
1

h

1

A2
n −A2

m

(
An sin((An + Am)h + θn + θm)−An sin(θn + θm)

−Am sin((An + Am)h + θn + θm) + Am sin(θn + θm)

+ An sin((An −Am)h + θn − θm)−An sin(θn − θm)

+ Am sin((An −Am)h + θn − θm)−Am sin(θn − θm)
)

=
1

h

2

A2
n −A2

m

(
An sin(Anh + θn) cos θm −An sin θn cos θm

−Am cos(Anh + θn) sin θm + Am cos θn sin θm

)

=
1

h

4

A2
n −A2

m

(
An cos θm cos(θn + 1

2Anh) sin(12Anh)

+ Am sin θm sin(θn + 1
2Anh) sin(12Anh)

)
.

Hence ∣∣∣
2

h

∫ h

0

cos(Ant + θn) cos(Amt + θm)dt
∣∣∣ ≤ 1

h

4

|An −Am| | sin(
1
2Anh)|.

Thus

|I − am| ≤
m−L−1∑

n=0

2anbn

bm − bn
+

∞∑

n=m−L, n
=m

2an

π|bn − bm|h

≤
m−L−1∑

n=0

2anbn

bm − bm−1
+

∞∑

n=m−L

2an

π(bm − bm−1)h

≤ 2am−Lbm−L

(ab− 1)(bm − bm−1)
+

2am−L

π(1− a)(bm − bm−1)h

≤ 2am−Lb−L

(ab− 1)(1− 1
b )

+
4am−L

Nπ(1− a)(1 − 1
b )

< sam,

where

s :=
2

(ab)L(1− 1
b )

( 1

ab− 1
+

1

π(1 − a)

)
.

Fix L,N ∈ N, N ≡ 0 (mod 2), such that s < 1 and bL < N
2 . Put c := 1−s

2 . Then
I > 2cam for m > L. Consequently, for every m > L, there exists a tm ∈ (0, h] such
that |f(tm) − f(0)| > cam. Now take a δ ∈ (0, N

2bL ) and let m ∈ N, m > L, be such that

h = N
2bm ≤ δ < N

2bm−1 . Let ε := ca( 2
N )α. Then
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|f(tm)− f(0)| > cam =
c

bmα
=

c2α

Nαbα

( N

2bm−1

)α

> εδα. ��

8.4 Kairies–Girgensohn Method

The main aim of this section is to discuss the case ab = 1, at least when b ∈ N2. The general
case remains open.

Theorem 8.4.1 (cf. [Gir94]). If a ∈ (0, 1), b ∈ N2 with ab ≥ 1, and θ ∈ R, then W1,a,b,θ ∈
ND±(R).

The proof will be based on studying systems of functional equations (see Sect. 4.2 in the
discussion of the Takagi function) and the Schauder coefficients of solutions of such a system.

To adjust the function W1,a,b,θ in order to obtain simpler formulas, we put

W̃a,b,θ(x) :=
∞∑

n=0

an sin(bπbnx + θ), x ∈ R.

Note that W1,a,b,θ(x) = W̃a,b,θ+π
2
(2xb ), x ∈ R. Hence it suffices to verify that W̃a,b,θ ∈

ND±(I).
Fix a, b, θ as above. Then W̃a,b,θ satisfies the following system of functional equations on I

(Exercise):

g
(x + j

b

)
= (−1)jbag(x) + (−1)j sin(πx + θ), x ∈ I, j = 0, . . . , b− 1. (8.4.1)

8.4.1 A System of Functional Equations

In this part, we will discuss a system of functional equations that generalizes (8.4.1) from
above, namely we study solutions of the following system:

g
(x + j

b

)
= ajg(x) + gj(x), x ∈ I, j = 0, . . . , b− 1, (8.4.2)

where aj ∈ R with |aj | < 1 and gj : I −→ R, j = 0, . . . , b− 1.
Note that if aj = (−1)jba, a ∈ (0, 1), and gj(x) := (−1)j sin(πx+θ), x ∈ I, j = 0, . . . , b−1,

then (8.4.2) is exactly (8.4.1) from above.
If f : I −→ R is a solution of (8.4.2), then

g0(0) = (1− a0)f(0), gb−1(1) = (1− ab−1)f(1),

f
(j

b

)
= aj−1f(1) + gj−1(1), f

(j

b

)
= ajf(0) + gj(0),

where j = 1, . . . , b− 1. In particular,

aj−1
gb−1(1)

1− ab−1
+ gj−1(1) = aj

g0(0)

1− a0
+ gj(0), j = 1, . . . , b− 1. (8.4.3)
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Theorem 8.4.2. If (8.4.3) is true and all the gj are continuous, then there exists exactly
one f ∈ C(I) solving (8.4.2).

Remark 8.4.3. Applying this result to (8.4.1), it follows that W̃a,b,θ is the only solution
of (8.4.1). Moreover, one may study (8.4.2) without knowing the explicit form of its solution.

Proof of Theorem 8.4.2. We introduce the metric space

X :=
{
u ∈ C(I) : u(0) = g0(0)

1− a0
, u(1) =

gb−1(1)

1− ab−1

}

with d(u′, u′′) := ‖u′ − u′′‖I . Then the mapping T : X −→ X given by

Tu(x) := aju(bx− j) + gj(bx− j), if x ∈
[j

b
,
j + 1

b

]
, j = 0, . . . , b− 1,

is well defined (use (8.4.3)). Note that every continuous solution of (8.4.2) is a fixed point of
T . Moreover,

d(Tu′, T u′′) ≤ max{|aj| : j = 0, . . . , b− 1} · d(u′, u′′),

i.e., T is a contraction. Therefore, by virtue of the Banach fixed-point theorem, there exists
exactly one function u0 ∈ X with Tu0 = u0. Hence u0 is the only continuous function
satisfying (8.4.2). ��

8.4.2 The Faber–Schauder Basis of C(I)

Let b ∈ N2. We introduce the following functions σ0,0, σ1,0, and σi,j,n (i = 0, . . . , bn−1−1, j =
1, . . . , b− 1, n ∈ N) on I:

σ0,0(x) := 1− x, σ1,0(x) := x,

σi,j,n := the polygonal line with nodes at

(0, 0),
( ib + j − 1

bn
, 0
)
,
( ib + j

bn
, 1
)
,
( ib + j + 1

bn
, 0
)
, (1, 0).

Note that all these functions depend on b; nevertheless, for simplicity, we omit the extra
index b, here and in our further discussions.

Theorem 8.4.4. If f ∈ C(I), then f has the following unique expansion:

f = γ0,0(f)σ0,0 + γ1,0(f)σ1,0 +
∞∑

n=1

bn−1−1∑

i=0

b−1∑

j=1

γi,j,n(f)σi,j,n

on I, where the series is uniformly convergent.
The Schauder coefficients γ0,0(f), γ1,0(f), γi,j,n(f) satisfy the following relations:

γ0,0(f) = f(0), γ1,0(f) = f(1),

γi,j,n(f) = f
( ib + j

bn

)
− b− j

b
f
( i

bn−1

)
− j

b
f
( i + 1

bn−1

)
.
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Moreover, if

f0 := γ0,0(f)σ0,0 + γ1,0(f)σ1,0, fn :=

bn−1−1∑

i=0

b−1∑

j=1

γi,j,n(f)σi,j,n, n ∈ N,

then fn is a polygonal line with nodes at most at the points m
bn , and there we have fn(

m
bn ) =

f(m
bn ), m = 0, . . . , bn.

Remark 8.4.5. In the case b = 2, this basis (given by the σ0,0, σ1,0, σi,j,n) may be found in
papers of Faber (see [Fab08, Fab10]).

Proof of Theorem 8.4.4. Step 1o. We first prove the uniform convergence under the assump-
tion that fn is linear on the intervals [mbn , m+1

bn ], m = 0, . . . , bn − 1, and fn(
m
bn ) = f(m

bn ),
m = 0, . . . , bn (n ∈ N). Let ε > 0 and choose n0 ∈ N such that

|f(x′)− f(x′′)| ≤ ε

2
for all x′, x′′ ∈ I, |x′ − x′′| < 1

bn0
.

Let n > n0. Take an m ∈ {0, 1, . . . , bn} with x1 := m
bn ≤ x ≤ m+1

bn =: x2. Then |x − x1| ≤
x2 − x1 = 1

bn < 1
bn0

. Thus, |f(x) − f(x1)| < ε
2 . In view of our assumption, we have that

fn|[x1,x2] is linear and fn(x1) = f(x1), f(x2) = fn(x2). Hence

|f(x)− fn(x)| ≤ |f(x)− f(x1)|+ |f(x1)− fn(x)| < ε

2
+ |fn(x1)− fn(x)|

≤ ε

2
+ |fn(x2)− fn(x1)| = ε

2
+ |f(x2)− f(x1)| < ε.

Therefore, ‖f − fn‖I < ε whenever n > n0.
Step 2o. Note that by definition, fn is piecewise linear with nodes at most at the points

m
bn , m = 0, . . . , bn. Moreover, σi,j,k(0) = σi,j,k(1) = 0 for all admissible indices with i, j for
k ∈ N. Hence, f(0) = f0(0) = γ0,0(0) and f(1) = f0,0(1) = γ1,0(f).

Assume now that the formula for the Schauder coefficients for n−1, n ∈ N, and f
(

m
bn−1

)
=

fn−1

(
m

bn−1

)
, m = 0, . . . , bn−1, are verified. If N � k > n, then

σi,j,k

( ib+ j

bn

)
= σi,j,k

( ibk−nb + jbk−n

bk

)
= 0.

Moreover, if (s, t) �= (i, j) are admissible indices for n, then σs,t,n

(
ib+j
bn

)
= 0. Therefore,

f = fn−1 + γi,j,n(f)σi,j,n; in particular,

f
( ib + j

bn

)
= fn−1

( ib+ j

bn

)
+ γi,j,n(f) = fn

( ib + j

bn

)
.

Recall now that fn−1 is linear over the interval
[

i
bn−1 , i+1

bn−1

]
, which together with the induction

assumption implies that

fn−1

( ib + j

bn

)
=

b− j

b
fn−1

( i

bn−1

)
+

j

b
fn−1

( i + 1

bn−1

)

=
b− j

b
f
( i

bn−1

)
+

j

b
f
( i + 1

bn−1

)
.

Finally, merging the last two equations gives the claimed formula for γi,j,n(f). ��
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Applying the former result on the form of the Schauder coefficients, we get the following
lemma, which will be used later in the discussion of nowhere differentiability properties of the
Weierstrass function.

Lemma 8.4.6. Let f ∈ C(I), n ∈ N, i ∈ {0, . . . , bn−1 − 1}. Then:
(a) if f is concave on [ i

bn−1 , i+1
bn−1 ], then γi,j,n(f) ≥ 0 for all j ∈ {1, . . . , b− 1};

(b) if f is differentiable and f ′ is convex on [ i
bn−1 , i+2

bn−1 ] with i < bn−1 − 1, then γi,j,n(f) ≥
γi+1,j,n(f) for all j ∈ {1, . . . , b−1}, i.e., the numbers γi,j,n(f) are decreasing with respect
to i;

(c) if f is differentiable and f ′ is convex on [ i
bn−1 , i+1

bn−1 ], then

γi,j,n(f) ≥ γi,b−j,n(f), j = 1, . . . ,
⌊ b

2

⌋
;

(d) if f(x) = ±f(1− x), x ∈ I, then γi,j,n(f) = ±γbn−1−1−i,b−j,n(f) for all j = 1, . . . , b− 1.

Proof . (a) Let i
bn−1 ≤ x′ < y < x′′ ≤ i+1

bn−1 . Then concavity implies that Δf(x′, y) ≥
Δf(y, x′′). In particular, we obtain

γi,j,n(f) =
j(b− j)

bn+1

(
Δf

( ib

bn
,
ib + j

bn

)
−Δf

( ib+ j

bn
,
(i + 1)b

bn

))
≥ 0.

(b) For x ∈ [ i
bn−1 , i+1

bn−1 ] put f̃(x) := f(x+ h), where h := 1
bn−1 . Applying that f ′ is assumed

to be a convex function implies

f ′(x2) = f ′
( h

x2 + h− x1
x1 +

x2 − x1

x2 + h− x1
(x2 + h)

)

≤ h

x2 + h− x1
f ′(x1) +

x2 − x1

x2 + h− x1
f ′(x2 + h)

f ′(x1 + h) = f ′
( x2 − x1

x2 + h− x1
x1 +

h

x2 + h− x1
(x2 + h)

)

≤ x2 − x1

x2 + h− x1
f ′(x1) +

h

x2 + h− x1
f ′(x2 + h),

where i
bn−1 ≤ x1 < x2 ≤ i+1

bn−1 . Adding these two inequalities gives

f ′(x2) + f ′(x1 + h) ≤ f ′(x1) + f ′(x2 + h),

implying that f̃ ′(x2) ≤ f̃ ′(x1). Thus, f̃ is concave on the interval [ i
bn−1 , i+1

bn−1 ]. Applying
(a) leads to

0 ≤ γi,j,n(f̃) =
(
f
( ib + j

bn

)
− f

( ib + j

bn
+

1

bn−1

))

− b− j

b

(
f
( i

bn−1

)
− f

( i

bn−1
+

1

bn−1

))

− j

b

(
f
( i + 1

bn−1

)
− f

( i + 1

bn−1
+

1

bn−1

))

= γi,j,n(f)− γi+1,j,n(f).

(c) Put h := 2i+1
bn−1 and f̃(x) := f(x)− f(h− x), x ∈ [ i

bn−1 , i+1
bn−1 ]. Let

i
bn−1 ≤ x1 < x ≤ 2i+1

2bn−1 .
Since f ′ is assumed to be convex, we get
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f ′(x2) = f ′
(h− x1 − x2

h− 2x1
x1 +

x2 − x1

h− 2x1
(h− x1)

)

≤ h− x1 − x2

h− 2x1
f ′(x1) +

x2 − x1

h− 2x1
f ′(h− x1),

f ′(h− x2) = f ′
(x2 − x1

h− 2x1
x1 +

h− x1 − x2

h− 2x1
(h− x1)

)

≤ x2 − x1

h− 2x1
f ′(x1) +

h− x1 − x2

h− 2x1
f ′(h− x1).

Adding these two inequalities yields

f ′(x2) + f ′(h− x1) ≤ f ′(x1) + f ′(h− x1),

implying that f̃ ′(x2) ≤ f̃ ′(x1). Hence, the function f̃ is concave on [ i
bn−1 , 2i+1

2bn−1 ]. There-
fore, one obtains that

Δf̃(x1, x2) ≥Δf̃(x1, x3),
i

bn−1
≤ x1 < x2 < x3 ≤ 2i+ 1

2bn−1
.

Note that f̃( 2i+1
2bn−1 + x) = −f̃( 2i+1

2bn−1 − x). So we have Δf̃( i
bn−1 , i+1

bn−1 ) = Δf̃( i
bn−1 , 2i+1

2bn−1 ).
Using the formula for the Schauder coefficients yields

γi,j,n(f̃) =
j

bn

(
Δf̃

( ib

bn
,
ib + j

bn

)
−Δf̃

( i

bn−1
,
i + 1

bn−1

))

=
j

bn

(
Δf̃

( ib

bn
,
ib + j

bn

)
−Δf̃

( i

bn−1
,
2i + 1

2bn−1

))
≥ 0

or

0 ≤ γi,j,n(f̃) =
(
f
( ib + j

bn

)
− f

(2i + j

bn−1
− ib + j

bn

))

− b− j

b

(
f
( i

bn−1

)
− f

(2i + 1

bn−1
− i

bn−1

))

− j

b

(
f
( i + 1

bn−1

)
− f

(2i+ 1

bn−1
− i + 1

bn−1

))

= γi,j,n(f)− γi,b−j,n(f),

which completes the proof.
(d) The proof is a direct application of the form of the Schauder coefficients, and therefore,

it is left as an Exercise.
��

8.4.3 Nowhere Differentiability and the Schauder Coefficients

Generalizing a result of Faber (see [Fab08, Fab10]), it is possible to formulate necessary
conditions for the Schauder coefficients of a function f ∈ C(I) with f ′

+(x0) ∈ R for some
x0 ∈ [0, 1). Fix b ∈ N2. Let f ∈ C(I), q, n ∈ N with q ≤ bn−1, and j ∈ {1, . . . , b− 1}. Put

γ̃
(q)
j,n(f) := min{max{γs,j,n(f) : i ≤ s ≤ i + q − 1} : 0 ≤ i ≤ bn−1 − q},
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δ̃
(q)
j,n(f) := bnγ̃

(q)
j,n(f), δi,j,n(f) := bnγi,j,n(f).

Theorem 8.4.7. If f ∈ C(I) and x0 ∈ [0, 1) are such that f ′
+(x0) ∈ R, then

lim
n→∞ δ̃

(q)
j,n(f) = 0, q ∈ N, j = 1, . . . , b− 1.

Remark 8.4.8. This result makes it possible, at least in principle, to exclude the possibility
that a function f has a finite right-sided derivative.

Proof of Theorem 8.4.7. Let

x0 =

∞∑

k=1

ξk
bk

, 0 ≤ ξk < b,

be the b-adic representation of x0 with the condition that there are infinitely many j’s with
ξj �= 9. Fix s ∈ {1, . . . , q}. For n ∈ N2, put

un :=

n−1∑

k=1

ξk
bk

+
s

bn−1
,

v′n :=

n−1∑

k=1

ξk
bk

+
s + 1

bn−1
,

v′′n :=

n−1∑

k=1

ξk
bk

+
s

bn−1
+

j

bn
.

Note that if n ≥ n0 for some n0 ∈ N2, then un, v′n, v′′n ∈ I. Moreover, we have

0 < v′n − x0 ≤ q + 1

bn−1
−→
n→∞ 0, 0 < v′′n − x0 ≤ qb + j

bn
−→
n→∞ 0,

un − x0 ≤ q(v′n − un), un − x0 ≤ qb

j
(v′′n − un).

Applying Remark 2.1.4(a), we get limn→∞(Δf(un, v′n) −Δf(un, v′′n)) = 0. To evaluate this
difference, fix an n ≥ n0 and recall that fk, k < n, is linear on the segments [ m

bn−1 , m+1
bn−1 ].

Therefore, Δfk(un, v′n) = Δfk(un, v′′n). Moreover, define rn :=
∑∞

k=n+1 fk and note that
rn(un) = rn(v

′
n) = rn(v

′′
n) = 0. Hence, we have

0 = lim
n→∞(Δf(un, v′n)−Δf(un, v′′n)) = lim

n→∞(Δfn(un, v′n)−Δfn(un, v′′n)).

Since fn(un) = fn(v
′
n) = 0, we end up with 0 = − limn→∞ Δfn(un, v′′n). Put in := ξ1b

n−2 +

· · · + ξn−1. Then Δfn(un, v′′n) =
bn

j γin+s,j,n(f). Hence, the sequences
(
bnγin+s,j,n(f)

)

n∈Nn0

converge to 0, s = 1, . . . , q. In particular, if n is large, then

δ̃
(q)
j,n(f) ≤ max{|δin+s,j,n(f)| : s = 1, . . . , q} −→

n→∞ 0,

which completes the proof. ��
In order to apply the former theorem, one needs an effective way to calculate the Schauder

coefficients.
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8.4.4 Schauder Coefficients of Solutions of a System
of Functional Equations

Given b ∈ N2, we now study the continuous solution f ∈ C(I) of the generalized system of
functional equations (8.4.2) satisfying (8.4.3) with continuous functions gj .

Theorem 8.4.9. Let f be as before. Then:

(a) γ0,0(f) =
g0(0)
1−a0

, γ1,0(f) =
gb−1(1)
1−ab−1

;

(b) γ0,j,1(f) =
b−j
b

(
(aj − 1)γ0,0(f) + gj(0)

)
+ j

b

(
(aj−1 − 1)γ1,0(f) + gj−1(1)

)
,

j = 1, . . . , b− 1;

(c) γi+νbn−1,j,n+1(f) = aνγi,j,n(f) + γi,j,n(gν),
n ∈ N, i = 0, . . . , bn−1 − 1, j = 1, . . . , b− 1, ν = 0, . . . , b− 1.

Proof . (a) Use (8.4.3) and Theorem 8.4.4.
(b) We know that γ0,j,1(f) = f( jb )− b−j

b f(0)− j
bf(1). Using (8.4.3) leads to

f(
j

b
) =

b− j

b

(
ajf(0) + gj(0)

)
+

j

b

(
aj−1f(1) + gj−1(1)

)
.

Together with (a), it gives (b).
(c) Recall the representation of γi+νbn−1,j,n(f) in Theorem 8.4.4. Applying to the three terms

on the right-hand side of that representation the functional equations in (8.4.2) gives

f
((i + νbn−1)b + j

bn+1

)
= f

((ib + j)b−n + ν

b

)
= aνf

( ib + j

bn

)
+ gν

( ib + j

bn

)
,

f
( i + νbn−1

bn

)
= f

( ib−n+1 + ν

b

)
= aνf

( i

bn−1

)
+ gν

( i

bn−1

)
,

f
( i + νbn−1 + 1

bn

)
= f

((i + 1)b−n+1 + ν

b

)
= aνf

( i + 1

bn−1

)
+ gν

( i + 1

bn−1

)
,

which verifies (c).
��

In order to show that f has nowhere a finite or infinite right-sided derivative on [0, 1), it

suffices to find j and q such that the sequence (δ̃
(q)
j,n(f))n does not converge to 0. To do so,

Theorem 8.4.9 will be useful.
Put

α := min{|aj| : j = 0, . . . , b− 1},
δ̃j,n = δ̃j,n(g0, . . . , gb−1) := max{δi,j,n(gν) : i = 0, . . . , bn−1 − 1,

ν = 0, . . . , b− 1}, n ∈ N, j = 1, . . . , b− 1.

Lemma 8.4.10. Let n0 ∈ N, i0 ∈ {0, . . . , bn−1 − 1}, and j0 ∈ {1, . . . , b − 1}. Assume that
α > 0. Then
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|δi0+rbn0−1,j0,n0+k(f)| ≥ (αb)k
(
|δi0,j0,n0(f)| − b

k−1∑

s=0

1

(αb)s+1
δ̃j0,n0+s

)
,

where k, r ∈ N0 with i0+rbn0−1 ≤ bn0+k−1−1 (note that the empty sum is by definition equal
to 0).

Proof . We will use induction over k ∈ N0.
Step 1o. Let k = 0. Then r = 0, and the claimed inequality is obviously true.
Step 2o. Assume that the lemma is true for k ∈ N0. We have to verify that the claim is true

for all δi0+rbn0−1+νbn0+k−1,j0,n0+k+1(f), ν = 0, . . . , b− 1, if it is true for δi0+rbn0−1,j0,n0+k(f).
Using Theorem 8.4.9 and the induction hypothesis gives

|δi0+rbn0−1+νbn0+k−1,j0,n0+k+1(f)|
= |baνδi0+rbn0−1,j0,n0+k(f) + bδi0+rbn0−1,j0,n0+k(f)|
≥ (αb)|δi0+rbn0−1,j0,n0+k(f)| − b|δi0+rbn0−1,j0,n0+k(f)|

≥ (αb)k+1
(
|δi0,j0,n0(f)| − b

k−1∑

s=0

1

(αb)s+1
δ̃j0,n0+s

)
− bδ̃j0,n0+k

≥ (αb)k+1
(
|δi0,j0,n0(f)| − b

k∑

s=0

1

(αb)s+1
δ̃j0,n0+s

)
. ��

Put

M
(α)
j,n (f) :=

∞∑

s=0

1

(αb)s+1
δ̃j,n+s ∈ [0,∞].

Corollary 8.4.11. Let n0 ∈ N, i0 ∈ {0, . . . , bn−1 − 1}, j0 ∈ {1, . . . , b − 1}, and k, r ∈ N0.
Assume that α > 0. Then

|δi0+rbn−1,j0,n0+k(f)| ≥ (αb)k
(
|δi0,j0,n0(f)| − bM

(α)
j0,n0

(f)
)
.

Finally, we end up with a criterion that may be helpful in proving nowhere differentiability
properties of the solution f of (8.4.2).

Theorem 8.4.12. Assume that αb ≥ 1. If there are suitable indices i0, j0, and n0 with

|δi0,j0,n0(f)| > bM
(α)
j0,n0

(f), then f has nowhere on [0, 1) a right-sided (finite) derivative.

Proof . An immediate consequence of Corollary 8.4.11 and the assumption is that

|δi0+rbn−1,j0,n0+k(f)| ≥ (αb)kC,

where C := |δi0,j0,n0(f)| − bM
(α)
j0,n0

(f) > 0. Hence, the left-hand terms cannot converge to 0
if k tends to ∞. Put

q := bn−1 and tk := min{|δi0+rbn−1,j,n+k(f)| : r ∈ N}.

Then (tk)k does not converge to zero. Finally, recall that δ̃
(q)
j0,n0+k(f) ≥ tk. Thus, (δ̃

(q)
j0,n0+k)k∈N

also does not tend to zero. Hence, Theorem 8.4.7 implies the nowhere differentiability of f . ��
To be able to apply this kind of result, we obviously need that M

(α)
j0,n0

(f) <∞. Conditions
on (8.4.2) under which this holds will be discussed in the next lemma.
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Lemma 8.4.13. Let αb ≥ 1.

(a) If all the functions gν in (8.4.2) are differentiable on I with ‖g′ν‖I ≤ L1 and αb > 1, then

M
(α)
j,n (f) ≤ 2L1

j(b− j)

b(αb − 1)
, n ∈ N, j = 1, . . . , b− 1.

(b) If all the functions gν in (8.4.2) are twice differentiable on I with ‖g′′ν‖I ≤ L2, then

M
(α)
j,n (f) ≥ L2j(b− j)

2bn−1(αb2 − 1)
, n ∈ N, j = 1, . . . , b− 1.

Proof . (a) By assumption, we have |gν(x′) − gν(x
′′)| ≤ L1|x′ − x′′| for x′, x′′ ∈ I for all ν.

Now fix an i ∈ {0, . . . , bn−1 − 1} and a ν ∈ {0, . . . , b− 1}. Then

|γi,j,n(gν)| ≤ b− j

b

∣∣∣gν
( ib + j

bn

)
− gν

( i

bn−1

)∣∣∣+
j

b

∣∣∣gν
( i + 1

bn−1

)
− gν

( ib+ j

bn

)∣∣∣

≤ b− j

b
L1

j

bn
+

j

b
L1

b− j

bn
= 2L1

j(b − j)

bn+1
.

Thus, |δi,j,n(gν)| ≤ 2L1
j(b−j)

b . Since i and ν were arbitrary, we get δ̃j,n ≤ 2L1
j(b−j)

b .

Plugging this estimate into the definition of M
(α)
j,n (f) leads finally to M

(α)
j,n (f) ≤ 1

αb−1 .
(b) Fix a ν ∈ {0, . . . , b− 1} and let x′, x′′ ∈ I. Then

gν(x
′)− gν(x

′′) = g′ν(x
′′)(x′ − x′′) +

g′′ν (ξ)
2

(x′ − x′′)2,

where ξ lies between x′ and x′′. Using Theorem 8.4.4 implies

γi,j,n(gν) = −b− j

b

(
gν

( i

bn−1

)
− gν

( ib + j

bn

))
− j

b

(
f
( i + 1

bn−1

)
− gν

( ib + j

bn

))

= −b− j

b

(
g′ν
( ib + j

bn

)−j

bn
+ g′′ν (ξ1)

j2

2b2n

)

− j

b

(
g′ν
( ib + j

bn

)b− j

bn
+ g′′ν (ξ2)

(b − j)2

2b2n

)

= −g′′ν (ξ1)(b− j)j2

2bb2n
− g′′ν (ξ2)

j(b − j)2

2bb2n
,

where ξ1 (resp. ξ2) lies between i
bn−1 and ib+j

bn (resp. ib+j
bn and i+1

bn−1 ). By virtue of the
assumptions in (b), it follows that

|δi,j,n(gν)| ≤ L2

2

∣∣∣
(b− j)j2

bbn
+

j(b− j)2

bbn

∣∣∣ =
L2j(b− j)

2bn
.

If one puts this estimate into the definition of M
(α)
j,n (f), then the claim in (b) is an easy

consequence.
��
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8.4.5 Nowhere Differentiability of W1,a,b,θ for ab ≥ 1, b ∈ N2

After this long journey along Schauder bases and systems of functional equations, we are now
in a position to prove Theorem 8.4.1.

Proof of Theorem 8.4.1. As mentioned at the beginning of this section, it suffices to show

that the function f := W̃a,b,θ with ab ≥ 1 has nowhere on [0, 1) a right-sided derivative.
By virtue of Theorem 8.4.12, it suffices to find suitable indices i, j, n such that |δi,j,n(f)| >
bM

(1/b)
j,n (f) ≥ bM

(α)
j,n (f). Put Mj,n(f) := M

(1/b)
j,n (f).

Step 1o. Let us first discuss the case b = 2. Thus f = W̃a,b,θ and the data in the associated
functional system are given by a0 = a1 = a (i.e., α = a), g0(x) := sin(πx + θ), and g1(x) =

− sin(πx + θ), x ∈ I. Then Lemma 8.4.13(b) leads to M1,n(f) ≤ π2

2n , n ∈ N. Fix n = 3. Then
we have the following list of δi,j,n(f) (use Theorem 8.4.9):

γ0,0(f) =
sin θ
1−a , γ1,0(f) =

− sin(π+θ)
1−a = sin θ

1−a ;

δ0,1,1(f) =
(
(a− 1) sin θ

1−a − sin θ
)
+
(
(a− 1) sin θ

1−a − sin θ
)
= −4 sin θ,

δ0,1,2(f) = 2aδ0,1,1(f) + 2δ0,1,1(g0) = −8a sin θ + 4 cos θ,

δ1,1,2(f) = 2aδ0,1,1(f) + 2δ0,1,1(g1) = −8a sin θ − 4 cos θ,

δ0,1,3(f) = 2aδ0,1,2(f) + 2δ0,1,2(g0) = −16a2 sin θ + 8a cos θ
+16 sin(θ + π

4 ) sin
2 π

8 ,

δ1,1,3(f) = 2aδ1,1,2(f) + 2δ1,1,2(g0) = −16a2 sin θ − 8a cos θ
+16 sin(θ + 3π

4 ) sin2 π
8 ,

δ2,1,3(f) = 2aδ0,1,2(f) + 2δ0,1,2(g1) = −16a2 sin θ + 8a cos θ
−16 sin(θ + π

4 ) sin
2 π

8 ,

δ3,1,3(f) = 2aδ1,1,2(f) + 2δ1,1,2(g1) = −16a2 sin θ − 8a cos θ
−16 sin(θ + 3π

4 ) sin2 π
8 .

By assumption, we have 1 > a ≥ 1
2 . Then:

if θ ∈ [0, π
4 ], then |δ3,1,3(f)| = 16a2 sin θ + 8a cos θ + 16 sin(θ + 3π

4 ) sin2 π
8

≥ 4 sin θ + 4 cos θ ≥ 4 > π2

4 ≥ 2M1,3(f);

if θ ∈ [π4 , π
2 ], then |δ1,1,3(f)| = 16a2 sin θ + 8a cos θ − 16 sin(θ + 3π

4 ) sin2 π
8

≥ 4 sin θ + 4 cos θ ≥ 4 > π2

4 ≥ 2M1,3(f);

if θ ∈ [π2 , 3π
4 ], then |δ2,1,3(f)| = 16a2 sin θ − 8a cos θ − 16 sin(θ + 3π

4 ) sin2 π
8

≥ 4 sin θ − 4 cos θ ≥ 4 > π2

4 ≥ 2M1,3(f);

if θ ∈ [ 3π4 , π], then |δ0,1,3(f)| = 16a2 sin θ − 8a cos θ − 16 sin(θ + 3π
4 ) sin2 π

8

≥ 4 sin θ − 4 cos θ ≥ 4 > π2

4 ≥ 2M1,3(f).

Hence the condition from above has been verified, which implies that f has no right-sided
derivative on [0, 1).

Step 2o. Now we assume that b ∈ N3, and here we will discuss three different cases.

Case 1o. Let f(x) := W̃a,b,0(x) =
∑∞

n=1 an sin(bπbnx). Then the data in the correspond-
ing (8.4.2) are given by aj = (−1)jb and gj = (−1)j sin(πx), x ∈ I. Note that ‖g′′j ‖I ≤ π2.

Therefore, Lemma 8.4.13 leads to Mj,n(f) ≤ π2

2bn−1 . Then
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δ1,1,2(f) = (−1)babδ0,1,1(f) + bδ0,1,1(g1)

= 0− b2 sin2
π

b
≤ −2b ≤ −6 < −π2

2
< −bM1,2(f).

Hence Theorem 8.4.12 applies.

Case 2o. Let f(x) := W̃a,b,π/2(x) =
∑∞

n=0 an cos(bπbnx), x ∈ I. Then the data in the

corresponding (8.4.2) are given by aj = (−1)jb and gj(x) = (−1)j cos(πx), x ∈ I. Note that
|γi,j,n(gj)| = |γi,j,n(g)|, where g(x) := cos(πx), x ∈ I (see Theorem 8.4.4).

Then:

M1,n(f) = M
(1/b)
1,n (f) =

∞∑

k=0

δ̃1,n+k

=

∞∑

k=n

max{|δi,1,k(gν)| : 0 ≤ i ≤ bn−1 − 1, 0 ≤ ν ≤ b− 1}

=

∞∑

k=n

bk max{|γi,1,k(gν)| : 0 ≤ i ≤ bn−1 − 1, 0 ≤ ν ≤ b− 1}

=

∞∑

k=n

bk max{|γi,1,k(g)| : 0 ≤ i ≤ bn−1 − 1}

(1)
=

∞∑

k=n

bk max{|γ0,1,k(g)|, |γbn−1−1,1,k(g)|}

(2)
=

∞∑

k=n

bk max{γ0,1,k(g),−γbn−1−1,1,k(g)}

(3)
=

∞∑

k=n

bk max{γ0,1,k(g), γ0,b−1,k(g)}

(4)
=

∞∑

k=n

γ0,1,k(g)

= lim
N→∞

N∑

k=n

(
cos

1

bk
− b− 1

b
− 1

b
cos

π

bk−1

)

= lim
N→∞

( N∑

k=n

bk
(
cos

1

bN
− cos 0

)
−

N∑

k=n

bk−1
(
1− cos

π

bk−1

))

= lim
N→∞

(
bN

(
cos

1

bN
− cos 0

)
− bn−1

(
cos

π

bn−1
− 1

))

= cos′ 0 + bn−1
(
1− cos

π

bn−1

)
= bn−1

(
1− cos

π

bn−1

)
.

The equality (1), (2), (3), resp. (4) from above is a consequence of Lemma 8.4.6(b), (a), (d),
resp. (c).

In particular, we get bM1,2(f) = b2(1 − cos π
b ) ≤ 3b

2 (use that cos(πx) ≥ 1 − 3
2x for

x ∈ [0, 1
3 ]).

Assume first that b is even. We will calculate δ1,1,2(f).
Using the recurrence formula (see Theorem 8.4.9), we have γ0,0(f) =

1
1−a and γ1,0(f) =

1
1−a . Thus the next step leads to
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δ0,1,1(f) = b
(b − 1

b

(a− 1

1− a
+ g1(0)

)
+

1

b

(a− 1

1− a
+ g0(1)

))
= −2b.

Therefore, using that ab ≥ 1, we obtain

δ1,1,2(f) = abδ0,1,1(f) + bδ0,1,1(g1)

= −2ab2 − b2
(
cos

π

b
− b− 1

b
cos 0− 1

b
cosπ

)

= −2b2
(
a +

1

b

)
+ b2

(
1− cos

π

b

)
= −2b2

(
a +

1

b

)
+ bM1,2(f)

≤ −4b + 3b

2
= −5b

2
≤ −bM1,2(f).

Assuming now that b is odd, a similar procedure as before leads to

δ1,1,2(f) = 2ab
b− 1

1− a
− 2b + b2

(
1− cos

π

b

)
= 2b2

a− 1
b

1− a
+ bM1,2(f) ≥ bM1,2(f).

Therefore, in both cases we have the inequality |δ1,1,2(f)| ≥ bM1,2(f). If the strict inequality
is true, then Theorem 8.4.12 applies directly. If |δ1,1,2(f)| ≥ bM1,2(f) holds, we get

bM
(a)
1,3 (f) = ab2M

(a)
1,2 (f)− bδ̃1,2

< ab|δ1,1,2(f)| − b|δ1,1,2(g0)|
≤ |abδ1,1,2(f) + bδ1,1,2(g0)| = |δ1,1,3(f)|.

So we end up with |δ1,1,3(f)| > bM1,3(f), which allows us to apply Theorem 8.4.12. Hence,
f has nowhere on [0, 1) a right-sided derivative.

Case 3o. Let f := W̃a,b,θ. Then f = cos θ · f1 + sin θ · f2, where f1 := W̃a,b,0 and f2 :=

W̃a,b,π/2. We may assume that cos θ · sin θ �= 0. Recall (cf. (8.4.2)) that fj solves the following
system:

h
(x + ν

b

)
= a(k)

ν h(x) + g(k)ν (x), x ∈ I, ν = 0, . . . , b− 1, (8.4.4)

with the associated data a
(1)
ν = a

(2)
ν = (−1)νba, g

(1)
ν (x) = (−1)ν sin(πx), and g

(2)
ν (x) =

(−1)ν cos(πx), x ∈ I, ν = 0, . . . , b − 1. Then f is the uniquely determined solution of the
following system:

h
(x+ ν

b

)
= aνh(x) + gν(x), x ∈ I, ν = 0, . . . , b− 1, (8.4.5)

where aν = (−1)νba and gν(x) = cos θ · g(1)ν + sin θ · g(2)ν , ν = 0, . . . , b− 1.
By virtue of Theorem 8.4.12, it suffices to find suitable indices i, j, n such that δi,j,n(f) >

bM
(a)
j,n (f), where the data δi,j,n(f) and M

(a)
j,n (f) are taken with respect to the system (8.4.5).

By virtue of Theorem 8.4.4, it is clear that

δi,j,n(f) = cos θ · δi,j,n(f1) + sin θ · δi,j,n(f2),
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where δi,j,n(fk) is understood with respect to (8.4.4). Moreover,

M
(a)
j,n (f) ≤ | cos θ| ·M (a)

j,n (f1) + | sin θ| ·M (a)
j,n (f2),

where M
(a)
,j,n(fk) is understood with respect to (8.4.4).

Now fix the indices i0 = 0, j0 = b− 1, and n0 = 2. Then Theorem 8.4.9 leads to

δ0,b−1,2(f1) = abδ0,b−1,1(f1) + bδ0,b−1,1(g
(1)
0 )

= bδ0,b−1,1(g
(1)
0 ) = −bδ0,1,1(g

(1)
1 )

= −δ1,1,2(f1).

Here we have used that δ0,b−1,1(f1) = 0, g
(1)
0 = −g

(1)
1 , and Lemma 8.4.6(d).

A similar calculation gives

δ0,b−1,2(f2) = abδ0,b−1,1(f2) + bδ0,b−1,1(g
(2)
0 ),

=

{
abδ0,1,1(f2) + bδ0,1,1(g

(2)
1 ), if b is even

−abδ0,1,1(f2) + bδ0,1,1(g
(2)
1 ), if b is odd

= δ1,1,2(f2).

Recall that δ1,1,2(fj) is negative, k = 1, 2. If now cos θ and sin θ have the same sign, then

bM1,2(f) ≤ | cos θ| ·M1,2(f1) + | sin θ| ·M1,2(f2)

< | cos θ| · |δ1,1,2(f1)|+ | sin θ| · |δ1,1,2(f2)|
= | cos θ · δ1,1,2(f1) + sin θ · δ1,1,2(f2)|
= |δ1,1,2(f)|.

In the remaining case, in which cos θ and sin θ have opposite signs, one is led to

bMb−1,2(f) ≤ | cos θ| ·Mb−1,2(f1) + | sin θ| ·Mb−1(f2)

= | cos θ| ·M1,2(f1) + | sin θ| ·M1,2(f2)

< | cos θ| · |δ1,1,2(f1)|+ | sin θ| · |δ1,1,2(f2)|
= | cos θ| · | − δ0,b−1,2(f1)|+ | sin θ| · |δ0,b−1,2(f2)|
= | cos θ · δ0,b−1,2(f1) + sin θ · δ0,b−1,2(f2)|
= |δ0,b−1,2(f)|,

which completes the proof. ��

8.5 Weierstrass-Type Functions from a General Point of View

The Weierstrass-type function Wp,a,b,θ from Chap. 3 may be considered a special case of the
following more general family of functions:

FΦ,p,a,b,θ(x) :=

∞∑

n=0

anΦp(bnx + θn), x ∈ R,
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where:
• Φ : R −→ I is such that Φ(−x) = Φ(x), Φ(x + 1) = Φ(x), and |Φ(x) − Φ(y)| ≤ |x − y|,

x, y ∈ R, (8.5.1)
• p ∈ N,
• a := (an)

∞
n=0 ⊂ C∗ and

∑∞
n=0 |an| < +∞,

• b := (bn)
∞
n=0 ⊂ R>0, bn+1 > bn, n ∈ N0, and

∑∞
n=0 |an|bn = +∞,

• θ := (θn)
∞
n=0 ⊂ R. (8.5.2)

Remark 8.5.1. (a) Let ν(x) := cos(2πx), x ∈ R. Then

Fν,p,(an)∞n=0,(b
n)∞n=0,

1
2π θ = Wp,a,b,θ.

(b) Let ψ(x) := dist(x,Z), x ∈ R. Then Fψ,1,(an)∞n=0,(b
n)∞n=0,θ

= Ta,b,θ, which is a Takagi–
van der Waerden-type function (cf. § 4.1), and Fψ,1,a,b,θ = Ta,b,θ, which is a generalized
Takagi–van der Waerden function (cf. Theorem 4.3.1).

We fix a function Φ with (8.5.1). To simplify notation, we will use the following conventions
(similarly as in § 3.1):
• if Φ is fixed, then Fp,a,b,θ = FΦ,p,a,b,θ;
• if Φ, p,a, b are fixed, then Fθ := FΦ,p,a,b,θ;
• if Φ, p,a, b, θ are fixed, then F := FΦ,p,a,b,θ.
Functions of the type FΦ,p,a,b,θ have many common properties that are listed below.

Remark 8.5.2. (a)
∑∞

n=0 supx∈R |anΦp(bnx + θn)| ≤
∑∞

n=0 |an| =: A. Consequently, F ∈
C(R,C) and |F (x)| ≤ A, x ∈ R.

(b) Fθ(x + x0) = Fx0b+θ(x), Fθ(−x) = F−θ(x), x, x0 ∈ R.

(c) The function Fp,a,b,θ may be formally defined also when B :=
∑∞

n=0 |an|bn < +∞. How-
ever, in this case, Fθ is Lipschitz continuous, uniformly with respect to θ. In particular,
Fθ is almost everywhere differentiable. Such functions are of course irrelevant from our
point of view.
Indeed,

|Fθ(x + h)− Fθ(x)| ≤
∞∑

n=0

|an||Φp(bn(x + h) + θn)− Φp(bnx + θn)|

mean value
theorem≤

∞∑

n=0

|an|p|Φ(bn(x + h) + θn)− Φ(bnx+ θn)|

(8.5.1)

≤ p

∞∑

n=0

|an|bn|h| = pB|h|, x, h ∈ R.

Observe that if moreover, Φ ∈ C1(R) and C := supx∈R
|Φ′(x)| < +∞ (e.g., Φ = ν), then

F ∈ C1(R,C). Indeed,

∞∑

n=0

sup
x∈R

|an(Φ
p(bnx + θn))

′| ≤
∞∑

n=0

|an|pbnC = pBC.

(d) For every p,a, b, and every β ∈ (0, 1], the following conditions are equivalent
(cf. Remark 3.2.1(e)):
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(i) Fθ is β-Hölder continuous uniformly with respect to θ, i.e.,

∃c>0 ∀θ : |Fθ(x + h)− Fθ(x)| ≤ c|h|β, x, h ∈ R;

(ii) Fθ is right-sided β-Hölder continuous at 0 uniformly with respect to θ, i.e.,

∃c, δ0>0 ∀θ : |Fθ(h)− Fθ(0)| ≤ c|h|β , h ∈ (0, δ0).

(e) If |an| ≤ an, bn ≤ bn, n ∈ N0, where 0 < a < 1, ab > 1, and α := − log a
log b , then Fp,a,b,θ is

α-Hölder continuous uniformly with respect to θ and

|Fp,a,b,θ(x + h)− Fp,a,b,θ(x)| ≤ p const(a, b)|h|α, x, h ∈ R.

Indeed, let 0 < h ≤ 1 and let N = N(h) ∈ N0 be such that bNh ≤ 1 < bN+1h. Then

|Fθ(h)− Fθ(0)| ≤ p

∞∑

n=0

|an||Φ(bn(x + h) + θn)− Φ(bnx + θn)|

p
(N−1∑

n=0

|an|bnh +
∞∑

n=N

|an|2
)
≤ p

(N−1∑

n=0

(ab)nh + 2
∞∑

n=N

an
)

= p
((ab)N − 1

ab− 1
h + 2

aN

1− a

)
< p

( 1

ab− 1
+

2

1− a

)
aN ≤ cphα,

where c depends only on a and b. Using (d), we get the result.

(f) For every p,a, b, and β ∈ (0, 1], the following conditions are equivalent (cf. Remark
3.2.1(h)):

(i) Fθ is β-anti-Hölder continuous uniformly with respect to x ∈ R and θ, i.e.,

∃ε>0 ∀θ, x∈R, δ∈(0,1) ∃h±∈(0,δ] : |Fθ(x ± h±)− Fθ(x)| > εδβ ;

(ii) ∃ε, δ0>0 ∀θ, δ∈(0,δ0) ∃h+∈(0,δ] : |Fθ(h+)− Fθ(0)| > εδβ.

(g) The following conditions are equivalent (use (b)):

(i) Fθ ∈ ND(R) (resp. Fθ ∈ ND∞(R)) for every θ;
(ii) for every θ, a finite (resp. finite or infinite) derivative F ′

θ(0) does not exist.

(h) The following conditions are equivalent (use (b)):

(i) Fθ ∈ ND±(R) (resp. Fθ ∈ ND∞
± (R)) for every θ;

(ii) for every θ, a finite (resp. finite or infinite) right-sided derivative (Fθ)
′
+(0) does not

exist.

Our main aim is to discuss nowhere differentiability of the generalized Weierstrass-type
function

Wp,a,b,θ(x) :=
∞∑

n=0

an cos
p(2πbnx + θn), x ∈ R,

where p, a, b, θ are as in (8.5.2). Functions of the above general type were studied parallel
to the classical Weierstrass functions; cf. § 3.5.1.

We will see that the nowhere differentiability of the function Wp,a,b,θ is strictly related to
the nowhere differentiability of the exponential function
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Ea,b(x) :=

∞∑

n=0

ane2πibnx, x ∈ R,

which will be studied in § 8.6.
While studying the functions Wp,a,b,θ and Ea,b, we always assume that p,a, b, θ sat-

isfy (8.5.2). A special role is played by the cases p = 1 or/and (θ = 0 or θ = −π
2 ), i.e.,

by the functions

Ca,b(x) : = W1,a,b,0(x) =

∞∑

n=0

an cos(2πbnx),

Sa,b(x) : = W1,a,b,−π
2
(x) =

∞∑

n=0

an sin(2πbnx), x ∈ R.

We begin with an extension of Remarks 3.2.1 and 8.5.2 for the function Ea,b.

Remark 8.5.3 (Details Are Left to the Reader). (a) Ea,b ∈ C(R,C) and |Ea,b(x)| ≤ A :=∑∞
n=0 |an|, x ∈ R.

(b) The function Ea,b may be formally defined also in the case that
∑∞

n=0 |an|bn < +∞.
However, in this case, Ea,b ∈ C1(R,C).

(c) Ea,b(x + x0) = E(e2πibnx0an)∞n=0,b
(x).

(d) For every a, b, the following conditions are equivalent:

(i) Ea,b is β-Hölder continuous uniformly with respect to (arg an)
∞
n=0, i.e.,

∃c>0 ∀a′=(a′
n)

∞
n=0: |a′

n|=|an|, n∈N0
: |Ea′,b(x + h)−Ea′,b(x)| ≤ c|h|β ,

x, h ∈ R;

(ii) Eθ is β-Hölder continuous at 0 uniformly with respect to (arg an)
∞
n=0, i.e.,

∃c, δ0>0 ∀a′=(a′
n)

∞
n=0: |a′

n|=|an|, n∈N0
: |Ea′,b(h)−Ea′,b(0)| ≤ chβ ,

|h| < δ0.

(e) If |an| ≤ an, bn ≤ bn, n ∈ N0, where 0 < a < 1, ab > 1, and α := − log a
log b , then Ea,b is

α-Hölder continuous and

|Ea,b(x + h)−Ea,b(x)| ≤ const(a, b)|h|α, x, h ∈ R.

(f) The following conditions are equivalent:

(i) Ea′,b ∈ ND(R) (resp. Ea′,b ∈ ND∞(R)) for any a′ = (a′
n)

∞
n=0 with |a′

n| = |an|,
n ∈ N0;

(ii) for every a′ = (a′
n)

∞
n=0 with |a′

n| = |an|, n ∈ N0, a finite (resp. finite or infinite)
derivative E′

a′,b(0) does not exist.

(g) Assume additionally that (bn)
∞
n=0 ⊂ N. Then Ea,b(x) = f(e2πix), x ∈ R, where f is given

by the power series

f(z) :=

∞∑

n=0

anzbn , z ∈ D. (8.5.3)
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Obviously, f is holomorphic in D and continuous in D.
• If Ea,b ∈ ND(R), then D must be the domain of convergence of (8.5.3); cf. Proposi-
tion 3.5.8.
• If bn+1

bn
≥ λ > 1, n ∈ N0, then (8.5.3) is a Hadamard lacunary power series, and its

domain of convergence coincides with D (cf. [Boa10, RS02]).
Such an approach has been used, e.g., in [Bel71, Bel73, Bel75].

8.6 Johnsen’s Method

Roughly speaking, the aim of this section, based on [Joh10], is to apply Fourier transform
methods (cf. § A.3) to study the nowhere differentiability of Weierstrass-type functions.

Remark 8.6.1. Suppose that we have a function χ̃ ∈ C∞0 (R, I) such that supp χ̃ ⊂ R>0.
Define χ := F−1(χ̃), i.e.,

χ(t) :=

∫

R

χ̃(τ)e2πitτdτ, t ∈ R (cf. § A.3).

Obviously, by Proposition A.3.3, we have χ̃ = χ̂ = F(χ), i.e.,

χ̃(τ) = χ̂(τ) =

∫

R

χ(t)e−2πitτdt, τ ∈ R.

We know that χ ∈ C∞(R) ∩ L∞(R) and tkχ ∈ L1(R) for every k ∈ N (cf. Remark A.3.2).

Moreover, χ̂(k) = (−2πi)k t̂kχ (cf. Remark A.3.2). In particular,

∫

R

χ(t)tke−2πiτdt =
χ̂(k)(τ)

(−2πi)k
= 0, τ ≤ 0, k ∈ N0.

Remark 8.6.2. Let ϕ : R −→ C be a bounded continuous function and let t0 ∈ R.

(a) If a finite ϕ′(t0) exists, then we put Δϕ(t0, t0) := ϕ′(t0). Observe that Δϕ(t0, ·) ∈
C(R,C) ∩ L∞(R).

(b) If ϕ ∈Hβ(R; t0), then we define

Hβϕ(t0, t) :=
|ϕ(t) − ϕ(t0)|
|t− t0|β , t ∈ R \ {t0}.

Observe that Hβϕ(t0, ·) ∈ C(R \ {t0},C) ∩ L∞(R \ {t0}).
The following result is a generalization of Theorem 2.1 in [Joh10].

Theorem 8.6.3. Let

J(t) :=

∞∑

n,s=0

an,se
2πiQsbnt, t ∈ R,

where:
• (an,s)(n,s)∈N0×N0

⊂ C and
∑∞

n,s=0 |an,s| < +∞,
• (Qs)

∞
s=1 ⊂ R∗, Q0 > Q1 > · · · > Qr > 0 > Qi, i ≥ r + 1 (for some r ∈ N0),

• (bn)
∞
n=0 ⊂ R>0 and bn+1

bn
≥ λ > Q0

Qr
, n ∈ N0,

• an,qbn �−→ 0 for a q ∈ {0, . . . , r}.
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Then J ∈ ND(R). Moreover, if supn∈N0
|an,q|bβn = +∞ for some q ∈ {0, . . . , r} and β ∈ (0, 1],

then J ∈ NHβ(R).

Remark 8.6.4. Theorem 2.1 in [Joh10] is the case q = r = 0 and an,s = 0 for s > 0.

Proof of Theorem 8.6.3. It is clear that J ∈ C(R,C)∩L∞(R). Suppose that J ′(t0) exists (for
some t0 ∈ R). Observe that Qs ∈ (Q0

λ , λQr), s = 0, . . . , r. Let χ̃ ∈ C∞0 (R, I) be such that

χ̃(Qq) = 1, χ̃(Qs) = 0, s �= q, and supp χ̃ ⊂ [Q0

λ , λQr]. Moreover, let χ be as in Remark 8.6.1.
Take an arbitrary k ∈ N0 and calculate

bk

∫

R

χ(bkt)J(t0 − t)dt = bk

∫

R

χ(bkt)
( ∞∑

n,s=0

an,se
2πiQsbn(t0−t)

)
dt

=
∞∑

n,s=0

an,se
2πiQsbnt0

∫

R

bkχ(bkt)e
−2πiQsbntdt

=

∞∑

n,s=0

an,se
2πiQsbnt0

∫

R

χ(u)e
−2πiQs

bn
bk

u
du

=

∞∑

n,s=0

an,se
2πiQsbnt0χ̂

(
Qs

bn
bk

)
(*)
= ak,qe

2πibkQqt0 ,

where (*) is a consequence of the following facts:

• if s > r, then Qs
bn
bk

< 0, and therefore χ̂
(
Qs

bn
bk

)
= 0;

• if s ∈ {0, . . . , r} and n > k, then Qs
bn
bk
≥ Qsλ ≥ Qrλ, and hence χ̂

(
Qs

bn
bk

)
= 0;

• if s ∈ {0, . . . , r} and n < k, then Qs
bn
bk
≤ Qs

λ ≤ Q0

λ , and hence χ̂
(
Qs

bn
bk

)
= 0;

• if s ∈ {0, . . . , r} and n = k, then χ̂(Qs) �= 0 iff s = q.

Recall that bk
∫
R

χ(bkt)dt =
∫
R

χ(u)du = χ̂(0) = 0 (Remark 8.6.1). Hence we get

ak,qe
2πibkQqt0 = bk

∫

R

χ(bkt)J(t0 − t)dt = bk

∫

R

χ(bkt)(J(t0 − t)− J(t0))dt

=

∫

R

χ(u)(J(t0 − u/bk)− J(t0))du =

∫

R

χ(u)(−u/bk)ΔJ(t0, t0 − u/bk)du,

where ΔJ(t0, ·) is as in Remark 8.6.2(a). Consequently, by the Lebesgue theorem, we have

−ak,qbke
2πibkQqt0 =

∫

R

χ(u)uΔJ(t0, t0 − u/bk)du

−→
k→+∞

J ′(t0)
∫

R

χ(u)udu = J ′(t0)
1

(−2πi)
χ̂′(0) = 0.

Hence ak,qbk −→ 0; a contradiction.

Suppose that J ∈Hβ(R, t0) (for some t0 ∈ R) and let HβJ(t0, ·) ≤ C, where HβJ(t0, ·) is
as in Remark 8.6.2(b). Then we get

|ak,q|bβk ≤
∫

R

|χ(u)||u|βHβJ(t0, t0 − u/bk)du ≤ C

∫

R

|χ(u)||u|βdu < +∞.
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Hence supk∈N0
|ak,q|bβk < +∞; a contradiction. ��

In the case q = r = 0, we immediately get the following result.

Theorem 8.6.5. Assume that a, b satisfy (8.5.2), bn+1

bn
≥ λ > 1, n ∈ N0, and anbn �−→ 0.

Then Ea,b ∈ ND(R). If, moreover, supn∈N
|an|bβn = +∞ for some β ∈ (0, 1], then Ea,b ∈

NHβ(R).

Theorem 8.6.6. Assume that p,a, b, θ satisfy (8.5.2),

bn+1

bn
≥ λ >

{
p, if p ≡ 1 (mod 2)
p
2 , if p ≡ 0 (mod 2)

, n ∈ N0,

and anbn �−→ 0. Then Wp,a,b,θ ∈ ND(R). If, moreover, supn∈N |an|bβn = +∞ for some β ∈
(0, 1], then Wp,a,b,θ ∈ NHβ(R).

Proof . We have

Wp,a,b,θ(t) =

∞∑

n=0

an

(1
2
(ei(2πbnt+θn) + e−i(2πbnt+θn))

)p

=

∞∑

n=0

an
1

2p

p∑

s=0

(
p

s

)
ei(p−2s)θne2πibn(p−2s)t.

For s > p, put an,s := 0. For s ∈ {0, . . . , p}, let an,s := an
1
2p

(
p
s

)
ei(p−2s)θn , Qs := p − 2s,

q = r :=

{
p−1
2 , if p ≡ 1 (mod 2)

p
2 − 1, if p ≡ 0 (mod 2)

. Then

Q0

Qr
=

p

p− 2r
=

{
p, if p ≡ 1 (mod 2)
p
2 , if p ≡ 0 (mod 2)

< λ,

and therefore Theorem 8.6.3 applies. ��
Theorem 8.6.7. Assume that p, a, b, θ satisfy (3.1.2) and

b >

{
p, if p ≡ 1 (mod 2)
p
2 , if p ≡ 0 (mod 2)

.

Then Wp,a,b,θ ∈ ND(R). If, moreover, abβ > 1 for some β ∈ (0, 1], then Wp,a,b,θ ∈ NHβ(R).

In particular, the above theorem extends Hardy’s results (cf. Theorems 8.2.1 and 8.2.12).

Corollary 8.6.8 (Darboux-Type Functions). If

a := (1/n!)∞n=0, b := ((n + 1)!)∞n=0,

then Wp,a,b,θ ∈ NH1(R) ⊂ ND(R) (for arbitrary θ).

Remark 8.6.9. The classical Darboux function is the case p = 1 and θ = −π
2 (cf. [Dar79]):

W1,a,b,−π
2
(t) =

∞∑

n=0

1

n!
sin(2π(n + 1)!t), t ∈ R.
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Proof of Corollary 8.6.8. We have bn+1

bn
= n + 2 ≥ p + 1 > p for n ≥ p − 1. Moreover,

anbn = n + 1. Thus we may apply Theorem 8.6.6. ��
Corollary 8.6.10. Let

f(t) :=

∞∑

n=1

an

(2n− 1)!!
cosp(2π(2n− 1)!!t + θn), t ∈ R,

where (2n− 1)!! := 1 · 3 · 5 · · · (2n− 1), a ≥ 1, p ∈ N, θ = (θn)
∞
n=1 ⊂ R. Then f ∈ ND(R).

Moreover, f ∈ NH1(R) if a > 1.

Proof . Put an := an

(2n−1)!! , bn := (2n − 1)!!, n ∈ N. Then an+1

an
= a

2n+1 −→ 0, which implies

that
∑∞

n=1 an < +∞. Moreover, bn+1

bn
= 2n + 1 > p for n � 1 and anbn = an. Thus

Theorem 8.6.6 applies. ��
Corollary 8.6.11. Let

f(t) :=

∞∑

n=1

1

2n!
cosp(2π2(2n)!t + θn), t ∈ R (p ∈ N).

Then f ∈ NH1(R). In particular, f ∈ ND(R).

The case p = 1, θ = 0 has been studied in [Cat83].

Corollary 8.6.12. Let

f(t) =
∞∑

n=0

an cos
p(2πbnt + θn) sin

p′
(2πbnt + θ′n), t ∈ R,

where a, b satisfy (8.5.2), p, p′ ∈ N, (θn)
∞
n=0, (θ

′
n)

∞
n=0 ⊂ R,

bn+1

bn
≥ λ >

{
p + p′, if p + p′ ≡ 1 (mod 2)
p+p′

2 , if p + p′ ≡ 0 (mod 2)
, n ∈ N0,

and anbn �−→ 0. Then f ∈ ND(R), and if supn∈N
|an|bβn = +∞ for some β ∈ (0, 1], then

f ∈ NHβ(R).

Some special cases of the above result were proved already in [Muk34].

Proof . We have

f(t) =

∞∑

n=0

an

(1
2
(ei(2πbnt+θn) + e−i(2πbnt+θn))

)p

×

×
( 1

2i
(ei(2πbnt+θ′

n) − e−i(2πbnt+θ′
n))

)p′

=

∞∑

n=0

an
1

2p

p∑

s=0

(
p

s

)
ei(p−2s)θne2πibn(p−2s)t×

× 1

(2i)p′

p′∑

s′=0

(
p′

s′

)
(−1)s′ei(p′−2s′)θ′

ne2πibn(p−2s′)t
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=

∞∑

n=0

an
1

2p
1

(2i)p′

p∑

s=0

p′∑

s′=0

(
p

s

)(
p′

s′

)
×

× (−1)s′ei((p−2s)θn+(p′−2s′)θ′
n)e2πibn(p−2s+p′−2s′)t

=
∞∑

n=0

an

p+p′∑


=0

an,
e
2πiQ�bnt,

where

an,
 := an
1

2p
1

(2i)p′

∑

s∈{0,...,p}
s′∈{0,...,p′}

s+s′=


(
p

s

)(
s′

p′

)
(−1)s′ei((p−2s)θn+(p′−2s′)θ′

n),

Q
 := p + p′ − 2�.

Observe that

∞∑

n=0

an

p+p′∑


=0

|an,
| ≤
∞∑

n=0

|an| 1
2p

1

2p′

∑

s∈{0,...,p}
s′∈{0,...,p′}

s+s′=


(
p

s

)(
s′

p′

)
≤

∞∑

n=0

|an| < +∞.

Now we argue as in the proof of Theorem 8.6.6. ��
Remark 8.6.13. Observe that Theorem 8.6.6 gives a very effective method of finding nowhere
differentiable functions. Nevertheless, the requirement bn+1

bn
≥ λ > 1, n ∈ N0, is very restric-

tive. We would like to study, for instance, functions of the form

t �−→
∞∑

n=1

1

np
e2πin

qt (p > 1, q > 0),

where Theorem 8.6.6 does not work. We need a more subtle tool.

Theorem 8.6.14. Assume that a, b, θ satisfy (8.5.2) and anΔbn �−→ 0, where

Δbn := min{bn − bn−1, bn+1 − bn} (b−1 := 0).

Then W1,a,b,θ,Ea,b ∈ ND(R). If, moreover, supn∈N0
|an|(Δbn)

β = +∞ for some β ∈ (0, 1],
then W1,a,b,θ,Ea,b ∈ NHβ(R).

Proof . Let f := W1,a,b,θ. It is clear that f ∈ C(R,C) ∩ L∞(R). Suppose that f ′(t0) exists.
Let χ̃ ∈ C∞0 (R, I) be such that χ̃(0) = 1 and supp χ̃ ⊂ (− 1

2 ,
1
2 ). Define χ as in Remark 8.6.1.

Let χ̃k(τ) := χ̃( τ−bk
Δbk

). Observe that

supp χ̃k ⊂
(
bk − 1

2
(bk − bk−1), bk +

1

2
(bk+1 − bk)

)
.
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Define χk(t) := (F−1χ̃k)(t) =
∫
R

χ̃k(τ)e
2πitτdτ . Note that

χk(t) =

∫

R

χ̃
(τ − bk

Δbk

)
e2πitτdτ =

∫

R

χ̃(u)e2πit(bk+Δbku)Δbkdu

= Δbke
2πitbkχ(Δbkt).

We have

∫

R

χk(t)f(t0 − t)dt =

∫

R

χk(t)
( ∞∑

n=0

an cos(2πbn(t0 − t) + θn)
)
dt

=

∞∑

n=0

an

∫

R

χk(t) cos(2πbn(t0 − t) + θn)dt

=

∞∑

n=0

an

∫

R

χk(t)
1

2

(
ei(2πbn(t0−t)+θn) + e−i(2πbn(t0−t)+θn)

)
dt

=

∞∑

n=0

an
1

2

(
ei(2πbnt0+θn)

∫

R

Δbke
2πitbkχ(Δbkt)e

−2πibntdt

+ e−i(2πibnt0+θn)

∫

R

Δbke
2πitbkχ(Δbkt)e

2πibntdt
)

=

∞∑

n=0

an
1

2

(
ei(2πbnt0+θn)

∫

R

χ(u)e
−2πi

bn−bk
Δbk

u
du

+ e−i(2πbnt0+θn)

∫

R

χ(u)e
2πi

bn+bk
Δbk

u
du

)

=

∞∑

n=0

an
1

2

(
ei(2πbnt0+θn)χ̂

(bn − bk
Δbk

)

+ e−i(2πibnt0+θn)χ̂
(
− bn + bk

Δbk

))
=

ak

2
ei(2πbkt0+θk).

Note that
∫

R

χk(t)dt =

∫

R

Δbke
2πitbkχ(Δbkt)dt =

∫

R

e
2πiu

bk
Δbk χ(u)du

= χ̂
(
− bk

Δbk

)
= 0.

Hence

ak

2
ei(2πbkt0+θk) =

∫

R

χk(t)(f(t0 − t)− f(t0))dt

=

∫

R

Δbke
2πitbkχ(Δbkt)(f(t0 − t)− f(t0))dt

=

∫

R

e
2πiu

bk
Δbk χ(u)(f(t0 − u/Δbk)− f(t0))du

=

∫

R

e
2πiu

bk
Δbk χ(u)(−u/Δbk)Δf(t0, t0 − u/Δbk)du.
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Moreover, ∫

R

e
2πiu

bk
Δbk χ(u)udu =

1

−2πi
χ̂′
(
− bk

Δbk

)
= 0.

Then, by the Lebesgue theorem,

− akΔbk
2

ei(2πbkt0+θk) =

∫

R

e
2πiu

bk
Δbk χ(u)uΔf(t0, t0 − u/Δbk)du

=

∫

R

e
2πiu

bk
Δbk χ(u)u(Δf(t0, t0 − u/Δbk)− f ′(t0))du −→

k→+∞
0,

where Δf(t0, ·) is as in Remark 8.6.2(a). Hence akΔbk −→ 0; a contradiction.

Suppose that f ∈Hβ(R; t0) and let Hβf(t0, ·) ≤ C. Then we get

1
2 |ak(Δbk)

α| ≤
∫

R

|χ(u)||u|αHβf(t0, t0 − u/bk)du ≤ C

∫

R

|χ(u)||u|βdu,

where Hβf(t0, ·) is as in Remark 8.6.2(b). Hence supk∈N0
|ak|(Δbk)

β < +∞; a contradiction.

The proof for Ea,b is analogous—Exercise. ��
Theorem 8.6.15 (Riemann-Type Functions). For p > 1, q > 0, let F ∈ {E,C,S} with

E(t) :=

∞∑

n=1

1

np
e2πin

qt, Cp,q(t) = C(t) := ReE(t) =

∞∑

n=1

1

np
cos(2πnqt),

Sp,q(t) = S(t) := ImE(t) =

∞∑

n=1

1

np
sin(2πnqt), t ∈ R.

Then:

(a) if 0 < q < p− 1, then F ∈ C1(R);
(b) if q ≥ p + 1, then F ∈ ND(R);

(c) if q > p + 1 then F ∈ NH1(R);

(d) if q > 1 and α ∈ (0, 1] are such that α > p
q−1 , then F ∈ NHα(R);

(e) if q > p− 1 and 0 < α ≤ p−1
q , then F ∈Hα(R).

Remark 8.6.16. (a) The classical Riemann function is the case p = q = 2:

R(t) :=

∞∑

n=1

1

n2
sin(πn2t), t ∈ R (cf. Chap. 13 and Fig. 8.1).

(b) The functions Cp,q and Sp,q were also studied for other configurations of parameters
p > 1, q > 0. For example:

• If 1 < p < 5
2 , then finite derivatives C′

p,2(t), S′
p,2(t) do not exist at any t ∈ R \ Q

(cf. [Har16], Theorem 4.31).

• A finite derivative S′
p,p+1/2(t) does not exist at any t ∈ Q (cf. [Lut86], § 6).

In particular, S3/2,2 ∈ ND(R).
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Fig. 8.1 Riemann-type function I 	 x �−→
∞∑

n=1

sin(πn3x)

n2

Proof of Theorem 8.6.15. Put an := 1
np , bn := nq.

(a) is obvious.
(b) and (c) follow from Theorem 8.6.14. Indeed, using the mean value theorem, we get

anΔbn ≥ nq − (n− 1)q

np
=

1

np−q

(
1−

(
1− 1

n

)q)

=
1

np−q
qξq−1

n

1

n
≥ q

np−q+1

(
1− 1

n

)q−1

,

and the right-hand side tends to q when q = p + 1, and to +∞ when q > p + 1.
(d) We have

an(Δbn)
α ≥ (nq − (n− 1)q)α

np
=

1

np−αq

(
1−

(
1− 1

n

)q)α

=
1

np−αq

(
qξq−1

n

1

n

)α

≥ qα

np−αq+α

(
1− 1

n

)α(q−1)

.

(e) For t ∈ R and 0 < |h| < 1, let N = N(h) be defined by the relation N ≤ |h|−1/q < N +1.
Then we have
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|C(t + h)−C(t)| =
∣∣∣

∞∑

n=1

1

np
(cos(2πnq(t + h))− cos(2πnqt))

∣∣∣

≤ 2

∞∑

n=1

1

np
| sin(πnqh)| ≤ 2π

N∑

n=1

1

np−q
|h|+ 2

∞∑

n=N+1

1

np

(*)

≤ 2πN q−p+1|h|+ 2N1−p

p− 1
≤ const |h| p−1

q ,

where (*) follows from the estimate

∞∑

n=N+1

1

np
≤

∫ ∞

N

dx

xp
=

x1−p

1− p

∣∣∣
∞

N
=

N1−p

p− 1
≤ (N+1

2 )1−p

p− 1

≤ 1

p− 1

( |h|−1/q

2

)1−p

=
2p−1

p− 1
|h| p−1

q .

The proof for S is analogous—Exercise.

��
Theorem 8.6.14 permits us to study functions generated by very slowly increasing sequences

(bn)
∞
n=1. The following corollaries will illustrate this phenomenon.

Corollary 8.6.17. For b ≥ a > 1, let F ∈ {E,C,S} with

E(t) : =

∞∑

n=2

1

n loga n
e2πin

2t logb n,

C(t) : = ReE(t) =

∞∑

n=2

1

n loga n
cos(2πn2t logb n),

S(t) : = ImE(t) =

∞∑

n=2

1

n loga n
sin(2πn2t logb n), t ∈ R.

Then F ∈ ND(R). Moreover, if b > a > 1, then F ∈ NH1(R).

Proof . We use Theorem 8.6.14 with an := 1
n loga n , bn := n2 logb n. Observe that the function

(1,+∞) � x
B�−→ x2 logb x is convex. In particular, bn − bn−1 ≤ bn+1 − bn. Thus, Δbn =

bn − bn−1 ≥ 2(n− 1) logb(n− 1). Consequently, we get

anΔbn ≥ 2(n− 1) logb(n− 1)

n loga n
= 2

n− 1

n

( log(n− 1)

logn

)b

logb−a n. ��

Corollary 8.6.18. Let F ∈ {E,C,S} with

E(t) :=
∞∑

n=n0

ane2πi
n

|an| t, C(t) :=
∞∑

n=n0

an cos
(
2π

n

|an| t
)
,

S(t) :=

∞∑

n=n0

an sin
(
2π

n

|an| t
)
, t ∈ R,
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where (an)
∞
n=n0

⊂ C∗,
∑∞

n=n0
|an| < +∞, |an+1| ≤ |an|, n ∈ Nn0 , and there exists a convex

function B : [n0,+∞) −→ R such that B(n) = n
|an| , n ∈ Nn0 . Then F ∈ ND(R).

Proof . We use Theorem 8.6.14 with bn := n
|an| . Then for n ≥ Nn0+1, we have

|an|Δbn = |an|(bn − bn−1) = |an|
( n

|an| −
n− 1

|an−1|
)
≥ 1. ��

For p ∈ N2, define Expp := exp ◦ · · · ◦ exp︸ ︷︷ ︸
p×

, Lp := log ◦ · · · ◦ log︸ ︷︷ ︸
p×

; note that Lp is defined on

the interval (Expp−2(1),+∞) (with Exp0(1) := 1). Observe that

L′
p(x) =

1

xL1(x) · · ·Lp−1(x)
, x > Expp−1(1).

Corollary 8.6.19. For p ∈ N2 and a > 1, let F ∈ {E,C,S} with

E(t) :=

∞∑

n=n0

1

nL1(n) · · ·Lp−1(n)La
p(n)

e2πin
2tL1(n)···Lp−1(n)L

a
p(n),

C(t) := ReE(t), S(t) := ImE(t), t ∈ R,

where n0 > Expp−1(1). Then F ∈ ND(R).

Proof . We apply Corollary 8.6.18 with B(x) := x2L1(x) · · ·Lp−1(x)L
a
p(x).

Indeed, let

A(x) : =
1

xL1(x) · · ·Lp−1(x)La
p(x)

,

ψ(x) : =
1

1− a
L1−a
p (x), x > Expp−1(1).

Then ψ′ = A. Thus for x0 > Expp−1(1), we have

∫ ∞

x0

A(x)xdx =

∫ ∞

x0

ψ′(x)dx = ψ(x)
∣∣∣
∞

x0

= −ψ(x0) < +∞.

Consequently,
∑∞

n=n0
A(n) < +∞. Moreover,

B′(x) = 2xL1(x) · · ·Lp−1(x)L
a
p(x)

+ x
( p−2∑

s=1

Ls+1(x) · · ·Lp−1(x) + 1
)
La
p(x) + xaLa−1

p (x), x > Expp−1(1).

Thus B′ is increasing, which implies that B is convex. ��
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8.7 Hata’s Method

The aim of the section, based on [Hat88b, Hat88a, Hat94], is to discuss some subtler nowhere
differentiability properties of the Weierstrass-type functions W1,a,b,θ with ab > 1 and θ = θ =
const. In particular, we will prove that:

(a) There exists a zero-measure set Ξ ⊂ R such that every x ∈ R \ Ξ is a knot point of
W1,a,b,θ for arbitrary θ ∈ R—Theorem 8.7.4.

(b) Let ψ∗ ∈ (0, π
2 ) be such that tanψ∗ = π + ψ∗ (ψ∗ ≈ 1.3518). If ab ≥ 1 + 1

cosψ∗ ≈ 5.6034,

then W1,a,b,θ ∈ ND∞(R)—Theorem 8.7.6.

(c) Notice that M. Hata in [Hat88b] proved a weaker result stating that W1,a,b,θ ∈ ND∞(R),
provided that ab ≥ 1+π2 ≈ 10.8696 (in fact, looking at Hata’s proof gives ab ≥ 10.7425).

8.7.1 Nowhere Differentiability of the Weierstrass-Type
Functions: Finite One-Sided Derivatives

Let f(x) := W1,a,b,θ(
x
2 ) with 0 < a < 1, ab > 1, θ ∈ R (cf. § 3.1). We fix a and b and put

α := − log a
log b ∈ (0, 1).

For x ∈ R, ε, η > 0, define

E+
x (ε) : = {s ∈ R : f(x + s)− f(x) ≥ ε|s|α},

E−
x (ε) : = {s ∈ R : f(x + s)− f(x) ≤ −ε|s|α},

Ex(ε) : = {s ∈ R : |f(x + s)− f(x)| ≥ ε|s|α} = E+
x (ε) ∪ E−

x (ε),

E±
x (ε, η) : = E±

x (ε) ∩ [0, η], E±
x (ε,−η) := E±

x (ε) ∩ [−η, 0],

Ex(ε, η) : = Ex(ε) ∩ [0, η], Ex(ε,−η) := Ex(ε) ∩ [−η, 0].

Remark 8.7.1. (a) All the above sets are Borel measurable.

(b) If 0 < ε′ < ε′′, then E±
x (x, ε′′) ⊂ E±

x (x, ε′).
(c) E+

x (ε) ∩E−
x (ε) = {0}.

Recall (cf. Remark 3.5.6) that a point x0 ∈ R is a knot point of f if

D+f(x0) = D−f(x0) = +∞, D+f(x0) = D−f(x0) = −∞.

Remark 8.7.2. Let x ∈ R, ε > 0, and let (δm)∞m=1 ⊂ R>0 be such that δm −→ 0. Then
(Exercise):

(a) If E+
x (ε, δm) �= {0}, m ∈ N, then D+f(x) = +∞.

(b) If E−
x (ε, δm) �= {0}, m ∈ N, then D+f(x) = −∞.

(c) If E−
x (ε,−δm) �= {0}, m ∈ N, then D−f(x) = +∞.

(d) If E+
x (ε,−δm) �= {0}, m ∈ N, then D−f(x) = −∞.

(e) If Ex(ε, δm) �= {0}, m ∈ N, then D+f(x) = +∞ or D+f(x) = −∞.

(f) If Ex(ε,−δm) �= {0}, m ∈ N, then D−f(x) = +∞ or D−f(x) = −∞.

(g) If E+
x (ε,±δm) �= {0} and E−

x (ε,±δm) �= {0}, m ∈ N, then x is a knot point of f .

Recall (cf. Remark 3.2.1(g)) that there exists a K0 = K0(a, b) > 0 such that

|f(x + h)− f(x)| ≤ K0|h|α, x, h ∈ R. (8.7.1)
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Notice that in the theorems below, all the constants Ki, εi, ηi, Ci > 0 will depend only on
a, b (and will be independent of θ). Moreover, once they have been defined, the constants
Ki, εi, ηi, Ci remain the same for the entire section.

Theorem 8.7.3. There exist ε0 = ε0(a, b), η0 = η0(a, b), and C0 = C0(a, b) > 0 such that

L(Ex(ε0,±η)) ≥ C0η, x ∈ R, η ∈ (0, η0]. (8.7.2)

In particular, f ∈ ND±(R) (cf. Remark 8.7.2(e),(f)).

Proof . Step 1o. There exist η1 = η1(a, b) and C1 = C1(a, b) > 0 such that

∫ η

0

|f(x± s)− f(x)|ds ≥ C1η
1+α, x ∈ R, η ∈ (0, η1]. (8.7.3)

Indeed, define r : R −→ R,

r(x) :=

∞∑

n=1

a−n(cos(πb−nx + θ)− cos θ), x ∈ R.

Observe that

∞∑

n=1

a−n| cos(πb−nx + θ)− cos θ| ≤ 2
∞∑

n=1

a−n| sin(πb−nx/2)|

≤ π

∞∑

n=1

(ab)−n|x| = π

ab− 1
|x| =: K1|x| < +∞, x ∈ R.

In particular, r ∈ C(R). Using the same method (Exercise), we get

|r(x + h)− r(x)| ≤ K1|h|, x, h ∈ R. (8.7.4)

Let g := f + r − cos θ
1−a . Observe (Exercise) that

g(x) = ag(bx), x ∈ R. (8.7.5)

Define

In,
,T (u) :=
b


2n

∫ T+n/b�

T−n/b�
u(s)e−iπb�sds, u ∈ C(R,C), n, 
 ∈ N, T ∈ R.

Note that In,
,T (1) = 0. Put Tn,
,j := T + (2j − n)/b
. We have

|In,
,T (r)| =
∣∣∣
b


2n

n−1∑

j=0

∫ Tn,�,j+1

Tn,�,j

r(s)e−iπb�sds
∣∣∣

=
∣∣∣
b


2n

n−1∑

j=0

∫ 2/b�

0

r(Tn,
,j + s)e−iπb�(Tn,�,j+s)ds
∣∣∣

=
∣∣∣
b


2n

n−1∑

j=0

∫ 2/b�

0

r(Tn,
,j + s)e−iπb�sds
∣∣∣
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=
∣∣∣
b


2n

n−1∑

j=0

∫ 2/b�

0

(
r(Tn,
,j + s)− r(Tn,
,j)

)
e−iπb�sds

∣∣∣

(8.7.4)

≤ b


2n

n−1∑

j=0

∫ 2/b�

0

K1sds ≤ b


2
K1

1

2

( 2

b


)2

=
K1

b

;

In,
,T (f) =
b


2n

∞∑

k=0

ak

∫ T+n/b�

T−n/b�
cos(πbk(x + s) + θ)e−iπb�sds

=
b


4n

∞∑

k=0

ak

∫ T+n/b�

T−n/b�
(ei(πb

k(x+s)+θ−πb�s) + e−i(πbk(x+s)+θ+πb�s))ds

=
1

2
a
ei(πb

�x+θ) +
b


4n

∞∑

k=0
k 
=


ak

∫ T+n/b�

T−n/b�
ei(πb

k(x+s)+θ−πb�s)ds

+
b


4n

∞∑

k=0

ak

∫ T+n/b�

T−n/b�
e−i(πbk(x+s)+θ+πb�s)ds

=:
1

2
a
ei(πb

�x+θ) + Rn,
,T .

Observe that

|Rn,
,T | ≤ b


4n

∞∑

k=0
k 
=


ak 2

π|bk − b
| +
b


4n

∞∑

k=0

ak 2

π(bk + b
)

=
1

2nπ

( ∞∑

k=0
k 
=


ak 1

|bk−
 − 1| +
∞∑

k=0

ak 1

bk−
 + 1

)
=:

1

n
A
.

Hence

|In,
,T (g)| ≥ |In,
,T (f)| − |In,
,T (r)| ≥ 1

2
a
 − 1

n
A
 − K1

b

= a


(1
2
− K1

(ab)


)
− 1

n
A
.

Take an L = L(a, b) such that K1

(ab)L < 1
6 . Consequently, |In,L,T (g)| ≥ 1

3a
L − 1

nAL. Now take

an N = N(a, b) so big that c0 := 1
3a

L − 1
N AL > 0. Define h0 := 2N/bL, hm := h0/b

m. Then

∫ hm

0

|g(x± s)− g(x)|ds (8.7.5)
=

∫ h0/b
m

0

am|g(bm(x ± s))− g(bmx)|ds

=
(a

b

)m
∫ h0

0

|g(bmx± s)− g(bmx)|ds

≥
(a

b

)m∣∣∣
∫ h0

0

(g(bmx± s)− g(bmx))e−iπbLsds
∣∣∣

=
(a

b

)m∣∣∣
∫ h0

0

g(bmx± s)e−iπbLsds
∣∣∣

=
(a

b

)m∣∣∣
∫ bmx±h0

bmx

g(s)e±iπbL(bmx−s)ds
∣∣∣
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=
(a

b

)m∣∣∣
∫ bmx±2N/bL

bmx

g(s)e−iπbLsds
∣∣∣ =

(a

b

)m

h0|IN,L,bmx±N/b�(g)|

≥ b−m(1+α)h0c0 = c0h
−α
0 h1+α

m := c1h
1+α
m .

On the other hand,

∫ hm

0

|r(x ± s)− r(x)|ds ≤
∫ hm

0

K1sds = K1
1

2
h2
m =: c2h

2
m.

Thus

∫ hm

0

|f(x± s)− f(x)|ds ≥
∫ hm

0

|g(x± s)− g(x)|ds−
∫ hm

0

|r(x ± s)− r(x)|ds

≥ (c1 − c2h
1−α
m )h1+α

m ≥ c1
2

h1+α
m , m ≥ m0 = m0(a, b).

Put η1 := hm0 . Take an η ∈ (0, η1] and let M = M(η) ∈ N be such that hM ≤ η < hM−1.
Then

∫ η

0

|f(x± s)− f(x)|ds ≥ c1
2

h1+α
M =

c1
2

(hM−1

b

)1+α

=
a

2b
c1h

1+α
M−1

>
a

2b
c1η

1+α =: C1η
1+α.

Step 2o. Using Step 1o and (8.7.1), for x ∈ R, ε > 0, and η ∈ (0, η1], we get

C1η
1+α ≤

∫ η

0

|f(x± s)− f(x)|ds

≤ εηα(η − L(Ex(ε,±η))) + K0

∫

Ex(ε,±η)

sαds

≤ εηα(η − L(Ex(ε,±η))) + K0η
αL(Ex(ε,±η))

≤ η1+α
(
ε + (K0 − ε)

L(Ex(ε,±η))

η

)
.

Consequently, if ε0 := 1
2 min{C1,K0}, then

L(Ex(ε0,±η))

η
≥ C1 − ε0

K0 − ε0
=: C0 > 0, η ∈ (0, η1]. ��

8.7.2 Knot Points of Weierstrass-Type Functions

Theorem 8.7.4. There exist ε2 = ε2(a, b), η2 = η2(a, b), C2 = C2(a, b) > 0, and a zero-
measure set Ξ2 = Ξ2(a, b) ⊂ R such that

lim sup
η→0+

min
{L(E+

x (ε2,±η))

η
,
L(E−

x (ε2,±η))

η

}
≥ C2, x ∈ R \ Ξ2.

In particular, each point x ∈ R \ Ξ2 is a knot point of f (cf. Remark 8.7.2).
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Proof . Define

In(x±) :=
∫ 1/bn

1/bn+1

f(x± s)− f(x)

s1+α
ds, M(x±) := lim inf

n→+∞

∣∣∣
1

n

n−1∑

j=0

Ij(x±)
∣∣∣,

d±(ε, xμ) := lim sup
η→0+

L(E±
x (ε, μη))

η
, μ ∈ {−,+}.

Step 1o. Let

Ξμ
2 :=

{
x ∈ R : M(xμ) ≤ log b

9b
ε0C

2
0

}
, μ ∈ {−,+}. (8.7.6)

Then there exists an ε3 = ε3(a, b) > 0 such that

d±(ε3, xμ) ≥ ε0C
2
0

4(ε0C0 + 2bK0)
=: C3, μ ∈ {−,+}, x ∈ Ξμ

2 . (8.7.7)

Indeed, we consider the case μ = + (the case μ = − is left for the reader as an Exercise).
Suppose that there exist sequences (δm)∞m=1 ⊂ (0, ε0), δm −→ 0, (xm)∞m=1 ⊂ Ξ+

2 such that
min{d+(δm, xm+), d−(δm, xm+)} < C3, m ∈ N. We may assume that d−(δm, xm+) < C3,
m ∈ N (the other case is left for the reader as an Exercise). Thus there exists a sequence
(τm)∞m=1 ⊂ (0, η0) such that

L(E−
xm

(δm, η)) < C3η, η ∈ (0, τm), m ∈ N. (8.7.8)

In view of (8.7.2), we get

L(E+
xm

(ε0, η))

η
≥ L(E

+
xm

(δm, η))

η
≥ C0 −

L(E−
xm

(δm, η))

η

(8.7.8)

≥ C0 − C3,

η ∈ (0, τm), m ∈ N. (8.7.9)

Take an m ∈ N and let L = L(m), N ∈ N be such that

1

bL
≤ τm <

1

bL−1
,

1

bN
≤ C0

2
<

1

bN−1
. (8.7.10)

Then for 
 ≥ L, we get

∫ 1/b�

1/b�+N

f(xm + s)− f(xm)

s1+α
ds =

∫

EA(δm)

+

∫

EB(δm)

+

∫

EC(δm)

=: IA + IB + IC ,

where

EA(ε) := E+
x (ε) ∩ [1/b
+N , 1/b
], EB(ε) := E−

x (ε) ∩ [1/b
+N , 1/b
],

EC(ε) = [1/b
+N , 1/b
] \ (EA(ε) ∪ EB(ε)).
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Since δm ≤ ε0, we have

IA ≥
∫

EA(ε0)

f(xm + s)− f(xm)

s1+α
ds ≥

∫

EA(ε0)

ε0
s

ds ≥ ε0b

L(EA(ε0))

≥ ε0b

(L(E+

xm
(ε0, 1/b


))− 1/b
+N)
(8.7.9)

≥ ε0(C0 − C3 − 1/bN)

(8.7.10)

≥ ε0(C0/2− C3).

Moreover,

|IB| ≤
∫

EB(δm)

K0

s
ds ≤ K0b


+NL(EB(δm)) ≤ K0b
N L(E−

xm
(δm, 1/b
))

1/b


(8.7.8)
< K0b

NC3

(8.7.10)

≤ K0b
2

C0
C3,

|IC | ≤
∫

EC(δm)

δm
s

ds ≤ δm

∫ 1/b�

1/b�+N

ds

s
= δm log(bN).

Thus


+N−1∑

j=


Ij(xm+) =

∫ 1/b�

1/b�+N

f(xm + s)− f(xm)

s1+α
ds ≥ IA − |IB| − |IC |

≥ ε0C0

4
− δmN log b.

Finally,

M(xm+)
(*)
= lim inf

k→+∞

∣∣∣
1

kN

k∑


=L


+N−1∑

j=


Ij(xm+)
∣∣∣

≥ 1

N

(ε0C0

4
− δmN log b

)
≥ log b

8b
ε0C

2
0 − δm log b,

where (*) follows from the lemma below.

Lemma 8.7.5. Let (an)
∞
n=0 ⊂ C be a bounded sequence. Then for arbitrary L,N ∈ N, we

have

lim inf
n−→+∞

∣∣∣
1

n

n−1∑

j=0

aj

∣∣∣ = lim inf
k→+∞

∣∣∣
1

kN

k∑


=L


+N−1∑

j=


aj

∣∣∣,

lim sup
n−→+∞

∣∣∣
1

n

n−1∑

j=0

aj

∣∣∣ = lim sup
k→+∞

∣∣∣
1

kN

k∑


=L


+N−1∑

j=


aj

∣∣∣.

Proof . Assume that |an| ≤ B, n ∈ N0. We have only to observe (Exercise) that for k > L,
we have
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1

kN

k∑


=L


+N−1∑

j=


aj =
1

kN

(
Rk + N

k+N−1∑

j=0

aj

)
=

Rk

kN
+

k + N

k

( 1

k + N

k+N−1∑

j=0

aj

)

and |Rk| ≤ (N2 + NL)B. ��
Consequently, there exists an m such that M(xm+) > log b

9b ε0C
2
0 ; a contradiction

(cf. (8.7.6)).

Now in view of Step 1o, we have only to prove that Ξ2 := R \ Ξ±
2 is of zero measure.

Step 2o. We have

n−1∑

j=0

Ij(x±) =
∫ 1

1/bn

f(x± s)− f(x)

s1+α
ds

=

∞∑

k=0

ak

∫ 1

1/bn

cos(πbk(x± s) + θ)− cos(πbkx + θ)

s1+α
ds

=

∞∑

k=0

ak

∫ bk

bk/bn

cos(πbkx + θ ± πs)− cos(πbkx + θ)

s1+α
bkαds

= Re
( ∞∑

k=0

ei(πb
kx+θ)

∫ bk

bk−n

e±iπs − 1

s1+α
ds
)
.

For m ∈ Z, n ∈ N, put

G±
m : =

∫ bm

bm−1

e±iπs − 1

s1+α
ds,

Sn(t) : = eit + eibt + · · ·+ eib
n−1t,

Sn,θ(t) : = Sn(t)e
iθ = ei(t+θ) + ei(bt+θ) + · · ·+ ei(b

n−1t+θ),

Am,n(x) : =

⎧
⎪⎨

⎪⎩

Sn,θ(πbmx), if m ≥ 0

Sn+m,θ(πx), if − n + 1 ≤ m ≤ −1
0, if m ≤ −n

.

Then

∞∑

k=0

ei(πx
k+θ)

∫ bk

bk−n

e±iπs − 1

s1+α
ds =

∞∑

k=0

ei(πb
kx+θ)

k∑

m=k−n+1

G±
m

=

∞∑

m=−∞
Am,n(x)G

±
m.

It is known (cf. [KSZ48]) that there exists a zero-measure set Ξ0 ⊂ R such that

lim
n→+∞

1

n
Sn(πx) = 0, x ∈ R \ Ξ0.

Let x ∈ R \ Ξ0. Since

|Sn+m,θ(t)− Sn,θ(t)| = |Sn+m(t)− Sn(t)| ≤ |m|, m ≥ −n + 1,
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we get 1
nSn+m,θ(πx) −→ 0 uniformly with respect to θ (for m ≥ −n + 1). Since

|Sn,θ(b
mt)− Sn+m,θ(t)| = |Sn(b

mt)− Sn+m(t)| ≤ m, m ≥ 0,

we get 1
nSn,θ(πbmx) −→ 0 uniformly with respect to θ (for m ≥ 0). Hence for x ∈ R \Ξ0, we

have

lim
n→+∞

n−1∑

j=0

Ij(x±) = Re
(

lim
n→+∞

1

n

∞∑

m=−∞
Am,n(x)G

±
m

)

(†)
= Re

( ∞∑

m=−∞
lim

n→+∞
1

n
Am,n(x)G

±
m

)
= 0,

where (†) follows from the fact that

∞∑

m=−∞

1

n
|Am,n(x)G

±
m| ≤

∞∑

m=−∞
|G±

m| ≤
∫ ∞

0

2ds

s1+α
< +∞.

In particular, M(x±) = 0, x ∈ R\Ξ0. Thus R\Ξ0 ⊂ Ξ±
2 (cf. (8.7.6)). Using (8.7.7) completes

the proof. ��

8.7.3 Nowhere Differentiability of Weierstrass-Type Functions:
Infinite Derivatives

Theorem 8.7.6. Let ψ∗ ∈ (0, π
2 ) be such that tanψ∗ = π + ψ∗ (ψ∗ ≈ 1.3518). If ab ≥

1 + 1
cosψ∗ ≈ 5.6034, then there exist ε4 = ε4(a, b), η4 = η4(a, b), C4 = C4(a, b) > 0 such that

for every x ∈ R, we have

lim sup
η→0+

min
{L(E+

x (ε4, η))

η
+
L(E−

x (ε4,−η))

η
,

L(E+
x (ε4,−η))

η
+
L(E−

x (ε4, η))

η

}
≥ C4. (8.7.11)

In particular, f ∈ M(R) ∩ ND∞(R) ⊂ ND±(R) ∩ ND∞(R) (cf. Theorem 8.3.1 and Re-
mark 8.7.2).

Proof . Put

d∗(ε, x) : = lim sup
η→0+

(L(E+
x (ε, η))

η
+
L(E−

x (ε,−η))

η

)
,

d∗(ε, x) : = lim sup
η→0+

(L(E+
x (ε,−η))

η
+
L(E−

x (ε, η))

η

)
.

Let S := {p ∈ L∞(0, 1) : ‖p‖∞ = 1}. For p ∈ L∞(0, 1), put p̃(x) := p(x − �x�), x ∈ R.
Define
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Fx(p) := lim sup
n→+∞

∣∣∣
1

n

∫ 1

1/bn

f(x + s)− f(x− s)

s1+α
p̃
( log s

log b

)
ds
∣∣∣,

x ∈ R, p ∈ L∞(0, 1).

Observe that

∣∣∣
1

n

∫ 1

1/bn

f(x+ s)− f(x− s)

s1+α
p̃
( log s

log b

)
ds
∣∣∣

≤ 1

n

∫ 1

1/bn

2αK0

s
‖p‖∞ds = (2αK0 log b)‖p‖∞.

From now on, fix an x ∈ R.

Step 1o. Assume that γ(x) := supp∈S Fx(p)− Fx(1) > 0. Let ε5 := γ(x)
8b . Then

c3 := min{d∗(ε5, x), d∗(ε5, x)} ≥ γ(x)

8bK0
=: C5. (8.7.12)

Indeed, suppose that c3 := d∗(ε5, x) (the case c3 := d∗(ε5, x) is left for the reader as an
Exercise). Take a δ > 0. Then there exists an L = L(δ) ∈ N such that

L(E+
x (ε,−η))

η
+
L(E−

x (ε, η))

η
< c3 + δ, η ∈

(
0,

1

bL

]
.

Let E∗(x) := (E−
x (ε5) ∪ (−E+

x (ε5))) ∩ R+,

ψx : R+ −→ R+, ψx(s) :=

{
2K0s

α, if s ∈ E∗(x)
2ε5s

α, if s /∈ E∗(x)
.

Then

f(x + s)− f(x− s) = (f(x + s)− f(x)) − (f(x− s)− f(x))

≥
{
−2K0s

α, if s ∈ E∗(x)
−ε5s

α − ε5| − s|α, if s /∈ E∗(x)
= −ψx(s), s ∈ R+. (8.7.13)

Take 
 ≥ L and p ∈ S. Then

∣∣∣
∫ 1/b�

1/b�+1

ψx(s)

s1+α
p̃
( log s

log b

)
ds
∣∣∣ ≤

∫ 1/b�

1/b�+1

2ε5
s

ds +

∫

E∗(x)∩[1/b�+1,1/b�]

2K0

s
ds

≤ 2ε5 log b + 2K0b

+1L(E∗(x) ∩ [0, 1/b
])

≤ 2ε5b + 2K0b

+1(L(E−

x (ε5, 1/b

)) + L(E+

x (ε5,−1/b
)))

≤ γ(x)

4
+ 2bK0(c3 + δ).
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Consequently,

lim sup
n→+∞

∣∣∣
1

n

∫ 1

1/bn

ψx(s)

s1+α
p̃
( log s

log b

)
ds
∣∣∣

= lim sup
n→+∞

∣∣∣
1

n

∫ 1

1/bL

ψx(s)

s1+α
p̃
( log s

log b

)
ds +

1

n

∫ 1/bL

1/bn

ψx(s)

s1+α
p̃
( log s

log b

)
ds
∣∣∣

= lim sup
n→+∞

∣∣∣
1

n

∫ 1/bL

1/bn

ψx(s)

s1+α
p̃
( log s

log b

)
ds
∣∣∣

≤ lim sup
n→+∞

n− L

n

(γ(x)

4
+ 2bK0(c3 + δ)

)
=

γ(x)

4
+ 2bK0(c3 + δ).

Since δ > 0 was arbitrary, we get

lim sup
n→+∞

∣∣∣
1

n

∫ 1

1/bn

ψx(s)

s1+α
p̃
( log s

log b

)
ds
∣∣∣ ≤ γ(x)

4
+ 2bK0c3, p ∈ S.

Thus,

Fx(p) ≤ γ(x)

4
+ 2bK0c3

+ lim sup
n→+∞

∣∣∣
1

n

∫ 1

1/bn

f(x + s)− f(x− s) + ψx(s)

s1+α
p̃
( log s

log b

)
ds
∣∣∣

≤ γ(x)

4
+ 2bK0c3 + lim sup

n→+∞
1

n

∫ 1

1/bn

∣∣∣
f(x + s)− f(x− s) + ψx(s)

s1+α

∣∣∣ds

(8.7.13)
=

γ(x)

4
+ 2bK0c3 + lim sup

n→+∞
1

n

∫ 1

1/bn

f(x+ s)− f(x− s) + ψx(s)

s1+α
ds

≤ γ(x)

2
+ 4bK0c3 + lim sup

n→+∞

∣∣∣
1

n

∫ 1

1/bn

f(x + s)− f(x− s)

s1+α
ds
∣∣∣

=
γ(x)

2
+ 4bK0c3 + Fx(1).

It follows that 0 < γ(x) ≤ γ(x)
2 + 4bK0c3. Finally, c3 ≥ γ(x)

8bK0
= C5 (cf. (8.7.12)).

Step 2o. (Cf. Step 1o of the proof of Theorem 8.7.4.) Let

ε6 :=
ε0C

2
0

8b
< ε0, C6 :=

1

4ε0C0 + 8bK0
.

Then

min{d∗(ε6, x), d∗(ε6, x)} ≥ C6

(
ε0C

2
0 −

4b

log b
Fx(1)

)
. (8.7.14)

Indeed, we may assume that c4(x) := ε0C
2
0 − 4b

log bFx(1) > 0. Suppose that d∗(ε6, x) <

C6c4(x) (the case d∗(ε6, x) < C6c4(x) is left for the reader as an Exercise). There exists an
L = L(x) ∈ N such that
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L(E+
x (ε6,−η))

η
+
L(E−

x (ε6, η))

η
< C6c4(x), η ∈

(
0,

1

bL

)
⊂ (0, η0).

Using (8.7.2), we get

L(E+
x (ε0, η))

η
≥ C0 − L(E

−
x (ε0,−η))

η
≥ C0 − L(E

−
x (ε6,−η))

η

≥ C0 − C6c4(x), η ∈
(
0,

1

bL

)
.

Analogously,

L(E−
x (ε0,−η))

η
≥ C0 − C6c4(x), η ∈

(
0,

1

bL

)
.

Let N ∈ N be such that 1
bN ≤ C0

2 < 1
bN−1 . Take an 
 ≥ L. Then

∫ 1/b�

1/b�+N

f(x + s)− f(x)

s1+α
ds =

∫

EA(ε6)

+

∫

EB(ε6)

+

∫

EC(ε6)

=: IA + IB + IC ,

where

EA(ε) := E+
x (ε) ∩ [1/b
+N , 1/b
], EB(ε) := E−

x (ε) ∩ [1/b
+N , 1/b
],

EC(ε) = [1/b
+N , 1/b
] \ (EA(ε) ∪ EB(ε)).

Since ε6 ≤ ε0, we have

IA ≥
∫

EA(ε0)

f(x + s)− f(x)

s1+α
ds ≥

∫

EA(ε0)

ε0
s

ds ≥ ε0b

L(EA(ε0))

≥ ε0b

(L(E+

x (ε0, 1/b

))− 1/b
+N) ≥ ε0(C0 − C6c4(x)− 1/bN)

≥ ε0(C0/2− C6c4(x)).

Moreover,

|IB | ≤
∫

EB(ε6)

K0

s
ds ≤ K0b


+NL(EB(ε6)) ≤ K0b
N L(E−

x (ε6, 1/b

))

1/b


< K0b
NC6c4(x) ≤ K0b

2

C0
C6c4(x),

|IC | ≤
∫

EC(ε6)

ε6
s

ds ≤ ε6

∫ 1/b�

1/b�+N

ds

s
= ε6 log(b

N ) ≤ ε0C
2
0

8b
bN

<
ε0C

2
0

8b
b
2

C0
=

ε0C0

4
.

Thus ∫ 1/b�

1/b�+N

f(x + s)− f(x)

s1+α
ds ≥ IA − |IB | − |IC | ≥ 1

4

(
ε0C0 − c4(x)

C0

)
.
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Using the same methods, one can prove (Exercise) that

∫ 1/b�

1/b�+N

f(x) − f(x− s)

s1+α
ds ≥ 1

4

(
ε0C0 − c4(x)

C0

)
.

Consequently,


+N−1∑

j=


(Ij(x+)− Ij(x−)) =
∫ 1/b�

1/b�+N

f(x+ s)− f(x− s)

s1+α
ds

≥ 1

2

(
ε0C0 − c4(x)

C0

)
> 0,

and therefore, using Lemma 8.7.5, we get

Fx(1) = lim sup
k→+∞

∣∣∣
1

kN

k∑


=L


+N−1∑

j=


(Ij(x+)− Ij(x−))
∣∣∣

≥ 1

2N

(
ε0C0 − c4(x)

C0

)
>

log b

4b
(ε0C

2
0 − c4(x)) = Fx(1);

a contradiction.

Step 3o. (Cf. Step 2o of the proof of Theorem 8.7.4.) Take a p ∈ S. Then

∫ 1

1/bn

f(x + s)− f(x− s)

s1+α
p̃
( log s

log b

)
ds

= −2
∞∑

k=0

ak sin(πbkx + θ)

∫ 1

1/bn

sin(πbks)

s1+α
p̃
( log s

log b

)
ds

= −2
∞∑

k=0

ak sin(πbkx + θ)

∫ bk

bk/bn

sin(πu)

u1+α
bkα p̃

( log u− k log b

log b

)
du

= −2
∞∑

k=0

sin(πbkx+ θ)

∫ bk

bk−n

sin(πs)

s1+α
p̃
( log s

log b

)
ds.

For m ∈ Z, n ∈ N, put

Gm(p) : =

∫ bm

bm−1

sin(πs)

s1+α
p̃
( log s

log b

)
ds,

Sn(t) : = eit + eibt + · · ·+ eib
n−1t,

sn,θ(t) : = Im(Sn(t)e
iθ) = sin(t + θ) + sin(bt + θ) + · · ·+ sin(bn−1t + θ),

Bm,n(x) : =

⎧
⎪⎨

⎪⎩

sn,θ(πbmx), if m ≥ 0

sn+m,θ(πx), if − n + 1 ≤ m ≤ −1
0, if m ≤ −n

.
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Then

∞∑

k=0

sin(πbkx + θ)

∫ bk

bk−n

sin(πs)

s1+α
ds =

∞∑

k=0

sin(πbkx + θ)

k∑

m=k−n+1

Gm(p)

=

∞∑

m=−∞
Bm,n(x)Gm(p).

Let (nj)
∞
j=1 be such that

Fx(1) = lim
j→+∞

∣∣∣
1

nj

∫ 1

1/bnj

f(x + s)− f(x− s)

s1+α
ds
∣∣∣.

Since 1
n |sn,θ(x)| ≤ 1, we may assume that 1

nj
snj ,θ(πx) −→ s∗θ(x) when j −→ +∞. Similarly

as in Step 2o of the proof of Theorem 8.7.4, we get 1
nj

snj+m,θ(πx) −→ s∗θ(x) uniformly with

respect to θ (for every m ≥ −n + 1) and 1
nj

snj ,θ(πbmx) −→ s∗θ(x) uniformly with respect to

θ (for every m ≥ 0). It follows that

lim
j→+∞

∣∣∣
1

nj

∫ 1

1/bnj

f(x + s)− f(x− s)

s1+α
p̃
( log s

log b

)
ds
∣∣∣

= 2 lim
j→+∞

∣∣∣
∞∑

m=−∞

1

nj
Bm,nj(x)Gm(p)

∣∣∣

(**)
= 2

∣∣∣
∞∑

m=−∞
lim

j→+∞
1

nj
Bm,nj (x)Gm(p)

∣∣∣

= 2
∣∣∣

∞∑

m=−∞
s∗θ(x)Gm(p)

∣∣∣ = 2|s∗θ(x)|
∣∣∣
∫ ∞

0

sin(πs)

s1+α
p̃
( log s

log b

)
ds
∣∣∣,

where (**) follows from the fact that

∞∑

m=−∞

1

nj
|Bm,nj (x)Gm(p)| ≤

∞∑

m=−∞
|Gm(p)| ≤

∫ ∞

0

ds

s1+α
< +∞.

Consequently,

γ(x) ≥ Fx(p)− Fx(1) ≥ lim
j→+∞

∣∣∣
1

nj

∫ 1

1/bnj

f(x + s)− f(x− s)

s1+α
p̃
( log s

log b

)
ds
∣∣∣

− lim
j→+∞

∣∣∣
1

nj

∫ 1

1/bnj

f(x+ s)− f(x− s)

s1+α
ds
∣∣∣

= 2|s∗θ(x)|
(∣∣∣

∫ ∞

0

sin(πs)

s1+α
p̃
( log s

log b

)
ds
∣∣∣−

∫ ∞

0

sin(πs)

s1+α
ds
)

≥ 2|s∗θ(x)|
∫ ∞

0

sin(πs)

s1+α

(
p̃
( log s

log b

)
− 1

)
ds =: 2|s∗θ(x)|U(p). (8.7.15)

Note that U(p) is independent of x and θ.

Step 4o. If U∗ := supp∈S U(p) > 0, then (8.7.11) is fulfilled.
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Indeed, let

c5 :=
log b
16b ε0C

2
0∫∞

0
sin(πs)
s1+α ds

.

If |s∗θ(x)| ≤ c5, then

Fx(1) ≤ 2c5

∫ ∞

0

sin(πs)

s1+α
ds =

log b

8b
ε0C

2
0 ,

and therefore, c4(x) = ε0C
2
0 − 4b

log bFx(1) ≥ ε0C
2
0

2 . Thus, using (8.7.14), we get (8.7.11) with

ε4 := ε6 and C4 :=
C6ε0C

2
0

2 .
If |s∗θ(x)| > c5, then γ(x) > 2c5U

∗ > 0. Thus, using (8.7.12), we get (8.7.11) with ε4 := ε5
and C4 := c5U

∗
4bK0

.

Consequently, it remains to prove that U∗ > 0, provided that ab ≥ 1 + 1
cosψ∗ =: c∗.

Step 5o. Define

G(t) :=
∞∑

n=−∞
an sin(πbnt), t ∈ R.

Note that G ∈ C(R). Let M := min1≤t≤b G(t). First, we will show that U∗ > 0, provided that
M < 0.

Indeed, if M < 0, then there exist 1 < μ < ν < b such that

0 >

∫ ν

μ

G(s)

s1+α
ds =

∞∑

n=−∞
an

∫ ν

μ

sin(πbns)

s1+α
ds =

∞∑

n=−∞

∫ νbn

μbn

sin(πs)

s1+α
ds.

Observe that νbn ≤ μbn+1. Define p : I −→ R,

p(t) :=

{
0, if log μ

log b < t < log ν
log b

1, otherwise
.

Then, using (8.7.15), we get

0 >

∞∑

n=−∞

∫ νbn

μbn

sin(πs)

s1+α
ds = −

∫ ∞

0

sin(πs)

s1+α

(
p̃
( log s

log b

)
− 1

)
ds = −U(p).

Hence U∗ > 0.

Step 6o. Now in view of Step 4o, we have only to prove that M < 0, provided that ab ≥ c∗.
First observe that ψ∗ ≈ 1.3518 > 1.2566 ≈ 2

5π. Consider the function

(2π
5

,
π

2

)
� ψ

g�−→ 1 +
π + ψ

sinψ
.

One may easily check (Exercise) that g(ψ) ≥ g(ψ∗) = 1 + 1
cosψ∗ > 5. We will prove that

for every ψ ∈ (2π5 , π
2 ), if ab ≥ 1 + g(ψ), then there exists a point x∗ ∈ (1, 2) such that

G(x∗) < 0. The point ψ = ψ∗ gives the best estimate. Thus, fix a ψ ∈ (2π5 , π
2 ) and assume

that ab ≥ 1 + g(ψ). In particular, b > 5. Set q1 := 1. We define inductively a sequence of odd
natural numbers q1 < q2 < . . . . Let γn := b(qn + ψ

π ). Obviously, there exists a pn ∈ Z such

that |pn − γn−1
2 | ≤ 1

2 . We set qn+1 := 2pn + 1. We have |qn+1 − γn| ≤ 1. Note that
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qn+1 ≥ γn − 1 = b
(
qn +

ψ

π

)
− 1 > 5qn − 1 ≥ 4qn.

Let

In :=
[ qn
bn−1

,
qn + 1

bn−1

]
.

Observe that In+1 ⊂ In. In fact,

qn+1

b
≥ γn − 1

b
= qn +

ψ

π
− 1

b
> qn +

ψ

π
− 1

5
> qn,

and therefore, qn+1

b ≥ qn. Similarly,

qn+1 + 1

b
≤ γn + 2

b
= qn +

ψ

π
+

2

b
< qn +

ψ

π
+

2

5
< qn + 1.

Thus
⋂∞

n=1 In = {x∗} ⊂ (1, 2). We have

bn−1x∗ − qn ≥ qn+1

b
− qn ≥ ψ

π
− 1

b
>

ψ

π
− 2

b
>

ψ

π
− 2

5
> 0,

bn−1x∗ − qn ≤ qn+1 + 1

b
− qn ≤ ψ

π
+

2

b
< 1, n ∈ N.

Hence

sin(πbn−1x∗) ≤ − sin
(
ψ − 2π

b

)
, n ∈ N.

Consequently,

G(x∗) =
∞∑

n=0

an sin(πbnx∗) +
∞∑

n=1

a−n sin(πb−nx∗)

< −
∞∑

n=0

an sin
(
ψ − 2π

b

)
+

∞∑

n=1

a−nπb−nx∗

= − 1

1− a
sin

(
ψ − 2π

b

)
+

πx∗

ab− 1

≤ − 1

1− a
sin

(
ψ − 2π

b

)
+

1

ab− 1

(
π + ψ +

2π

b

)
.

To get G(x∗) < 0, it suffices to have

− 1

1− a
sin

(
ψ − 2π

b

)
+

1

ab− 1

(
π + ψ +

2π

b

)
≤ 0,

or equivalently,

ab ≥ π + ψ + 2π
b + sin(ψ − 2π

b )
1
b (π + ψ + 2π

b ) + sin(ψ − 2π
b )

= F
(2π

b

)
,

where

F (t) :=
π + ψ + t + sin(ψ − t)

t
2π (π + ψ + t) + sin(ψ − t)

, 0 ≤ t ≤ ψ.

One can check that F is decreasing (Exercise). Thus, F (t) ≤ F (0) = g(ψ), 0 ≤ t ≤ ψ. ��
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8.8 Summary

In a concentrated tabular form, the best known results may be summarized as follows (recall
that ND∞ ⊂ ND ⊃ ND± ⊃M ⊃M ∩ND∞):

ND∞ ND ND± M M ∩ND∞

p=1, θ=0, b odd
ab>1+ 3

2π(1−a)
Theorem 3.8.1

p=1, θ arb., b even
b≥14, a=1/b
Theorem 3.6.1

p,b odd, θ=0
ab>1+ 3

2pπ
Theorem 3.5.1

p=1, θ=0, b∈2N\(3N)
ab>1+ 16π

9 (1−a)
Theorem 3.9.5

p arb., θ arb.
(a<a1(p), b>Ψ1(a)) or
(a<a2(p), b>Ψ2(a))

Theorem 3.7.1

p=1, θ=0, b>3

ab>1+ (3b−1)π(1−a)

2(b−1) cos( π
b−1

)

Theorem 3.9.9

θ arb., ab≥1
(p odd, b>p) or
(p even, b>p/2)
Theorem 8.6.7

p=1, θ=const
b∈N2, ab≥1

Theorem 8.4.1

p=1, θ arb.
ab>1

Theorem 8.3.1

p=1, θ=const
ab>5.6034

Theorem 8.7.6

? It is seen that many cases remain undecided ?



Chapter 9

Takagi–van der Waerden-Type Functions II

Summary. In this chapter, using more developed tools, we extend results stated in Chap. 4.

9.1 Introduction

Recall (cf. § 4.1) that
Ta,b,θ(x) :=

∞∑

n=0

anψ(bnx + θn), x ∈ R,

where 0 < a < 1, ab ≥ 1, θ = (θn)
∞
n=0 ⊂ R, and ψ(x) := dist(x,Z), x ∈ R.

Let us summarize some results proved so far:

(1) T = T1/2,2,0 ∈ ND±(I) (Theorem 4.2.1).

(2) T1/b,b,θ ∈ ND±(R), provided that b ≥ 10 (Theorem 4.3.1).

(3) Ta,b,0 ∈ ND±(R), provided that ab ≥ 1 and b ∈ N2 (Theorem 4.3.2); in particular,
T1/b,b,0 ∈ ND±(R), provided that b ∈ N2.

Now we like to go further and obtain the following results:

(4) If ab > 1, then Ta,b,θ ∈M(R) ⊂ ND±(R) (Theorem 9.2.1).

(5) A characterization of the set of all x ∈ R such that T ′
±(x) ∈ {−∞,+∞} (Theorems 9.3.1

and 9.3.4).

? The question whether T1/b,b,θ ∈ ND±(R) for 1 < b < 10 remains open ?

9.2 The Case ab > 1

Theorem 9.2.1 (cf. [BD94]). If ab > 1, then Ta,b,θ is α-anti-Hölder continuous uniformly

with respect to x ∈ R and θ (α := − log a
log b ). Consequently, Ta,b,θ ∈ M(R) ⊂ ND±(R) for

every θ.

Proof . Assume that ab > 1 and let Tθ := Ta,b,θ. Remark 8.5.2(f) reduces the proof to the
following condition:

© Springer International Publishing Switzerland 2015
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∃ε, δ0>0 ∀θ, δ∈(0,δ0) ∃h+∈(0,δ] : |Tθ(h+)− Tθ(0)| > εδα.

We are going to prove that there exist c > 0 and N ∈ N such that for an arbitrary θ, we
have

bm

N

∫ N
bm

0

Tθ(t) cos 2π(b
mt + θm)dt < −cam, m ∈ N0. (9.2.1)

Suppose for a moment that (9.2.1) has been proven. Since

∫ N
bm

0

cos 2π(bmt + θm)dt = 0, m ∈ N0,

we get (for arbitrary θ)

bm

N

∫ N
bm

0

(Tθ(t)− Tθ(0)) cos 2π(b
mt + θm)dt < −cam, m ∈ N0. (9.2.2)

Put δ0 := 1. Fix a δ ∈ (0, 1) and let m ∈ N0 be such that N
bm < δ ≤ b N

bm . Then (9.2.2)

implies that there exists an h+ ∈ (0, N
bm ) ⊂ (0, δ) such that

|Tθ(h+)− Tθ(0)| > cam =
c

bmα
=

c

(Nb)α

(
b
N

bm

)α

≥ εδα

with ε := ca
Nα , which completes the proof.

We move to the proof of (9.2.1). Define

Jk(x, θ,N) :=
ak

Nbk

∫ x+Nbk

x

ψ(t) cos 2π(b−kt + θ)dt, k ∈ Z, x, θ ∈ R, N ∈ N.

Direct calculations give

bm

N

∫ N
bm

0

Tθ(t) cos 2π(b
mt + θm)dt

=

∞∑

n=0

anbm

N

∫ N
bm

0

ψ(bnt + θn) cos 2π(b
mt + θm)dt

n=k+m
=

∞∑

k=−m

ak+mbm

N

∫ N
bm

0

ψ(bk+mt + θk+m) cos 2π(bmt + θm)dt

u=bk+mt+θk+m
=

∞∑

k=−m

ak+mbm

N

∫ bk+m N
bm +θk+m

θk+m

ψ(u) cos 2π
(
bm

u− θm+k

bk+m
+ θm

) du

bk+m

= am
∞∑

k=−m

Jk(xk, θ
′
k, N) with xk := θm+k, θ′k = θm − b−kθm+k. (9.2.3)

The remaining part of the proof of (9.2.1) will be divided into the following ten steps.

Step 1o. |Jk(x, θ,N)| ≤
{

ak

2 , if k ≥ 0
(ab)k

π , if k < 0
, x, θ ∈ R, N ∈ N.
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Indeed, the case k ≥ 0 is obvious. If k < 0, then integration by parts gives

|Jk(x, θ,N)|

=
ak

2πN

∣∣∣ψ(t) sin 2π(b−kt + θ)
∣∣∣
x+Nbk

x
−
∫ x+Nbk

x

ψ′(t) sin 2π(b−kt + θ)dt
∣∣∣

≤ ak

2πN
(Nbk + Nbk) =

(ab)k

π
.

Step 2o.
∣∣∣

p∑

n=0

cos(x + ny)
∣∣∣ ≤ 1

| sin(y/2)| , x, y ∈ R, p ∈ N0.

Indeed,

∣∣∣
p∑

n=0

cos(x + ny)
∣∣∣ ≤

∣∣∣
p∑

n=0

ei(x+ny)
∣∣∣ =

∣∣∣
1− ei(p+1)y

1− eiy

∣∣∣ ≤ 1

| sin(y/2)| .

Step 3o. If m := b−k ∈ Z, then

Jk(x, θ,N) −→
N→+∞

−ak(1− (−1)m) cos 2πθ

2π2m2

uniformly with respect to x, θ ∈ R.

Indeed, let p(N) := �Nm�. Then

Jk(x, θ,N) =
mak

N

∫ x+N
m

x

ψ(t) cos 2π(mt + θ)dt

=
mak

N

(
p(N)

∫ 1

0

ψ(t) cos 2π(mt + θ)dt +

∫ x+N
m

x+p(N)

ψ(t) cos 2π(mt + θ)dt
)

= ak
(p(N)

N
m

∫ 1

0

ψ(t) cos 2π(mt + θ)dt +
m

N

∫ x+N
m

x+p(N)

ψ(t) cos 2π(mt + θ)dt
)
.

Observe that

m

N

∣∣∣
∫ x+N

m

x+p(N)

ψ(t) cos 2π(mt + θ)dt
∣∣∣ ≤ 1

2

(
1− p(N)

N
m

)
−→

N→+∞
0.

Thus

Jk(x, θ,N) −→
N→+∞

ak

∫ 1

0

ψ(t) cos 2π(mt + θ)dt

=
ak

2πm

(
ψ(t) sin 2π(mt + θ)

∣∣∣
1

0
−
∫ 1

0

ψ′(t) sin 2π(mt + θ)dt
)

=
ak

(2πm)2

(
cos 2π(mt + θ)

∣∣∣
1/2

0
− cos 2π(mt + θ)

∣∣∣
1

1/2

)

= −ak(1− (−1)m) cos 2πθ

2π2m2
uniformly with respect to x, θ ∈ R.
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Step 4o. If b−k /∈ Z, then

Jk(x, θ,N) −→
N→+∞

0 uniformly with respect to x, θ ∈ R.

Indeed, let p(N) := �Nbk�. Then

Jk(x, θ,N) =
ak

Nbk

( ∫ x+1

x

ψ(t)

p(N)−1∑

r=0

cos 2π(b−k(t + r) + θ)dt

+

∫ x+Nbk

x+p(N)

ψ(t) cos 2π(b−kt + θ)dt
)
.

Obviously,

ak

Nbk

∣∣∣
∫ x+Nbk

x+p(N)

ψ(t) cos 2π(b−kt + θ)dt
∣∣∣ ≤ ak

2

(
1− p(N)

Nbk

)
−→

N→+∞
0

uniformly with respect to x, θ ∈ R.

On the other hand, using Step 2o, we get

ak

Nbk

∣∣∣
∫ x+1

x

ψ(t)

p(N)−1∑

r=0

cos 2π(b−k(t + r) + θ)dt
∣∣∣ ≤ ak

2Nbk| sinπb−k| −→N→+∞
0

uniformly with respect to x, θ ∈ R.

Step 5o. If d ∈ Q>0 and dh ∈ N for some h ∈ N, then d ∈ N.
Indeed, let d = p

q , where p, q ∈ N are relatively prime. Then ph = dhqh, which implies that
q = 1.

Step 6o. Let S := {k ∈ N : bk ∈ N}. If S �= ∅, then S = rN, where r := minS.

Indeed, suppose that k ∈ S \ rN, k = rq + h, q, h ∈ N, 0 < h < r. Then bh = bk

(br)q ∈ Q and

(bh)r = (br)h ∈ N. Consequently, by Step 5o, bh ∈ N; a contradiction.

Step 7o. J0(x, 0, N) = − 1
π2 .

Indeed, using the proof of Step 3o, we get

J0(x, 0, N) =
1

N

∫ N

0

ψ(t) cos 2πtdt =

∫ 1

0

ψ(t) cos 2πtdt = − 1

π2
.

Fix an η > 0 such that 3η < 1
π2 . Moreover, if S �= ∅ and S = rN (cf. Step 6o), then we

require that η be so small that 3η + 1
π2ab(br−1) < 1

π2 .

Step 8o. There exists an M ∈ N such that

∑

|k|>M

|Jk(x, θ,N)| < η, x, θ ∈ R, N ∈ N.

Indeed, we only need to use Step 1o.

Step 9o. If S = ∅, then (9.2.1) is satisfied.
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Indeed, by Step 4o, there exists an N ∈ N such that |Jk(x, θ,N)| < η
M for all x, θ ∈ R and

0 < |k| ≤ M . Consequently,
∑

k 
=0 |Jk(x, θ,N)| < 3η for all x, θ ∈ R. Thus, using (9.2.3) and
Step 7o, we conclude that

bm

N

∫ x+ N
bm

x

Tθ(t) cos 2π(b
mt + θm)dt <

(
3η − 1

π2

)
am =: −εam,

x ∈ R, m ∈ N0.

Step 10o. If S �= ∅, then (9.2.1) is satisfied.
Indeed, by Step 6o we have S = rN for some r ∈ N2. Analogously as in Step 9o, we find

an N1 such that

|Jk(x, θ,N)| < η

M
, 0 < |k| ≤M, −k /∈ S, N ≥ N1, x, θ ∈ R

(in particular, the above inequality holds for all 1 ≤ k ≤ M). Using Step 3o, we find an
N ≥ N1 such that

|Jk(x, θ,N)| < akb2k

π2
+

η

M
≤ bk

π2ab
+

η

M
, −M ≤ k ≤ −1, −k ∈ S, x, θ ∈ R.

Thus

∑

k 
=0

|Jk(x, θ,N)| < 3η +

∞∑

p=1

1

π2abbpr
= 3η +

1

π2ab(br − 1)
<

1

π2
, x, θ ∈ R,

and we finish the proof as in Step 9o. ��

9.3 Infinite Unilateral Derivatives of T1/2,2,0

Recall (cf. Theorems 4.2.1 and 4.3.2) that T ∈ ND±(R). The aim of this section is to
characterize the points x ∈ R for which infinite one-sided derivatives exist. In fact, since
T (x + 1) = T (x) and T (−x) = T (x), x ∈ R, we get T ′

±(x) = T ′
±(x + 1) and T ′

±(x) =
−T ′

∓(−x). In particular, T ′
±(x) = −T ′

∓(1− x). Hence, it suffices to consider only T ′
+(x) for

x ∈ [0, 1). We will discuss the following two cases:

(a) (Cf. Theorem 9.3.1) x ∈ I is a dyadic rational, i.e., x = k
2m with m ∈ N, k ∈ N0, k ≤ 2m.

(b) (Cf. Theorem 9.3.4) x ∈ (0, 1) is not a dyadic rational.

We begin with the simpler case of x a dyadic rational.

Theorem 9.3.1 (cf. [BA36]). If x ∈ I is a dyadic rational, then T ′
±(x) = ±∞.

Proof . We have only to show that T ′
+(x) = +∞ for x = k

2m with m ∈ N, k ∈ N0, k < 2m.
Define

Sk(t) :=
k∑

n=0

1

2n
ψ(2nt), t ∈ R, k ∈ N0.
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Observe that

• Since |ψ(t)−ψ(u)| ≤ |t− u| for all t, u ∈ R, we get |ΔSm−1(x, x + h)| ≤ m.

• If n ≥ m, then ψ(2nx) = ψ(k2n−m) = 0.

• If m ≤ n ≤ m + p − 1 and 0 < h < 1
2m+p , then 2nh < 1

2m+p−n ≤ 1
2 , and therefore,

1
2n

ψ(2n(x+h))
h = ψ(2nh)

2nh = 1.

Consequently,

ΔT (x, x + h) ≥ p−m for 0 < h <
1

2m+p
, p ∈ N,

which immediately implies that T ′
+(x) = +∞. ��

From now on, we assume that x ∈ (0, 1) is not a dyadic rational. We will use the following
two representations of x:

x =

∞∑

n=1

1

2an
=

∞∑

k=1

εk
2k

,

where (an)
∞
n=1 ⊂ N, an < an+1, n ∈ N, (εk)

∞
k=1 ⊂ {0, 1}.

Remark 9.3.2. (a) εk = 1⇐⇒ k ∈ {a1, a2, . . . }.
(b) It is excluded that:
• there exists a p ∈ N such that ap+k = ap + k for all k ∈ N, or
• there exists a p ∈ N such that εk = 1 for all k ≥ p.
Equivalently: sup{n ∈ N : an + 1 < an+1} = sup{k ∈ N : εk = 0} = +∞.

(c) 1− x is not dyadic.

We will use the following notation:
In := ε1 + · · ·+ εn, On := n− In, Dn := On − In = 2On − n = n− 2In.
Let Ξn(x) := (an+1 − an)− log2(an+1 − an)− (an − 2n).

Remark 9.3.3. (a) If an ≤ k < an+1, then Ik = n, and hence Dk = k − 2Ik = k − 2n ≥
an − 2n = Dan . In particular,
Dk −→ +∞⇐⇒ Dan −→ +∞. (9.3.1)

(b) Since Ξn(x) ≥ −(an − 2n), we conclude that
Ξn(x) −→ −∞ =⇒ an − 2n −→ +∞. (9.3.2)

Theorem 9.3.4 (cf. [Krü07, AK10]). If x ∈ (0, 1) is not dyadic, x =
∑∞

n=1
1

2an , 1 − x =∑∞
n=1

1
2bn

, where (an)
∞
n=1 ⊂ N, (bn)

∞
n=1 ⊂ N, an < an+1, bn < bn+1, n ∈ N (cf. Remark 9.3.2),

then:

(1) T ′
+(x) = +∞⇐⇒ an − 2n −→ +∞;

(2) T ′
−(x) = +∞⇐⇒ Ξn(x) −→ −∞;

(3) T ′
+(x) = −∞⇐⇒ Ξn(1 − x) −→ −∞;

(4) T ′
−(x) = −∞⇐⇒ bn − 2n −→ +∞;

(5) T ′(x) = +∞⇐⇒ Ξn(x) −→ −∞;

(6) T ′(x) = −∞⇐⇒ Ξn(1 − x) −→ −∞.

Remark 9.3.5. Observe that:

• Statement (1) is equivalent to (4).

• Statement (3) is equivalent to (2).
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• (5) is a direct consequence of (1), (2), and (9.3.2).

• Analogously, (6) is a consequence of (3) and (4).

Thus, we need to prove only (1) and (3).

The proofs will be given in Sect. 9.4. First, we present some examples and auxiliary results.

Example 9.3.6 (cf. [AK10]). (a) (Cf. [Krü07], Proposition 5.3) Assume that the number of
consecutive 0’s in the expansion of x is bounded, i.e., an+1 − an ≤ M , n ∈ N. Then
Ξn(x) ≤ M − (an − 2n). Thus, using (5), we get the implication an − 2n −→ +∞ =⇒
T ′(x) = +∞.

(b) Let λn := an+1

an
and assume that lim supn→+∞ λn > 2. Then Ξn(x) �−→ −∞.

Indeed, if λn > 2, then

Ξn(x) = (λn − 2)an + 2n− log2((λn − 1)an)

≥ 2n + log2((λn − 2)an)− log2((λn − 1)an)

mean value
theorem≥ 2n− 1

(λn − 2) log 2
.

(c) If for some 0 < ε ≤ 1 we have lim supn→+∞ λn = 2 − ε and
lim infn→+∞ an

n > 2
ε , then Ξn(x) −→ −∞.

Indeed, take an ε′ ∈ (0, ε) such that lim infn→+∞ an

n > 2
ε′ and let N ∈ N be such that

λn ≤ 2− ε′ and an

n ≥ 2
ε′ for n ≥ N . Then for n ≥ N , we get

Ξn(x) =
(
λn − 2 +

2n

an

)
an − log2((λn − 1)an)

≤ (−ε′ + ε′)an − log2((λn − 1)an) = − log2((λn − 1)an).

(d) The criterion from (c) applies, for example, to the following particular cases (Exercise):

• an := 3n (with ε := 1);

• an := p(n), where p(x) = asx
s + · · · + a0, s ≥ 2, as > 0, and p(n) < p(n + 1), n ∈ N

(with ε := 1);

• an := �αn�, where 1 < α < 2 (with ε := 2− α);

• an := the nth prime number (with ε := 1; hint: limn→+∞ an

n logn = 1).

(e) If an = 2n, then Ξn(x) = 2n+1 − 2 · 2n + 2n− log2(2
n+1 − 2n) = n −→ +∞.

(f) If an = 2n + n, then

Ξn(x) = 2n+1 + n + 1− 2(2n + n) + 2n− log2(2
n+1 + n + 1− (2n + n))

= n + 1− log2(2
n + 1) = 1− log2(1 + 2−n) −→ 1.

(g) If an = 2n + (1 + ε)n (ε > 0), then

Ξn(x) = 2n+1 + (1 + ε)(n + 1)− 2(2n + (1 + ε)n) + 2n

− log2(2
n+1 + (1 + ε)(n + 1)− (2n + (1 + ε)n))

= 1 + ε− εn− log2(1 + 2−n(1 + ε)) −→ −∞.
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(h) Define

d1(x) := lim
n→+∞

1

n

n∑

k=1

εk = lim
n→+∞

In
n

, d0(x) := 1− d1(x) = lim
n→+∞

On

n
,

provided that the limit exists. Theorem 9.3.4(5)(6) implies the following corollaries:

(i) If 0 < d1(x) < 1
2 , then T ′(x) = +∞.

(ii) If 1
2 < d1(x) < 1, then T ′(x) = −∞.

(iii) If d1(x) = 0 and lim supn→+∞
an+1

an
< 2, then T ′(x) = +∞.

(iv) If d1(x) = 1 and lim supn→+∞
bn+1

bn
< 2, then T ′(x) = −∞.

Indeed, observe that d1(x) = limn→+∞ n
an

. Moreover, if 0 < d1(x) < 1, then

limn→+∞
an+1

an
= 1. Consequently, (i) and (iii) follow from (c) and (5). Implications

(ii) and (iv) are left to the reader as an Exercise.

Some other examples will be given in Sect. 9.5.

Let p ∈ N and h ∈ ( 1
2p+1 , 1

2p ] be such that x + h < 1. (9.3.3)

Write x+h=
∑∞

k=1
ε′k
2k , where ε′k ∈ {0, 1}, k ∈ N. We assume that sup{k ∈ N : ε′k=0}=+∞.

Let Xn(x) := 1− 2εn = (−1)εn , Xn(x + h) := 1− 2ε′n = (−1)ε′n , n ∈ N.

Lemma 9.3.7. Let h be as in (9.3.3). Then

ψ(2n(x + h))−ψ(2nx)

= 2n−1
∞∑

k=n+1

1

2k
(Xn+1(x)Xk(x) −Xn+1(x + h)Xk(x + h)), n ∈ N0.

Proof . We have (cf. the proof of Proposition 4.1.4)

ψ(2nx) = 2n
(
εn+1

∞∑

k=n+1

1

2k
+ (−1)εn+1

∞∑

k=n+1

εk
2k

)

= 2n
∞∑

k=n+1

1

2k
(εn+1 + (1− 2εn+1)εk)

= 2n
∞∑

k=n+1

1

2k

(
− 1

2
(1− 2εn+1)(1− 2εk) +

1

2

)

= −2n−1
∞∑

k=n+1

1

2k
Xn+1(x)Xk(x) +

1

2
. ��

Define

k0 = k0(h) :=

{
max{k ∈ N : ε1 = ε′1, . . . , εk = ε′k}, if ε1 = ε′1
0, if ε1 �= ε′1

.
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Remark 9.3.8. (a) k0 ≤ p.
Indeed, suppose that k0 ≥ p + 1. Then

h =

∞∑

k=p+2

ε′k − εk
2k

≤
∞∑

k=p+2

1

2k
=

1

2p+1
;

a contradiction.

(b) εk0+1 = 0 and ε′k0+1 = 1.
Indeed, suppose that εk0+1 = 1 and ε′k0+1 = 0. Then

h = − 1

2k0+1
+

∞∑

k=k0+2

ε′k − εk
2k

≤ − 1

2k0+1
+

∞∑

k=k0+2

1

2k
= − 1

2k0+1
+

1

2k0+1
= 0;

a contradiction.
Consequently,
• Xk0+1(x) = 0 and Xk0+1(x + h) = 1;
• if k0 = p− 1, then Op = Ok0 + 1.

(c) If k0 ≤ p− 2, then εk = 1 and ε′k = 0 for k = k0 + 2, . . . , p.

Indeed, let h =
∑∞

k=1
ε′′k
2k . Observe that ε′′1 = · · · = ε′′p−1 = 0. Suppose that εk = ε′k for

some k ∈ {k0 + 2, . . . , p}. Then, since ε′′k−1 = 0, we conclude that εk−1 = ε′k−1. After
a finite number of steps, we get εk0+1 = ε′k0+1, which contradicts (b). Thus εk �= ε′k,
k = k0 +1, . . . , p. Suppose that ε
 = 0 and ε′
 = 1 for some 
 ∈ {k0 +2, . . . , p}. Using (b),
we get

h =
1

2k0+1
+

p∑

k=k0+2

ε′k − εk
2k

+

∞∑

k=p+1

ε′k − εk
2k

≥ 1

2k0+1
+

p∑

k=k0+2, k 
=


ε′k − εk
2k

+
1

2

− 1

2p

≥ 1

2k0+1
−

p∑

k=k0+2

1

2k
+

2

2

− 1

2p

≥ 1

2k0+1
−
( 1

2k0+1
− 1

2p

)
+

1

2p−1
− 1

2p
=

1

2p−1
>

1

2p
;

a contradiction.
Consequently,
• if k0 + 2 ≤ p, then Xk(x) = 1 and Xk(x + h) = 0 for k = k0 + 2, . . . , p;
• if k0 ≤ p− 2, then Op = Ok0 + 1.

(d) Assume that 1 ≤ q < p and εq = 0, εq+1 = · · · = εp = 1. Then k0 = q − 1 (use (b)
and (c)).

(e) If h = 1
2p , then k0 ≤ p− 1 and εk = ε′k for all k > p.

Indeed, we have h =
∑∞

k=1
δp,k
2k . If we add x+h, then it is clear that εk = ε′k for all k > p.

Moreover, ε′p = 1− εp, so k0 ≤ p− 1.

(f) If h = 1
2p and εp = 0, then k0 = p− 1 (use (c) and (e)).
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(g) limh→0+ k0(h) = +∞.
Indeed, for every k ∈ N, there exists a q > k such that εq = 0. Then for every p ≥ q and

1
2p+1 < h ≤ 1

2p , using (c), we get k0(h) ≥ q − 1 ≥ k.

Lemma 9.3.9. Let h be as in (9.3.3). If k0 = k0(h) ≥ 1, then

T (x + h)− T (x) =
(
hDk0

)
+
(
− (p− k0 − 2)

∞∑

k=p+1

1

2k
(1− εk − ε′k)

)

+
(1
2

∞∑

n=p

∞∑

k=n+1

1

2k
(Xn+1(x)Xk(x) −Xn+1(x + h)Xk(x + h))

)

=: A(h) + B(h) + C(h).

Remark 9.3.10. Observe that

|B(h)| ≤ |p− k0 − 2|
∞∑

k=p+1

3

2k
= |p− k0 − 2| 3

2p

(9.3.3)

≤ 6|p− k0 − 2|h,

|C(h)| ≤
∞∑

n=p

∞∑

k=n+1

1

2k
=

1

2p−1

(9.3.3)
< 4h. (9.3.4)

In particular,

lim
h→0+

ΔT (x, x + h) = ±∞⇐⇒ lim
h→0+

(
Dk0(h) +

B(h)

h

)
= ±∞.

Proof of Lemma 9.3.9. Using Lemma 9.3.7 and Remark 9.3.8, we get

T (x + h)− T (x) − C(h)

=
1

2

k0−1∑

n=0

∞∑

k=n+1

1

2k
(Xn+1(x)Xk(x)−Xn+1(x + h)Xk(x + h))

+
1

2

p−1∑

n=k0

∞∑

k=n+1

1

2k
(Xn+1(x)Xk(x) −Xn+1(x + h)Xk(x + h))

=

k0−1∑

n=0

Xn+1(x)
1

2

∞∑

k=n+1

1

2k
(Xk(x)−Xk(x + h))

+
1

2

∞∑

k=k0+1

1

2k
(Xk(x) + Xk(x + h))

+
1

2

p−1∑

n=k0+1

∞∑

k=n+1

1

2k
(−Xk(x) −Xk(x + h))

=

k0∑

n=1

(1− 2εn)

∞∑

k=n+1

1

2k
(ε′k − εk)

+
1

2

∞∑

k=p+1

1

2k
(1− 2εk + 1− 2ε′k)
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− 1

2
(p− 1− k0)

∞∑

k=p+1

1

2k
(1 − 2εk + 1− 2ε′k)

= (k0 − 2Ik0)

∞∑

k=1

1

2k
(ε′k − εk)− (p− k0 − 2)

∞∑

k=p+1

1

2k
(1− εk − ε′k)

= Dk0(x + h− x)− (p− k0 − 2)

∞∑

k=p+1

1

2k
(1 − εk − ε′k)

= A(h) + B(h). ��

Lemma 9.3.11. Let h be as in (9.3.3). Assume that k0 = k0(h) ≤ p− 1. Then

∞∑

k=p+1

1

2k
(1 − εk − ε′k) ≤ h. (9.3.5)

Moreover, if εp+m+1 = 0 for some m ∈ N0, then

∞∑

k=p+1

1

2k
(1− εk − ε′k) ≥ −h

(
1− 1

2m

)
. (9.3.6)

Proof . If k0 = p− 1, then (using Remark 9.3.8(b)) we get

∞∑

k=p+1

εk
2k

+ h =
1

2p
+

∞∑

k=p+1

ε′k
2k

.

If k0 ≤ p− 2, then (using Remark 9.3.8(b)(c)) we get

p∑

k=k0+2

1

2k
+

∞∑

k=p+1

εk
2k

+ h =
1

2k0+1
+

∞∑

k=p+1

ε′k
2k

.

In both cases, we have
∞∑

k=p+1

εk
2k

+ h =
1

2p
+

∞∑

k=p+1

ε′k
2k

.

Hence,

h−
∞∑

k=p+1

1

2k
(1− εk − ε′k) =

1

2p
+

∞∑

k=p+1

1

2k
(2ε′k − 1) =

∞∑

k=p+1

2ε′k
2k
≥ 0.

Moreover,

h
(
1− 1

2m

)
+

∞∑

k=p+1

1

2k
(1 − εk − ε′k) ≥ h− 1

2m+p
+

∞∑

k=p+1

1

2k
(1− εk − ε′k)

=
1

2p
+

∞∑

k=p+1

ε′k
2k
−

∞∑

k=p+1

εk
2k
− 1

2m+p
+

∞∑

k=p+1

1

2k
(1− εk − ε′k)
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=
1

2p
− 1

2m+p
+

∞∑

k=p+1

1

2k
(1− 2εk)

≥ 1

2p
− 1

2m+p
+

∞∑

k=p+1

1

2k
(−1) + 2

2p+m+1
= 0. ��

Lemma 9.3.12. For c ≥ 1, let

f(m) = fc(m) :=
(
1− 1

2m

)
(c−m), m ∈ N0,

and let m∗ = m∗
c := max{m ∈ N : f(m) = max f(N0)}. Then

log2 c− 2 < m∗ ≤ log2 c + 1. (9.3.7)

Proof . First observe that f(0) = 0. If c = 1, then f(1) = 0 and f(m) < 0 for m ≥ 2. Thus
m∗ = 1. If c > 1, then f(1) = 1

2 (c− 1) > 0, and hence m∗ ≥ 1.
Note that f(m + 1)− f(m) = 1

2m+1 (c + 1−m)− 1. Thus

f(m + 1) ≥ f(m)⇐⇒ 2m+1 + m ≤ c + 1.

Consequently,

2m
∗
+ m∗ − 1 ≤ c + 1 =⇒ 2m

∗ ≤ c + 2−m∗ ≤ c + 1 ≤ 2c

=⇒ m∗ ≤ log2 c + 1,

2m
∗+1 + m∗ > c + 1 =⇒ 2m

∗+2 > 2m
∗+1 + m∗ > c + 1 > c

=⇒ m∗ > log2 c− 2. ��

9.4 Proof of Theorem 9.3.4

We are going to prove statements (1) and (3) of Theorem 9.3.4.

Proof of (1)(⇐=). We assume that an − 2n −→ +∞. Then Dn −→ +∞ (cf. (9.3.1)). Let
1

2p+1 < h ≤ 1
2p and k0 := k0(h).

• If k0 ≤ p− 2, then

B(h) = −
( ∞∑

k=p+1

1

2k
(1− εk − ε′k)

)
(p− k0 − 2)

(9.3.5)

≥ −h(p− k0 − 2).

By Remark 9.3.8(b)(c), we have Dk0 = 2Ok0 − k0 = 2Op − 2− k0. Consequently,

Dk0 +
B(h)

h
≥ 2Op − 2− k0 − p + k0 + 2 = 2Op − p = Dp.

• If k0 = p− 1, then by (9.3.10), we have

Dk0 +
B(h)

h
≥ 2Op − 2− k0 − 6 = 2Op − (p− 1)− 8 = Dp − 7.
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• If k0 = p, then by (9.3.10), we have

Dk0 +
B(h)

h
≥ 2Ok0 − k0 − 12 = 2Op − p− 12 = Dp − 12.

Thus, T ′
+(x) = +∞. ��

Proof of (1)(=⇒). Recall that an − 2n = Dan and Dk −→ +∞ ⇐⇒ Dan −→ +∞
(cf. (9.3.1)). Suppose that Dk �−→ +∞. Then there exists a subsequence (nk)

∞
k=1 such that

limk→+∞ Dnk
= g < +∞. Let pk := min{n ≥ nk : εn = 0}, hk := 1

2pk . Thus k0(hk) = pk − 1
(cf. Remark 9.3.8(f)). Consequently,

Dk0(hk) +
B(hk)

hk
≤ 2Ok0(hk) − k0(hk) + 6 = 2(Opk

− 1)− (pk − 1) + 6

= 2(Onk
− 2)− pk + 7 ≤ 2Onk

− nk + 3 = Dnk
+ 3;

a contradiction. ��
Proof of (3)(⇐=). We assume that Ξn(1− x) −→ −∞. Hence bn − 2n −→ +∞ (cf. (9.3.2)),
and therefore Dan −→ −∞. Consequently, Dk −→ −∞ (cf. (9.3.1)).

Let 1
2p+1 < h ≤ 1

2p , and let n ∈ N be such that bn ≤ p < bn+1. Let m := bn+1− p− 1 ∈ N0.
Then εp+m+1 = 0.

• If k0 = p, then Dk0 +
B(h)
h ≤ Dk0 + 12.

• If k0 = p− 1, then Dk0 +
B(h)
h ≤ Dk0 + 6.

• If k0 ≤ p − 2, then k0 = bn − 1 (cf. Remark 9.3.8(b)(c)(d)). Since Obn = n, we get
Dk0 = 2Ok0 − k0 ≤ 2Obn − k0 = 2n− k0. Using (9.3.6), we get

B(h)

h
≤

(
1− 1

2m

)
(p− k0 − 2) ≤

(
1− 1

2m

)
(p− k0).

Thus

Dk0 +
B(h)

h
≤ 2n− k0 +

(
1− 1

2m

)
(p− k0)

k0=bn−1
p=bn+1

−m−1

= 2n− bn +
(
1− 1

2m

)
(bn+1 − bn −m) + 1.

Put mn := m∗
bn+1−bn

(Lemma 9.3.12). Then

2n− bn + fbn+1−bn(m) ≤ 2n− bn + fbn+1−bn(mn)

≤ 2n− bn + bn+1 − bn −mn ≤ bn+1 − 2bn + 2n−mn

(9.3.7)

≤ bn+1 − 2bn + 2n− log2(bn+1 − bn) + 2 = Ξn(1− x) + 2.

Finally, T ′
+(x) = −∞. ��

Proof of (3)(=⇒). Suppose that there exist a subsequence (bns)
∞
s=1 and M ∈ R such that

Ξns(1− x) > M , s ∈ N. We consider the following two cases.
• Dn −→ −∞, or equivalently, bn−2n −→ +∞. Fix any s ∈ N, and let ms := m∗

bns+1−bns

(Lemma 9.3.12). Note that ms < bns+1. Define ps := bns+1 −ms, hs :=
1

2ps . Then
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bns+1 −ms − bns ≥ bns+1 − bns − log2(bns+1 − bns)− 1

> M + (bns − 2ns)− 1 −→
s→+∞ +∞.

Hence bns < ps < bns+1 for s ≥ s0 � 1. Consequently, k0(hs) = bns − 1 (cf. Remark 9.3.8(d))
and

Dk0(s) = 2Ok0(hs) − k0(hs) = 2ns − bns − 1, s ≥ s0.

Moreover, ps − k0(hs)− 2 = bns+1 −ms − bns + 1− 2 = bns+1 − bns −ms − 1. Observe that
εk = ε′k = 1 for k = ps + 1, . . . , bns+1 − 1. Hence

∞∑

k=ps+1

1

2k
(1− εk − ε′k) ≤ −

bns+1−1∑

k=ps+1

1

2k
+

∞∑

k=bns+1

1

2k

= − 1

2ps
+

1

2bns+1−1
+

1

2bns+1−1

= − 1

2ps

(
1− 1

2bns+1−2−ps

)
= −hs

(
1− 1

2ms−2

)
.

Consequently, for s ≥ s0, we get B(hs)
hs
≥
(
1− 1

2ms−2

)
(bns+1 − bns −ms − 1). Finally,

Dk0(hs) +
B(hs)

hs
≥ 2ns − bns − 1 +

(
1− 1

2ms−2

)
(bns+1 − bns −ms − 1)

≥ bns+1 − 2bns + 2ns −ms − 1

2ms−2
(bns+1 − bns)− 2

(9.3.7)

≥ bns+1 − 2bns + 2ns − log2(bns+1 − bns)−
1

2ms−2
(bns+1 − bns)− 3

≥M − 1

2ms−2
(bns+1 − bns)− 3

(9.3.7)

≥ M − 19;

a contradiction.
• lim supn→+∞ Dn > −∞. Take a subsequence (nk)

∞
k=1 such that limk→+∞ Dnk

= g >
−∞. Let pk := max{n ≤ nk : εn = 0}, hk := 1

2pk . Then Dpk
≥ Dnk

and k0(hk) = pk − 1
(cf. Remark 9.3.8(b)(c)). Consequently, Dk0(hk) = Dpk

− 1 ≥ Dnk
− 1, and therefore,

Dk0(hk) +
B(hk)

hk
≥ Dk0(hk) − 6 ≥ Dnk

− 7;

a contradiction. ��

9.5 The Case of Normal Numbers

By Proposition A.9.3 and Theorems 9.3.4 and 4.3.2, we get the following theorem.

Theorem 9.5.1. The set

{x ∈ (0, 1) : T ′
+(x), T ′

−(x) do not exist (in the finite or infinite sense)}

is of full measure.
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Example 9.5.2. (a) If an := 2n + �√n�, x :=
∑∞

n=1
1

2an , then x is a normal number
(cf. § A.9) with Ξn(x) −→ −∞ (and hence, by Theorem 9.3.4(5), T ′(x) = +∞).
Indeed, it is clear that limn→+∞ n

an
= 1

2 . Hence, d1(x) =
1
2 . Moreover,

Ξn(x) = 2(n + 1) + �√n + 1� − 2n− 2�√n�+ 2n

− log2(2(n + 1) + �√n + 1� − 2n− �√n�)
= −�√n�+ (�√n + 1� − �√n�+ 2)− log2(�

√
n + 1� − �√n�+ 2)

−→ −∞.

Similarly for an := 2n+ �logn� (Exercise).
(b) There exists a normal number x such that an − 2n −→ +∞ (and hence, by Theo-

rem 9.3.4(1), T ′
+(x) = +∞), but Ξn(x) �−→ −∞ (and hence, by Theorems 9.3.4(2)

and 4.3.2, T ′
−(x) does not exist).

Indeed, let a1 := 3 and

an+1 :=

{
2n+ 3�√n�, if an ≤ 2n + �√n�
an + 1, otherwise

, n ∈ N.

Directly from the definition we get 2n + �√n� − 1 ≤ an ≤ 2n + 3�√n�.
In fact, for n = 1, the inequalities are trivial. Suppose that they hold for some n.
In the case an ≤ 2n + �√n�, we have

an+1 = 2n+ 3�√n� ≤ 2(n + 1) + 3�√n + 1�,
an+1 = 2n + 3�√n� ≥ 2(n + 1) + �√n + 1� − 1.

In the case an ≥ 2n + �√n�+ 1, we have

an+1 = an + 1 ≤ 2n + 3�√n�+ 1 ≤ 2(n + 1) + 3�√n�,
an+1 = an + 1 ≥ 2n+ �√n�+ 2 ≥ 2(n + 1) + �√n + 1� − 1.

Hence an − 2n ≥ �√n� − 1 −→ +∞ and an

n −→ 1
2 (thus d1(x) = 1

2 ). If n is such that
an ≤ 2n + �√n�, then

Ξn(x) = 2n + 3�√n� − 2an + 2n− log2(2n + 3�√n� − an)

≥ 4n + 3�√n� − 2(2n+ �√n�)− log2(2n + 3�√n� − (2n + �√n� − 1))

≥ �√n� − log2(2�
√

n�+ 1) ≥ �√n� − log2(�
√

n�)− 2.

It remains to observe that it is impossible that for some n ∈ N, we have an + k >
2(n + k) + �√n + k�, k ∈ N0.



Chapter 10

Bolzano-Type Functions II

Summary. In this chapter, using more advanced tools, we extend results stated in Chap. 5.

10.1 Bolzano-Type Functions

If we apply the general construction from § 5.1 to N = 4, ϕ1 = 3
8 , ϕ2 = 1

2 , ϕ3 = 7
8 , Φ1 = 5

8 ,
Φ2 = 1

2 , Φ3 = 9
8 , then we get the classical Bolzano function B : I −→ R. Recall that we

already know that B ∈ ND(I) (cf. Theorem 5.1.2). We have (cf. § 5.1):
(1
8

)n

≤ |Δ(Sn,i)| ≤
(5
8

)n

,
(1
8

)n

≤ δ(Jn,i) ≤
(3
8

)n

,

1 ≤ |κ(Sn,i)| ≤
(5
3

)n

, i = 1, . . . , 4n,

max
x∈I

|Ln+1(x) − Ln(x)| ≤ 1

4
max

{
|Δ(Sn,i)| : i = 1, . . . , 4n

}
≤ 1

4

(5
8

)n

.

We point out that the name Bolzano function is sometimes assigned to a different function;
cf., e.g., [Brž49, Kow23, Sin28].

Let M be the set of all local extrema of the function B. Moreover, let P denote the set of
all points x0 ∈ (0, 1) such that the determining sequence (Sn)

∞
n=1 for x0 (cf. Remark 5.1.1(d))

satisfies the following condition:

∀s∈N ∃n≥s :

type(Jn+1) = 3, type(Jn+2) = 2, type(Jn+3) = 1, type(Jn+4) = 4.

One can prove (Exercise) that the set P is uncountable (cf. [Jar81]).

Theorem 10.1.1 (cf. [Jar22, Jar81]; see also [Brž49, Kow23]). B ∈ ND∞((0, 1))∩ND±(I).
Moreover:
• if x ∈M ∩ (0, 1) is a local maximum, then B′

−(x) = +∞ and B′
+(x) = −∞;

• if x ∈M ∩ (0, 1) is a local minimum, then B′
−(x) = −∞ and B′

+(x) = +∞;
• if x = 3

7 , then D−f(x), D−f(x), D+f(x), D+f(x) ∈ R;
• if x ∈ P, then D−f(x) = D+f(x) = −∞, D−f(x) = D+f(x) = +∞, i.e., x is a knot

point (cf. Remark 3.5.6).
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? It is an open problem whether other Bolzano-type functions from Sect. 5.3 have similar

properties ?

Proof of Theorem 10.1.1. Put f := B. If (Sn)
∞
n=1, Jn := J(Sn) is a determining sequence,

then to simplify notation, we will write δn := Δ(Jn), Δn := Δ(Sn), κn := κ(Sn). Recall that
N denotes the set of nodes (§ 5.1). The proof, based entirely on [Jar81], will be divided into
11 steps.

Step 1o. If x0 /∈ N, then a finite derivative f ′(x0) does not exist.
Recall (Remark 5.1.3(b)) that MΔ = 5

8 , Σ = {1, 3}, and condition (5.1.1) is satisfied. Thus
the result follows directly from Theorem 5.1.2.

Step 2o. If x0 ∈ Np \ {1}, then a finite right-sided derivative f ′
+(x0) does not exist.

Suppose that f ′
+(x0) ∈ R exists. Let (Sn)

∞
n=1 be the determining sequence of type (L) for

x0. Then for n ≥ p, we get

κn = ΔLn(an, bn) = Δf(x0, bn) −→
n→+∞ f ′

+(x0).

Observe that if type(Jn0) ∈ {2, 4} for some n0 ≥ p, then type(Jn) = 1 for all n > n0. Thus,
we are always in case (A) (cf. the proof of Theorem 5.1.2); a contradiction.

Step 3o. If x0 ∈ Np \ {0}, then a finite or infinite left-sided derivative f ′−(x0) does not
exist.

Suppose that f ′
−(x0) ∈ R exists. Let (Sn)

∞
n=1 be the determining sequence of type (R) for

x0. Then for n ≥ p, we get

κn = ΔLn(an, bn) = Δf(x0, an) −→
n→+∞ f ′

−(x0).

Observe that if type(Jn0) ∈ {1, 3} for some n0 ≥ p, then type(Jn) = 4 for all n > n0. Thus,
we are always in case (B); a contradiction.

Step 4o. (N \ {0}) ∩M = ∅.
Suppose that x0 ∈ (N \ {0}) ∩M and let Sn, Jn = [an, bn] be as in Step 3o. Then we are

in case (B), and hence Δf(x0, ans−1) = −Δf(x0, ans) for all s ∈ N. This means that the
differential quotient oscillates in every neighborhood of x0; a contradiction.

Step 5o. Let S ∈ Sp, J := J(S) = [a, b], x0 := a + 4
5δ(J). Then f(x0) = f(a) + 4

3Δ(S). If
κ(S) > 0, then the minimum of f in J is realized at x = a and the maximum at x = x0. If
κ(S) < 0, then the maximum of f in J is realized at x = a and the minimum at x = x0.

Consequently, by Step 4o,

M \ {0} =
{
a +

4

5
δ(J) : J := J(S) = [a, b], S ∈ Sp, p ∈ N

}
.

In particular, M is countable and dense in I.
Indeed, suppose that κ(S) > 0 (the case κ(S) < 0 is left to the reader as an Exercise).

Let x∗, x∗ ∈ J be such that minJ f = f(x∗), maxJ f = f(x∗). We wish to prove that x∗ = a
and x∗ = x0. It is clear (Exercise) that x∗ = a.

Let (Sn)
∞
n=1 be a determining sequence for x∗ with Sp = S, Jp = J , Jp+1 = [a+ 1

2δ(J), b−
1
8δ(J)]. Obviously, x∗ also realizes the maximum in the interval Jp+1 and κp+1 > 0. Thus

ap+2 = ap+1 +
1

2
δp+1 = a +

1

2
δ(J) +

1

2
· 3
8
δ(J),
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bp+2 = bp+1 − 1

8
δp+1 = b − 1

8
δ(J)− 1

8
· 3
8
δ(J).

After a finite number of steps, we get

ap+k = a +
1

2
δ(J)

k−1∑

j=0

(3
8

)j

−→
k→+∞

a +
4

5
δ(J) = x0,

bp+k = b − 1

8
δ(J)

k−1∑

j=0

(3
8

)j

−→
k→+∞

b− 1

5
δ(J) = a +

4

5
δ(J) = x0.

Moreover,

f(ap+k) = f(a) +
1

2
Δ(S)

k−1∑

j=0

(5
8

)j

−→
k→+∞

f(a) +
4

3
Δ(S) = f(x0).

Step 6o. If x0 /∈ N, then an infinite derivative f ′(x0) does not exist.
Suppose that f ′(x0) ∈ {−∞,+∞} exists. Let (Sn)

∞
n=1 be the determining sequence for x0.

If (B) is satisfied, then we are done. Thus we may assume that there exists an n0 ∈ N such
that type(Jn) ∈ {1, 3} for n ≥ n0. Recall that κn = (53 )

n−n0κn0 for n ≥ n0. Thus

1

κn0

f ′(x0) = lim
n→+∞

1

κn0

Δf(an, bn) = lim
n→+∞

(5
3

)n−n0

= +∞.

We may exclude the case that type(Jn) = 1 for n� 1, because in such a case, we must have
x0 ∈ N. We consider the following three possibilities:

(C) There exists a sequence (ns)
∞
s=1, n1 ≥ n0, such that type(Jns+1) = type(Jns+2) = 3 for

all s ∈ N.

Fix an s ∈ N and let m := ns. Let J be the next interval from the right to Jm and let
S := S(J). Observe that δ(J) = 1

3δm, κ(S) = − 3
5κm, and Δ(S) = − 1

5Δm.
Suppose that κn0 > 0 (the case κn0 < 0 is left to the reader as an Exercise). Since

type(Jm+1) = type(Jm+2) = 3, we conclude that

f(x0) ≥ f(am) +
1

2
Δm +

1

2
· 5
3
· 3
8
Δm = f(am) +

13

16
Δm.

Define

xm := bm +
4

5
δ(J) = bm +

4

15
δm.

Note that 0 < xm − x0 < xm − am = 19
15δm. Using Step 5o, we have

f(xm) = f(bm) +
4

3
Δ(S) = f(am) + Δm − 4

3
· 1
5
Δm = f(am) +

11

15
Δm.

Hence

Δf(x0, xm) =
f(xm)− f(x0)

xm − x0
≤

(11
15
− 13

16

)
κm

15

19
.
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Thus

1

κn0

Δf(x0, xm) < − 19

15 · 16
(5
3

)m−n0 15

19
.

Consequently,

1

κn0

f ′(x0) = lim
s→+∞

1

κn0

Δf(x0, xns) = −∞;

a contradiction.

(D) There exists a sequence (ns)
∞
s=1, n1 ≥ n0, such that type(Jns+1) = type(Jns+2) = 1 for

all s ∈ N.
This case is left to the reader as an Exercise.

(E) There exists an n1 ∈ N such that type(Jn1+2n) = 3 and type(Jn1+2n+1) = 1 for all
n ∈ N0.

Fix an n ∈ N0 and let m := n1 + 2n. Then we have

am+1 = am, am+2 = am+1 +
1

2
δm+1 = am +

1

2
· 3
8
δm.

Hence

am+2k = am + δm
1

2

k∑

j=1

(3
8

)2j−1

−→
k→+∞

am +
12

55
δm,

f(am+2k) = f(am) + Δm
1

2

k∑

j=1

(5
8

)2j−1

−→
k→+∞

f(am) +
20

39
Δm.

Thus

x0 = am +
12

55
δm, f(x0) = f(am) +

20

39
Δm.

Let xm := am + 1
2δm. Then f(xm) = f(am) + 1

2Δm. Hence

Δf(x0, xm) =
f(am) + 1

2Δm − (f(am) + 20
39Δm)

am + 1
2δm − (am + 12

55δm)
=

1
2 − 20

39
1
2 − 12

55

κm

= − 1

31
· 50
39

κm,

and we get a contradiction as in case (C).

Step 7o. Let x0 ∈M ∩ (0, 1). If x0 is a local maximum, then f ′
−(x0) = +∞ and f ′

+(x0) =
−∞. If x0 is a local minimum, then f ′

−(x0) = −∞ and f ′
+(x0) = +∞.

Let x0 = a + 4
5δ(J) be as in Step 5o and let (Sn)

∞
n=1 be a determining sequence for x0.

Observe that ap = a, bp = b, an+1 = an + 1
2δn, bn+1 = bn − 1

8δn, and κn = (53 )
n−p

κp for all
n ≥ p. Assume that κp > 0 (the case κp < 0 is left for the reader as an Exercise).

If x′ ∈ [an, an+1], then f(x′) ≤ f(x0)− 1
2Δn. If x′′ ∈ [bn+1, bn], then f(x′′) ≤ f(an)+

9
8Δn.

Note that 0 < x0 − x′ < δn and 0 < x′′ − x0 < δn. Hence

Δf(x0, x
′) =

f(x0)− f(x′)
x0 − x′ >

1

2
κn =

1

2

(5
3

)n−p

κp.
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Consequently, f ′−(x0) = +∞. On the other hand,

Δf(x0, x
′′) =

f(x′′)− f(x0)

x′′ − x0

≤ f(an) +
9
8Δn − (f(an) +

4
3Δn)

δn
< −

(4
3
− 9

8

)(5
3

)n−p

κp.

Hence f ′
+(x0) = −∞.

Step 8o. Let x0 be such that for its determining sequence (Jn)
∞
n=1, we have type(Jn) = 2

for every n ∈ N. Then x0 = 3
7 and D−f(x0), D−f(x0), D+f(x0), D+f(x0) are finite.

We have an+1 = an + 3
8δn and δn = (18 )

n, n ∈ N. Consequently, x0 = 3
8

∑∞
n=0(

1
8 )

n = 3
7 .

Moreover, κn = (−1)n and

f(an+1) = f(an) + (−1)n 5
8
δn, n ∈ N.

Hence, f(x0) = 5
8

∑∞
n=0(− 1

8 )
n = 5

9 . Observe that an+k = an + 3
8

∑n+k−1
s=n (18 )

s, so x0 =
an + 3

7δn. Similarly, f(x0) = f(an) + (−1)n 5
9δn, n ∈ N. Fix an n ∈ N and take an arbitrary

x ∈ [a2n, a2n+1]. Then (37 − 3
8 )δ2n ≤ x0 − x ≤ δ2n and f(a2n) ≤ f(x) ≤ f(a2n) +

5
6Δ2n. Thus

|Δf(x0, x)| ≤ C = const, where C is independent of n and x. In a similar way (Exercise),
one gets |Δf(x0, x)| ≤ const for x ∈ [a2n+1, a2n+2]. Consequently, D−f(x0) and D−f(x0) are
finite. An analogous argument (Exercise) shows that D+f(x0) and D+f(x0) are finite.

Step 9o. If x0 ∈ P, then D−f(x0) = D+f(x0) = −∞, D−f(x0) = D+f(x0) = +∞.
Let S = [(a,A), (b, B)] be an arbitrary segment, J := [a, b], L(x) = A+κ(S)(x−a), x ∈ J .

Then for every point x0 ∈ J , there exists a point x∗
0 ∈ J such that |x0 − x∗

0| = 1
2δ(J) and

ΔL(x0, x
∗
0) = κ(S). We say that x∗

0 is conjugate to x0 with respect to S.
Take an x0 ∈ P and let (Sn)

∞
n=1 be a determining sequence for x0. Let x∗

n be conjugate to
x0 with respect to Sn, n ∈ N.

Take an s ∈ N and let n = n(s) ≥ s be as in the definition of the set P. We have
κn+1 = 5

3κn, κn+2 = − 5
3κn, κn+3 = −(53 )2κn. Observe that x∗

n < x0, x
∗
n+1 > x0, x

∗
n+2 > x0,

x∗
n+3 < x0. Moreover, Δf(x0, x

∗
n) = κn, Δf(x0, x

∗
n+1) = 5

3κn, Δf(x0, x
∗
n+2) = − 5

3κn,
Δf(x0, x

∗
n+3) = −(53 )2κn. Observe that if s −→ +∞, then n(s) −→ +∞, |κn(s)| −→ +∞,

x∗
n(s) −→ x0−, x∗

n(s)+3 −→ x0−, x∗
n(s)+1 −→ x0+, and x∗

n(s)+2 −→ x0+, which directly
implies the required result.

Step 10o. For every x0 ∈ (0, 1], a finite left-sided derivative f ′
−(x0) does not exist.

By Step 3o, we may assume that x0 /∈ N. Let (Sn)
∞
n=1 be a determining sequence for x0.

Suppose that there exists a sequence (ns)
∞
s=1 such that type(Jns) = 2, s ∈ N. Assume

that ns = m + 1 for some m. Assume that κm > 0 (the case κm < 0 is left to the reader
as an Exercise). Then f(am) + 1

2Δm − 1
3 · 1

8Δm ≤ f(x0) ≤ f(am) + 5
8Δm, and hence

Δf(x0, am) > (12 − 1
24 )κm. Let xm := am + 4

5 · 38δm < x0. Then f(xm) = f(am) + 4
5 · 58Δm.

Hence Δf(x0, xm) < −(56 − 5
8 )κm. Thus a finite left-sided derivative f ′

−(x0) does not exist.
A similar argument works if type(Jns) = 4, s ∈ N (Exercise).
Thus we may assume that type(Jn) ∈ {1, 3} for n� 1, but it is excluded that type(Jn) = 1

for n � 1. Then there exists a sequence (ns)
∞
s=1 such that type(Jns+1) = 3, s ∈ N. Let x∗

ns

be conjugate to x0 with respect to Sns . Then x∗
ns

< x0 and Δf(x0, x
∗
ns
) = κns . Thus a finite

f ′
−(x0) does not exist.
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Step 11o. For every x0 ∈ [0, 1), a finite right-sided derivative f ′
+(x0) does not exist.

Suppose that there exists a sequence (ns)
∞
s=1 such that type(Jns+1) = 1, s ∈ N. Let x∗

ns

be conjugate to x0 with respect to Sns . Then x0 < x∗
ns

and Δf(x0, x
∗
ns
) = κns . Thus a finite

f ′
+(x0) does not exist.
Hence we may assume that type(Jn) ∈ {2, 3, 4} for n � 1, but it is excluded that

type(Jn) = 4 for n � 1. Thus, suppose that type(Jn+1) = 2 or type(Jn+1) = 3 for in-
finitely many n’s. Fix such an n. Then (x0, f(x0)) lies in the rectangle determined by the
lines x = an + 3

8δn, an, x = an + 7
8δn, y = f(an) +

11
24Δn, and y = f(an) +

4
3Δn. Let

P1 := (bn, f(bn)),

P2 := (bn − 1
16δn, f(bn) +

1
16Δn),

P3 := (bn − 1
64δn, f(bn)− 1

64Δn).

For (ξ, η) ∈ R := [ 38 ,
7
8 ]× [ 1124 ,

4
3 ], let P (ξ, η) := (bn + ξδn, f(bn)+ ηΔn), and let si(ξ, η) be the

slope of the segment [P (ξ, η), Pi]. We have

s1(ξ, η) =
η − 1

ξ − 1
κn, s2(ξ, η) =

η − 1− 1
16

ξ − 1 + 1
16

κn, s3(ξ, η) =
η − 1 + 1

64

ξ − 1 + 1
64

κn.

Put ϕ := 1
|κn| (max{s1, s2, s3} − min{s1, s2, s3}). It clear that ϕ : R −→ R>0 is continuous

and independent of n. Hence there exists a point (ξ0, η0) ∈ R such that

0 < C = ϕ(ξ0, η0) = minϕ(R),

where C is independent of n. Let μ, ν ∈ {1, 2, 3} be such that sμ(ξ0, η0)− sν(ξ0, η0) = C|κn|.
Put x′

n := Pμ(x0, η0), x′′
n := Pν(ξ0, η0). Then Δf(x0, x

′
n)−Δf(x0, x

′′
n) ≥ C|κn|, which easily

implies that a finite right-sided derivative f ′
+(x0) does not exist. ��



Chapter 11

Besicovitch Functions

Summary. In Chap. 7, it was shown that B(I) is of first category in C(I), i.e., most functions in C(I) have

somewhere on I an infinite one-sided derivative. In the first part of this chapter, the construction of concrete

functions belonging to B(I), resp. BM(I), is discussed. The remaining part deals with a categorial argument

proving that the set BM(I) is in some sense even a large set.

11.1 Morse’s Besicovitch Function

Recall first that according to a result of S. Saks (see Theorem 7.5.1), the set B(I) is of first
category in C(I). Therefore, most of the functions in C(I) have somewhere on I an infinite
one-sided derivative. Nevertheless, in 1924, A.S. Besicovitch found the first effective geomet-
ric construction of a function belonging to B(I). Later, in 1928, E.D. Pepper treated the
same function, trying to clarify certain details (see [Pep28]). Nevertheless, details of their
proofs remained unclear. In this section, we present a 1938 construction given by A.P. Morse
(see [Mor38]) of a Besicovitch–Morse function M on I, i.e., a function M ∈ BM(I) (see
Sect. 11.1.4).

11.1.1 Preparation

Put

λn :=
1

2
+

n

2(|n|+ 3)
, n ∈ Z.
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Then (Exercise):

• 0 < λn+1 − λn < λ2
n < λn, λn + λ−n = 1, n ∈ Z.

Indeed, if n ∈ Z, then

0 < λn+1 − λn =
1

2

3

(|n|+ 3)(|n + 1|+ 3)
=

( 3

2(|n|+ 3)

)2 2(|n|+ 3)

3(|n + 1|+ 3)

≤
(3 + n + |n|
2(|n|+ 3)

)2 2(|n + 1|+ 3 + 1)

3(|n + 1|+ 3)

= λ2
n

2

3

(
1 +

1

|n + 1|+ 3

)
≤ 8

9
λ2
n < λ2

n.

• λn −→
n→+∞ 1, λn −→

n→−∞ 0.

• λ2n+1 <
√

λ2n, n ∈ Z.
Indeed, if n ∈ N0, then

λ2
2n+1 =

(1
2
+

1

2

2n + 1

2n + 1 + 3

)2

=
1

4

(4n + 5

2n + 4

)2

≤ 1

4

(4n + 5)2

(2n + 3)(2n + 5)
<

1

2

4n+ 3

2n+ 3
= λ2n.

If n = −m, m ∈ N, then

λ2
2n+1 =

(1
2
+

−2m + 1

2(| − 2m + 1|+ 3)

)2

=
1

4

( 3

2m + 2

)2

≤ 1

4

9

(2m + 3)(2m + 1)
<

1

2

3

2m + 3
= λ2n.

Moreover, we have the following result.

Lemma 11.1.1. There exists a closed, nowhere dense subset E ⊂ I with

L(E ∩ [λn, λn + h]) > 0, L(E ∩ [λn − h, λn]) > 0, n ∈ Z, h > 0.

Proof . Step 1o. Fix a sequence (ηn)
∞
n=1 such that

1 > 2η1 > 4η2 > · · · > 2kηk > . . .

(for example, take ηk := 1
2k

ks+1
k+1 , where s ∈ (0, 1)). Then we construct a Cantor-like set along

the following standard lines:
From I, we remove the open concentric interval I1,1 of length 1−2η1. What remains are two

closed intervals J1,1 and J1,2, each of length η1. Now we remove a concentric open interval I2,j
of length η1 − 2η2 of the intervals J1,j , j = 1, 2. Then four closed intervals J2,j , j = 1, 2, 3, 4,
remain, each of length η2. Now we continue this construction. At the nth step, we end up with

2n intervals Jn,k, k = 1, . . . , 2n, each of length ηn. Put C :=
⋂∞

n=1

(⋃2n

k=1 Jn,k

)
. Obviously,

C is a closed subset of I without inner points. Moreover, we get L(C) = limn→∞ 2nηn (in
the special case from above we have L(C) = s). Moreover, L([0, ηn]∩C) = limk→∞ 2kηn+k =
L(C)/2n. Because of the symmetry with respect to 1/2, we have also the following identity:

L(C ∩ [1− ηn, 1]) = L(C)/2n.
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Step 2o. Fix a Cantor-like set C as above with 2kηk = ks+1
k+1 . Then L(C) = s > 0. So it

remains to put E :=
⋃

n∈Z

(
λn + (λn+1 − λn)C

)
. ��

Definition 11.1.2. Let θ : [0, 2] −→ R be defined as

θ(x) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

γn + (γn+1 − γn)
L(E∩[λn,x])

L(E∩[λn,λn+1])
, if x ∈ [λn, λn+1], n ∈ Z

1, if x = 1

0, if x = 0

θ(2− x), if 1 ≤ x ≤ 2

,

where E is a set satisfying the properties of Lemma 11.1.1 and

γn :=

{
λn, if n ∈ 2Z+ 1√

λn, if n ∈ 2Z
.

Remark 11.1.3. We collect some simple properties of the function θ.

(a) θ is well defined and continuous on (0, 1).

(b) If λ2n−1 ≤ x ≤ λ2n, then λ2n−1 ≤ θ(x) ≤ √λ2n (use that λ2n−1 <
√

λ2n); if λ2n ≤ x ≤
λ2n+1, then λ2n+1 ≤ θ(x) ≤ √λ2n (use that λ2n+1 <

√
λ2n), n ∈ Z; in particular, θ is

continuous on I and therefore on [0, 2].

(c) If K(θ) := int{x ∈ [0, 2] : θ is differentiable at x with θ′(x) = 0}, then K(θ) is an open
dense subset of (0, 2) (use that the set E is nowhere dense).

(d) If x ∈ (0, 1), then x
2 ≤ θ(x) ≤ x+3

4 . Indeed, if λ2n−1 ≤ x ≤ λ2n, then

x

2
≤ λ2n

2
≤ λ2n−1 = γ2n−1 ≤ θ(x) ≤

√
λ2n

=
√
1− λ−2n ≤

√
1− λ−2n+1

2
=

√(1 + λ2n−1

2

)
· 1

≤
1+λ2n−1

2 + 1

2
≤ 3 + x

4
,

where in the penultimate inequality, the standard relation between the geometric and
algebraic means is used.
If λ2n ≤ x ≤ λ2n+1, then x ≤ λ2n+1 ≤ θ(x) ≤ √λ2n ≤ √x ≤ 3+x

4 .

Lemma 11.1.4. (a) If x0 ∈ (0, 2), then lim supξ→x0
|Δθ(x0, ξ)| < +∞.

(b) If n ∈ Z, then λn /∈ K(θ). In particular, 1 /∈ K(θ).

(c) Let 0 ≤ α < β ≤ 2 be such that (α, β) ⊂ K(θ). Then θ(m) ≥ (β−α)1/2, where m := α+β
2 .

Proof . (a) Step 1o. Let x0 = 1. If 0 < ξ < 1, then one finds an n ∈ Z such that λn ≤ ξ ≤ λn+1.
Using Remark 11.1.3(b), it follows that:
if n = 2k for some k ∈ Z, then

|θ(ξ)− θ(1)| = 1− θ(ξ) ≤ 1− λ2k+1 = 1− λn ≤ 1− ξ,

and if n = 2k − 1 for some k ∈ Z, then

|θ(ξ)− θ(1)| = 1− θ(ξ) ≤ 1− λn = λ−n ≤ 2λ−n−1 = 2(1− λn+1) ≤ 2(1− ξ).
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If 1 < ξ < 2, then 0 < 2− ξ < 1, and thus

|θ(ξ) − θ(1)| = |θ(2− ξ)− θ(1)| ≤ 2(1− (2− ξ)) = 2(ξ − 1).

Then both inequalities give lim supξ→1 |Δθ(1, ξ)| ≤ 2.
Step 2o. Let x0 ∈ (0, 1) be such that there exists an n ∈ Z such that λn < x0 < λn+1. Take

a ξ ∈ (λn, λn+1), ξ �= x0. Then

|θ(ξ) − θ(x0)| ≤ |γn+1 − γn| |ξ − x0|
L(E ∩ [λn, λn+1])

≤ C|ξ − x0|

(use that |γn+1 − γn| ≤ 1).
Now let x0 = λn for a suitable n. If ξ ∈ (λn, λn+1), then

|θ(ξ) − θ(x0)| ≤ |γn+1 − γn| |ξ − x0|
L(E ∩ [λn, λn+1])

≤ C|ξ − x0|

for a possibly different constant C. An analogous estimate is true if ξ ∈ (λn−1, λn) with a
new constant C. Hence lim supξ→x0

|Δθ(x0, ξ)| < +∞.
Step 3o. The case x0 ∈ (1, 2) is left for the reader as an Exercise.

(b) Assume that there is an n ∈ Z with λn ∈ K(θ). Then there is an interval J := (α′, β′) ⊂
K(θ) with λn ∈ J . Thus the function θ has to be identically equal to γn on J , contradicting
the fact that L([λn, ·)) is not identically 0 on J ∩ [λn, λn+1].

In particular, 1 /∈ K(θ).

(c) By (b), we may assume for the interval (α, β) that (α, β) ⊂ (0, 1) and that (α, β) ⊂
(λN , λN+1) for a suitable N . Recall that λn+1 − λn ≤ λ2

n, n ∈ N. If N is odd, then

θ(m) ≥ λN > (λN+1 − λN )1/2 ≥ (β − α)1/2.

If N is even, then θ(m) ≥ λN+1 > λN > (β − α)1/2.

��
For future use, put H(θ) := [0, 2] \K(θ). Note that 1 and all the λn belong to H(θ).

11.1.2 A Class of Continuous Functions and Its Properties

Definition 11.1.5. By A we denote the set of all functions f ∈ C((−1, 1)) satisfying the
following properties:

(a) 0 ≤ f(x) = f(−x), x ∈ (−1, 1);
(b) if K(f) := int{x ∈ (−1, 1) : f ′(x) exists and f ′(x) = 0}, then K(f) is dense in (−1, 1);
(c) if P (f) := {x ∈ (−1, 1) : f(x) > 0}, then P (f) is dense in (−1, 1);
(d) if (α, β) ⊂ P (f), then there exists an h ≥

√
β−α
2 such that f(x) = hθ(2x−2α

β−α ), x ∈ (α, β).

In particular, θ̃ ∈ A, where θ̃(x) := θ(1 + x), x ∈ [−1, 1].
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Lemma 11.1.6. Let f ∈ A. Then:

(a) K(f) ⊂ P (f);

(b) if (α, β) ⊂ K(f) with −1 < α < β < 1, then f(m) ≥ (β − α)1/2 for m := α+β
2 ;

Proof . (a) Use the fact that K(f) and P (f) are dense in (−1, 1).
(b) By assumption, there exist numbers α′, β′ with −1 < α′ < α < β < β′ < 1 such that

(α′, β′) ⊂ P (f) (use the continuity of f). Put

m′ :=
α′ + β′

2
, α′′ :=

2(α− α′)
β′ − α′ , β′′ :=

2(β − α′)
β′ − α′ , m′′ :=

α′′ + β′′

2
.

By virtue of Definition 11.1.5(c) we obtain an h ≥ (β
′−α′
2 )1/2 such that

f(x) = hθ
(2x− 2α′

β′ − α′
)
, x ∈ (α′, β′);

in particular, one has h = f(m′).
Recall that (α, β) ⊂ K(f), i.e., f is identically constant on (α, β). Therefore, θ itself is

identically constant on the interval (2α−2α′
β′−α′ , 2β−2α′

β′−α′ ) � m′′. Therefore,

f(m) = f(m′)θ
(2m− 2α′

β′ − α′
)
= f(m′)θ(m′′) ≥ f(m′)(β′′ − α′′)1/2

≥
(β′ − α′

2

)1/2

(β′′ − α′′)1/2 = (β − α)1/2. ��

Remark 11.1.7. Let f ∈ A and J = (α, β) ⊂ K(f). Then −1 < α and β < 1. Otherwise,
let, for example, α = −1. Then f |J ≡ c > 0. Simultaneously, f(x) = hθ(2x−2α

β′−α ), x ∈ J , where

β′ ≥ β and h > 0. Therefore,

c = lim
x→−1+

f(x) = h lim
x→−1+

θ
(2x− 2α

β′ − α

)
= 0;

a contradiction. A similar argument works for the remaining case.

11.1.3 A New Function f for Every f ∈ A

Let us first fix the following convention to simplify formulas: if J = (α, β) is any bounded
open interval, then we denote by mJ its midpoint. Moreover, if A ⊂ [−1, 1] is some open
subset and if s > 0, then

A(s) := {−1,+1} ∪ {x ∈ (−1, 1) : ∃a<b : x ∈ (a, b) ⊂ A, b− a > s}.

Now choose a function f ∈ A. To such a function we associate a new function, denoted by
f , via the following definition.

Definition 11.1.8. For x ∈ (−1, 1), put

f(x) :=

{
0, if x ∈ H(f) := (−1, 1) \K(f)

hθ(2x−2α
β−α ), if x ∈ J = (α, β) ⊂ K(f), J is maximal

,
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where

h := min
{f(mJ)√

2
,
(
inf K(f)(β−α) ∩ [mJ , 1]− supK(f)(β−α) ∩ [−1,mJ ]

)1/2}
.

In the following, we will discuss various properties of this new function.

Lemma 11.1.9. Let f ∈ A, and let J = (α, β) ⊂ K(f) be maximal. Then:

(a) f(mJ ) ≥
√

β−α
2 ;

(b) if x ∈ J , then

0 < f(−x) = f(x) = f(mJ )θ
(2x− 2α

β − α

)
≤ f(mJ) ≤ f(x)√

2
.

Proof . Put α0 := supK(f)(β−α) ∩ [−1,mJ ] and β0 := inf K(f)(β−α) ∩ [mJ , 1].
(a) Then

f(mJ ) = hθ
(2mJ − 2α

β − α

)
= hθ(1) = h

= min
{
(β0 − α0)

1/2,
f(mJ)√

2

}
≤ f(x)√

2

for all x ∈ (α, β) (recall that f is identically constant on (α, β)). Moreover, using
Lemma 11.1.6(b),

f(mJ) = h = min
{
(β0 − α0)

1/2,
f(mJ)√

2

}
≥

√
β − α

2
> 0.

In particular, f(x) = f(mJ )θ(
2x−2α
β−α ) > 0 for all x ∈ J .

(b) It remains to verify that f(x) = f(−x), x ∈ J . Fix an x ∈ J . Then −J ⊂ K(f) is a
maximal subinterval with −x ∈ −J . Therefore,

f(−x) = h̃θ
( 2x+ 2β

−α− (−β)

)
,

where h̃ := min{f(mJ)/
√
2, (β̃0 − α̃0)

1/2} with (using the symmetry of f)

β̃0 := inf K(f)(β−α) ∩ [−mJ , 1] = − supK(f)(β−α) ∩ [−1,mj] = −α0,

α̃0 := supK(f)(β−α) ∩ [−1,−mJ ] = − inf K(f)(β−α) ∩ [mJ , 1] = −β0.

Finally, applying θ(1 + ξ) = θ(1 − ξ), ξ ∈ (0, 1), leads to

f(−x) = f(mJ)θ
(−2x+ 2β

β − α

)
= f(mJ )θ

(2x− 2α

β − α

)
= f(x). ��
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Corollary 11.1.10. Let f ∈ A. Then:

(a) 0 ≤ f(x) = f(−x) ≤ f(x)/
√
2, x ∈ (−1, 1);

(b) K(f) = P (f) and H(f) = Z(f) := {x ∈ (−1, 1) : f(x) = 0}.
Proof . (a) Using the former lemma it suffices to verify the claim for all x ∈ H(f). Because

of the symmetry, we have x ∈ H(f) if and only if −x ∈ H(f). Thus, f(x) = f(−x) = 0.
(b) By virtue of Lemma 11.1.9(b), we have K(f) ⊂ P (f). Directly from the definition it

follows that H(f) ⊂ Z(f). To get the equalities, use the fact that P (f)∪Z(f) = (−1, 1) =
K(f) ∪H(f) and that in each case, both sets are disjoint.

��
Theorem 11.1.11. Let f ∈ A. Then:

(a) if the interval J = (α, β) ⊂ K(f) is maximal, then α,mJ ∈ H(f) and

f(α) = lim
ξ→α+

f(ξ) = 0

≤ lim inf
H(f)�ξ→α+

Δf(α, ξ) < lim sup
H(f)�ξ→α+

Δf(α, ξ) = +∞;

(b) if x ∈ H(f) ∩ P (f), then

f(x) = lim
ξ→x+

f(ξ) = 0

≤ lim inf
H(f)�ξ→x+

Δf(x, ξ) < lim sup
H(f)�ξ→x+

Δf(x, ξ) = +∞.

Proof . (a) We know that by definition, f(x) = f(mJ )θ(
2x−2α
β−α ), x ∈ J , and that λn ∈ H(θ)

(see Lemma 11.1.4(b)). Therefore, α ∈ H(f). The same argument, using the fact that
1 ∈ H(θ), leads to mj ∈ H(f).
Knowing that f(α) = 0 leads to

lim
ξ→α+

f(mJ)θ
(2ξ − 2α

β − α

)
= f(mJ )θ(0) = 0 = f(α).

Moreover, we know that f(ξ) − f(α) ≥ 0, which implies the first inequality.
Finally, put ξn := α + λn(β − α)/2, n ∈ Z. Recall that λn ∈ H(θ). Thus ξn ∈ H(f). Then

f(ξn)− f(α)

ξn − α
=

hθ(λn)

λn

2

β − α
=

{
2h

β−α , if n ∈ 2Z+ 1√
λn

λn

2h
β−α , if n ∈ 2Z

.

Letting n −→ −∞ implies the final claim in (a).

(b) Applying (a), we may assume, without loss of generality, that x ∈ P (f) ∩ H(f) ∩
H(f) ∩ (x, 1].

Step 1o. Put

M(r) := sup
t∈(−1,1)

(
inf K(f)(r) ∩ [t, 1]− supK(f)(r) ∩ [−1, t]

)
.

Recall that K(f) is open. Therefore, K(f)(r) is an increasing sequence of sets with
K(f)(r) ↗

r→0+
K(f). Moreover, M(r) −→

r→0+
0. In fact, let ε be a given positive number.
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Then choose points −1 = a0 < a1 < · · · < aN = 1 such that aj − aj−1 < ε/2,
j = 1, . . . , N . Since all these intervals intersect K(f), we obtain a positive δ such that
K(f)(δ) ∩ [aj−1, aj ] �= ∅, j = 1, . . . , N . Hence, M(r) < ε for all positive r < δ.

Let (ξn)
∞
n=1 be a sequence in K(f) with ξn ↘ x. Choose maximal intervals Jn = (αn, βn) ⊂

K(f) containing ξn. Then

0 = f(x) ≤ f(ξn) ≤ f(mJn) ≤
(
M(βn − αn)

)1/2 −→
n→+∞ 0,

where the first inequality follows from Corollary 11.1.10 and the last one from Defini-
tion 11.1.8.

Step 2o. Since x ∈ P (f), i.e., f(x) > 0, there exists a positive ε such that f ≥ f(x)/2 on
(x − ε, x + ε) ⊂ (−1, 1). Then we find an r0 > 0 such that

√
2M(r) < f(x)/2, r ∈ (0, r0).

Finally, recall that x is an accumulation point of H(f) from the right. Therefore, we can
choose a sequence (xj)

∞
j=1 ⊂ H(f) ∩ (x, x + ε) such that xj ↘

j→∞
x.

Let (α1, β1) ⊂ K(f)∩(x2, x1) be a maximal subinterval with length δ1. Then there are only
a finite number of maximal intervals of K(f)∩(x, β1) with length greater or equal to δ1. Denote
the one of these intervals with maximal length d1 by (a1, b1). Then [x,m1]∩K(f)(b1−a1) = ∅,
where m1 := (a1 + b1)/2. Fix a j1 with xj1 < a1 and xj1 − xj1+1 < d1/2 and then take
a maximal interval (α2, β2) ⊂ K(f) ∩ (xj1+1, xj1). Repeating the above construction leads
to an interval (a2, b2) with b2 ≤ β2 of maximal length d2 with respect to β2 − α2. Thus,
[x,m2] ∩K(f)(b2−a2) = ∅, where m2 := (a2 + b2)/2.

Continuing the construction leads to a sequence of maximal intervals (an, bn) ⊂ K(f) and
midpoints mn := (an + bn)/2 satisfying the following properties:

• mn −→ x+;

• [x,mn] ∩K(f)(bn−an) = ∅;

• 2M(bn − an) ≤ f(mn).

Therefore, f(mn) ≤
(
M(βn −αn)

)1/2
< f(mn)/

√
2, n ∈ N. Thus Definition 11.1.8 implies

that

f(mn) =
(
inf K(f)(βn−αn) ∩ [mn, 1]− supK(f)(βn−αn) ∩ [−1,mn]

)1/2

≥ (mn − supK(f)(βn−αn) ∩ [−1, x])1/2 ≥ (mn − x)1/2,

which gives
f(mn)− f(x)

mn − x
≥ (mn − x)1/2

mn − x
−→

n→+∞ +∞,

while 0 = f(αn)−f(x)
αn−x −→

n→+∞ 0. Recalling that αn,mn ∈ H(f) completes the proof of the last

two inequalities in (b). ��
Applying all the previous results finally gives the following theorem.

Theorem 11.1.12. If f ∈ A, then f ∈ A.

Proof . Take an f ∈ A.
Step 1o. So far, we know that f is right continuous at every point from H(f) ∩ P (f)

(see Theorem 11.1.11(b)), at every point of H(f) ∩ Z(f) (use Corollary 11.1.10(a) and the
continuity of f), and at all points of K(f) (use Lemma 11.1.9 and the continuity of θ). The
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symmetry of f is a consequence of Corollary 11.1.10(a), and it gives the continuity of f . Thus
f fulfills the condition in Definition 11.1.5(a).

Step 2o. By definition, we know that K(θ) is dense in (0, 2). Therefore, using
Lemma 11.1.9(b), we have that K(f) is dense in K(f), which itself is dense in (−1, 1).
Hence, K(f) is dense in (−1, 1).

Moreover, P (f) = K(f) (see Corollary 11.1.10(b)) and therefore, P (f) is dense in (−1, 1).
Step 3o. To see that f fulfills also the last condition in Definition 11.1.5, apply Corol-

lary 11.1.10(b) and Lemma 11.1.9(a). ��

11.1.4 A Besicovitch–Morse Function

Let F0(x) := θ(x + 1), x ∈ (−1, 1), and if n ∈ N0, then Fn+1 := Fn. Recall that F0 ∈ A
and therefore, using Theorem 11.1.12, Fn ∈ A, n ∈ N. In particular, the functions Fn are
symmetric, nonnegative, and continuous on (−1, 1). Moreover, Corollary 11.1.10(a) implies
that

Fn+1(x) ≤ Fn(x)/
√
2 ≤ · · · ≤ F0(x)/(

√
2)n+1 ≤ 1/(

√
2)n+1, n ∈ N.

Hence, the series

M(x) :=

∞∑

ν=0

(−1)νFν(x), x ∈ (−1, 1),

is uniformly convergent, i.e., M is a symmetric continuous function on the interval (−1, 1).
We will see that M is an example of a Besicovitch–Morse function.

Theorem 11.1.13. The function M is symmetric and continuous on (−1, 1), and it satisfies

lim inf
ξ→x+

|ΔM(x, ξ)| < lim sup
ξ→x+

|ΔM(x, ξ)| = +∞, x ∈ (−1, 1).

If x ∈ ⋂∞
n=0 P (Fn), then

lim inf
ξ→x+

|ΔM(x, ξ)| = 0.

Remark 11.1.14. (a) SinceM is symmetric, the corresponding statements for the left-sided
limits are also true.

(b) Recall that the sets P (Fn) are open dense subsets of the interval (−1, 1). Hence their
intersection is a residual subset of (−1, 1).

(c) It remains to observe that if f(x) := M(− 1
2 + x), x ∈ I, then f ∈ BM(I).

Proof of Theorem 11.1.13. Step 1o. Let x0 ∈
⋃∞

n=0 Z(Fn). Because of Corollary 11.1.10(b),
we know that Z(Fk) ⊂ Z(Fk+1), k ∈ N0. Therefore, there exists an N ∈ N such that
x0 ∈ Z(FN ) \ Z(FN−1). Thus, x0 ∈ P (FN−1) ⊂ P (FN−2) ⊂ · · · ⊂ P (F0). Now applying
the property (c) in Definition 11.1.5 and Lemma 11.1.4(a), it follows that

lim sup
ξ→x0+

|ΔFk(x0, ξ)| < +∞, k = 0, . . . , N − 1.

Hence
lim sup
ξ→x0+

|ΔSN−1(x0, ξ)| < +∞,

where SM :=
∑M

μ=0(−1)μFμ and RM := M − SM , M ∈ N0.
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Moreover, if ξ ∈ Z(FN+1), then ΔRN (x0, ξ) = 0. Applying that H(Fk) = Z(Fk+1), k ∈ N0

(see Corollary 11.1.10(b)), and Theorem 11.1.11(b), we obtain

0 ≤ lim inf
Z(FN+1)�ξ→x0+

ΔFN (x0, ξ) = lim inf
H(FN )�ξ→x0+

ΔFN (x0, ξ)

< lim sup
H(FN )�ξ→x0+

ΔFN (x0, ξ) = lim sup
Z(FN+1)�ξ→x0+

ΔFN (x0, ξ) = +∞.

Thus,

lim inf
ξ→x0+

|ΔM (x0, ξ)| ≤ lim inf
Z(FN+1)�ξ→x0+

|ΔM(x0, ξ)|

= lim inf
Z(FN+1)�ξ→x0+

|ΔSN−1(x0, ξ) +ΔFN (x0, ξ)|

≤ lim sup
Z(FN+1)�ξ→x0+

|ΔSN−1(x0, ξ)|+ lim inf
Z(FN+1)�ξ→x0+

|ΔFN (x0, ξ)| < +∞

and

lim sup
ξ→x0+

|ΔM (x0, ξ)| ≥ lim inf
Z(FN+1)�ξ→x0+

|ΔSN−1(x0, ξ) +ΔFN (x0, ξ)|

≥ lim sup
Z(FN+1)�ξ→x0+

|ΔFN (x0, ξ) +ΔFN (x0, ξ)| − lim inf
Z(FN+1)�ξ→x0+

|ΔSN−1(x0, ξ)|

= +∞.

Summarizing, we have proved that if x0 ∈
⋃∞

n=0 Z(Fn), then

lim inf
ξ→x0+

|ΔM(x0, ξ)| < lim sup
ξ→x0+

|ΔM (x0, ξ)| = +∞.

Step 2o. Let x0 ∈
⋂∞

n=0 P (Fn). Fix an n ∈ N and choose a maximal interval Jn = (αn, βn) ⊂
P (Fn) with x0 ∈ Jn. Then βn ∈ Z(Fn), and therefore Fk(βn) = 0 for all k ∈ Nn. As before,
let mn denote the midpoint of Jn.

Then by virtue of Corollary 11.1.10(a), we have Jk ⊂ P (Fk) ⊂ P (Fk+1) = K(Fk), 0 ≤ k ≤
n− 1. Thus Fk is constant on Jn, and therefore, Fk(mn) = Fk(x0) = F (βn), k = 0, . . . , n− 1.
Hence, Sn−1(βn) = Sn−1(x0).

If n is an even number, then

M(βn)−M (x0)

= Sn−1(βn)− Sn−1(x0) + Fn(βn)− Fn(x0) + Rn(βn)−Rn(x0)

= −Fn(x0)−Rn(x0) ≤ −Fn(x0)−
∑

k>n

(−1)kFk(x0)

≤
(
− 1 +

1√
2

) ∞∑

k=0

Fn+2k(x0) ≤ 0.

When n is odd, we get

M(βn)−M (x0)

= Sn−1(βn)− Sn−1(x0)− Fn(βn) + Fn(x0) + Rn(βn)−Rn(x0)
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= Fn(x0)−Rn(x0) ≥ Fn(x0)−
∑

k>n

(−1)kFk(x0)

≥
(
1− 1√

2

) ∞∑

k=0

Fn+2k(x0) ≥ 0.

Since the Jn’s are chosen to be maximal, we have Jn+1 ⊂ Jn. We saw just above that
M −M (x0) has values of different signs at the points βn+1 and βn. Hence, there are zeros
ξn ⊂ [βn+1, βn] of this function, i.e., M(ξn) = 0. Moreover,

0 < ξn − x0 ≤ βn − ξn ≤ ηn − αn ≤ 2(Fn(mn))
2 ≤ 2/2n −→

n→∞ 0; (11.1.1)

in particular, the ξn converge from the right to x0. Hence we obtain the following inequality:

lim inf
ξ→x0+

|ΔM(x0, ξ)| ≤ lim inf
n→∞ |ΔM(x0, ξn)| = 0.

Summarizing, we have proved that if x0 ∈
⋂∞

n=0 P (Fn), then

lim inf
ξ→x0+

|ΔM(x0, ξ)| = 0.

Step 3o. Let x0 ∈
⋂∞

ν=1 P (Fν). Moreover, for n ∈ N we choose the interval Jn = (αn, βn) ⊂
P (Fn) as in Step 2o. Recall that with the same reasoning as in Step 2o, we have Fk(mn) −
Fk(x0) = 0, k = 0, . . . , n − 1. Thus, Sn−1(mn) − Sn−1(x0) = 0. Moreover, by virtue of
Corollary 11.1.10(b) and Theorem 11.1.11(a), we know that mn ∈ H(Fk) = Z(Fk+1). Hence,
Fk(mn) = 0, k > n, or Rn(mn) = 0.

From now on, we assume n to be even.
First assume that αn < x0 ≤ mn. Then by the remarks above, we conclude that

|M(mn)−M (x0)| = |Fn(mn)− Fn(x0) + Rn(mn)−Rn(x0)|
≥ Fn(mn)− Fn(x0)−Rn(x0) =: A.

Note that Rn is an alternating series, implying that 0 ≥ −Fn+1(x0) ≥ Rn(x0). Hence,
A ≥ Fn(mn) −M (x0). Then applying property (c) of Definition 11.1.5 leads to Fn(x0) =
Fn(mn)θ(

2x0−2αn

βn−αn
). Therefore,

A ≥ Fn(mn)− Fn(mn)θ
(2x0 − 2αn

βn − αn

)
≥ F (mn)

(
1− 1

4

(2x0 − 2αn

βn − αn
+ 3

))
=: B,

where the last inequality is a consequence of the inequality θ(x) ≤ (x + 3)/4, 0 < x < 1 (see
Remark 11.1.3(d)).

A little calculation, Lemma 11.1.9(a), and the estimate (11.1.1) from the beginning of
Step 2o lead to

B ≥ Fn(mn)
βn + αn − 2x0

4(βn − αn)
= Fn(mn)

mn − x0

2βn − 2αn

≥
√

βn − αn

2

mn − x0

2βn − 2αn
=

mn − x0

(
√
2)3
√

βn − αn

≥ 2(n−4)/2(mn − x0).

Hence, if there is a strongly increasing subsequence (nj)
∞
j=1 ⊂ 2N such that x0 ≤ mnj ,

then mnj tends from the right to x0, and therefore,
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lim sup
ξ→x0

|ΔM(x0, ξ)| ≥ lim sup
j→∞

|ΔM(x0,mnj )| = +∞.

Now we assume that mn ≤ x0 < βn. We will proceed in a way similar to that in the
previous case. Recall that (αn, βn) is a maximal subinterval of P (Fn), i.e., Fn(βn) = 0. Thus,
Fk(βn) = 0 for all k ≥ n. Moreover, according to Step 2o we have Sn−1(βn) = Sn−1(x0).
Therefore, using also (11.1.1) leads to

|M (βn)−M(x0)| = |Rn(x0)− Fn(x0)| ≥ Fn(x0)− |Rn(x0)|

≥ Fn(x0)(1− 1/
√
2) ≥ Fn(x0)

4

=
1

4
Fn(mn)θ

(2x0 − 2αn

βn − αn

)
=

1

4
Fn(mn)θ

(2βn − 2x0

βn − αn

)
=: A,

where the second equality is a consequence of Definition 11.1.5(d), and the last one follows
from the fact that θ(x) = θ(2− x) for x ∈ (1, 2).

To continue, recall Remark 11.1.3(d) and (11.1.1). Therefore,

A ≥ 1

4
Fn(mn)

βn − x0

βn − αn
≥ 1

4
√
2

βn − x0√
βn − αn

≥ 2(n−6)/2(βn − x0),

where the last inequality follows again from (11.1.1).
In the case that there is only a finite number of even n’s with x0 ≤ mn, there is a sequence

(nj)
∞
j=1 ⊂ 2N with nj −→ +∞ such that for all j, we have mnj ≤ x0 ≤ βnj . Then βnj

converges from the right to x0. Therefore, as before, we end up with

lim sup
ξ→x0+

ΔM(x0, ξ) ≥ lim sup
j→+∞

ΔM(x0, βnj ) = +∞.

Summarizing, we have proved that if x0 ∈
⋂∞

n=0 P (Fn), then

lim sup
ξ→x0+

|ΔM(x0, ξ)| = +∞. ��

11.2 Singh’s Besicovitch Function

Besides the function presented in [Bes24] and the one discussed in the previous section (see
[Mor38]), there are two other examples, found by A.N. Singh (see [Sin41, Sin43]). The main
aim of this section is to discuss one of the latter examples.

11.2.1 A Representation of Numbers

Fix a sequence k := (kj)j∈N ⊂ 2N + 1 such that
∑∞

j=1
1
kj

< +∞. Observe that kj ≥ 5 for

sufficiently large values of j. Moreover, let 
n := kn−1
2 and pn := k1 · · · kn, n ∈ N. Moreover,

put Is := {0, 1, . . . , ks − 1} \ {
s}, s ∈ N. We define the generalized Cantor set with respect to
k as

C :=
{ ∞∑

j=1

cj
pj

: (cj)
∞
j=1 ∈M∞

}
,
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where M∞ := {(cj)∞j=1 : cj ∈ Ij , j ∈ N}. Note that

I \ C =
( 
1
p1

,

1 + 1

p1

)
∪

∞⋃

j=2

⋃

c∈Mj−1

( j−1∑

s=1

cs
ps

+

j
pj

,

j−1∑

s=1

cs
ps

+

j + 1

pj

)
,

where Mj := I1×· · ·×Ij , j ∈ N, and M0 := ∅. Note that C covers the whole interval I except
the “holes” given in the previous formula. In particular, its Lebesgue measure is given by

L(C) = 1− 1

p1
−

∞∑

j=2

1

pj

j−1∏

s=1

(ks − 1) =

∞∏

j=1

(
1− 1

kj

)
∈ (0, 1).

Remark 11.2.1. Recall that
∑∞

j=1
kj−1
pj

= 1 (see Proposition A.1.1(c)). Therefore, 0, 1 ∈ C.

Now take an arbitrary y ∈ I \ C. There is a uniquely determined hole

( j−1∑

s=1

cs
ps

+

j
pj

,

j−1∑

s=1

cs
ps

+

j + 1

pj

)
,

which contains y. Recall that the empty sum is equal to zero. Therefore, y =
∑j−1

s=1
cs
ps
+


j
pj
+y1,

where 0 < y1 < 1
pj
. Note that j and the cs’s are uniquely determined by y.

After this remark, we begin to construct a representation for an arbitrary x ∈ (0, 1): x
may be written as x = 1

2 (c1,0 + y1) with uniquely determined c1,0 ∈ {0, 1} and y1 ∈ [0, 1),
where y1 > 0 if c1,0 = 0. Then either y1 belongs to C or y1 /∈ C. In the first case, we have
x = 1

2 (c1,0 + ξ1) with ξ1 ∈ C ∩ [0, 1) and (ξ1 > 0 if c1,0 = 0). In the second case, we write

y1 =

n1−1∑

j=1

c1,j
pj

+

n1

pn1

+ x2

with n1 ∈ N, c1,j ∈ Ij , and 0 < x2 < 1
pn1

(see Remark 11.2.1).

In the second case, we continue as follows. First, we rewrite pn1x2 as above as pn1x2 =
1
2 (c2,0 + y2) with c2,0 ∈ {0, 1} and y2 ∈ [0, 1) and (y2 > 0 if c2,0 = 0). Again there are two
cases: either y2 ∈ C (and then put ξ2 := y2) or y2 /∈ C, i.e.,

y2 =

n2−1∑

j=1

c2,j
pj

+

n2

pn2

+ x3

with n2 ∈ N, c2,j ∈ Ij , and 0 < x3 < 1
pn2

(see Remark 11.2.1). Hence we obtain the following

two possible situations:

x =
1

2

(
c1,0 +

n1−1∑

j=1

c1,j
pj

+

n1

pn1

)
+

1

2pn1

1

2

(
c2,0 + ξ2

)

with ξ2 ∈ C ∩ [0, 1), (ξ2 > 0 if c2,0 = 0),
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x =
1

2

(
c1,0 +

n1−1∑

j=1

c1,j
pj

+

n1

pn1

)
+

1

2pn1

1

2

(
c2,0 +

n2−1∑

j=1

c2,j
pj

+

n2

pn2

+ x3

)
.

And then the process has to be repeated.
To be able to formulate the final representation in a simple way, let us first introduce some

notation:

• for s ∈ N, an (s− 1)-tuple c = (c1, . . . , cs−1) ∈Ms−1, and c0 ∈ {0, 1} put

Xs(c0, c) :=
1

2

(
c0 +

s−1∑

j=1

cj
pj

+

s
ps

)
;

note that the case s = 1 gives only the following two numbers:

X1(c0) =
1

2

(
c0 +


1
p1

)
, c0 ∈ {0, 1};

• for c = (cj)j∈N ∈M∞ and c0 ∈ {0, 1}, put

X∞(c0, c) :=
1

2
(c0 + ξ), where ξ :=

∞∑

j=1

cj
pj
∈ [0, 1).

The expression Xs(c0, c) (resp. X∞(c0, c)) is called a term of finite (resp. of infinite) type.
Moreover, X∞(c0, c) is a special term of infinite type if it satisfies the following additional
conditions: if c0 = 0, then c �= (0)j∈N, and if c0 ∈ {0, 1}, then c �= (kj − 1)j∈N.

Then x can be written (Exercise) either as

x =

k∑

s=1

Xns(cs,0, cs)

2s−1pn1 · · · pns−1

+
X∞(ck+1,0, c)

2kpn1 · · · pnk

, (11.2.1)

where k ∈ N0, cs,0 ∈ {0, 1}, ns ∈ N, cs ∈ Mns−1, s = 1, . . . , k, and ck+1,0 ∈ {0, 1}, c ∈ M∞
such that:

– if ck+1,0 = 0, then c �= 0 := (0)j∈N,
– if ck+1,0 is arbitrary, then c �= (kj−1)j∈N (i.e., the term of infinite type in this representation

is a special one),

or

x =

∞∑

s=1

Xns(cs,0, cs)

2s−1pn1 · · · pns−1

, (11.2.2)

where cs,0 ∈ {0, 1}, ns ∈ N, and cs ∈Mns−1, s ∈ N.
Thus x can be represented either by a finite sum of terms of finite type and one special

term of infinite type (see (11.2.1)) or by an infinite sum of terms of finite type (see (11.2.2)).
The representation (11.2.1) is said to be a special representation of x. When we do not make
the special assumption in (11.2.1), we will speak of a general representation of x. Note that
the representation (11.2.2) is uniquely determined.
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Now let x be given by a general representation of the first type (i.e., the term of infinite
type is not assumed to be special), where the last term X∞(ck+1,0, c) contains infinitely many
successive zeros, i.e., cj = 0 for all j ≥ j0. Then there are four cases to be discussed:
• If j0 = 1 (i.e., c = (0)∞j=1), ck+1,0 = 0, and ck = (ck,1, . . . , ck,nk−1), then

x =
k∑

s=1

Xns(cs,0, cs)

2s−1pn1 · · · pns−1

+

1
2 (0 +

∑∞
j=1

0
pj
)

2kpn1 · · · pnk

=
k−1∑

s=1

Xns(cs,0, cs)

2s−1pn1 · · · pns−1

+
Xnk

(ck,0, ck)

2k−1pn1 · · · pnk−1

+

1
2 (0 +

∑∞
j=1

0
pj
)

2kpn1 · · · pnk

=

k−1∑

s=1

Xns(cs,0, cs)

2s−1pn1 · · · pns−1

+

1
2 (ck,0 +

∑nk−1
j=1

ck,j

pj
+


nk
−1

pnk
+
∑∞

j=nk+1
kj−1
pj

)

2k−1pn1 · · · pnk−1

,

i.e., the general representation with k + 1 terms, where the last term is trivial, is changed
into a representation with k terms, where now the last term is not trivial. Note that the first
term of infinite type is not special, while the second term of infinite type is.
• If j0 = 1 and ck+1,0 = 1, then

x =

k∑

s=1

Xns(cs,0, cs)

2s−1pn1 · · · pns−1

+

1
2 (1 +

∑∞
j=1

0
pj
)

2kpn1 · · · pnk

=

k∑

s=1

Xns(cs,0, cs)

2s−1pn1 · · · pns−1

+

1
2 (0 +

∑∞
j=1

kj−1
pj

)

2kpn1 · · · pnk

,

i.e., the representation with k+1 terms is changed into one with k +1 terms, where only the
special term of infinite type has been changed into a nonspecial term of infinite type. See also
the next case, which is similar.
• If j0 > 1, i.e., cj = 0 for all j ≥ j0, and 
j0−1 + 1 �= cj0−1 > 0, then

x =
k∑

s=1

Xns(cs,0, cs)

2s−1pn1 · · · pns−1

+

1
2 (ck+1,0 +

∑j0−1
j=1

cj
pj

+
∑∞

j=j0
0
pj
)

2kpn1 · · · pnk

=
k∑

s=1

Xns(cs,0, cs)

2s−1pn1 · · · pns−1

+

1
2 (ck+1,0 +

∑j0−2
j=1

cj
pj

+
cj0−1−1

pj0−1
+
∑∞

j=j0

kj−1
pj

)

2kpn1 · · · pnk

,

i.e., the last special term X∞(ck+1,0, c) can be substituted by a new special term of infinite
type containing infinitely many positive summands, which are defined via the new sequence
c1, . . . , cj0−2, cj0−1 − 1, kj0 − 1, . . . , kj − 1, . . . (see the remark above).
• If j0 > 1 and 0 < cj0−1 = 
j0−1 + 1, then

x =

k∑

s=1

Xns(cs,0, cs)

2s−1pn1 · · · pns−1

+

1
2 (ck+1,0 +

∑j0−1
j=1

cj
pj

+
∑∞

j=j0
0
pj
)

2kpn1 · · · pnk

=

k∑

s=1

Xns(cs,0, cs)

2s−1pn1 · · · pns−1

+

1
2 (ck+1,0 +

∑j0−2
j=1

cj
pj

+

j0−1+1

pj0−1
+
∑∞

j=j0
0
pj
)

2kpn1 · · · pnk
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=

k∑

s=1

Xns(cs,0, cs)

2s−1pn1 · · · pns−1

+

1
2 (ck+1,0 +

∑j0−2
j=1

cj
pj

+

j0−1

pj0−1
)

2kpn1 · · · pnk

+

1
2 (1 +

∑∞
j=1

kj−1
pj

)

2k+1pn1 · · · pnk
pj0−1

,

i.e., the former last special term X∞(ck+1,0, c) of infinite type splits into a new term of finite
type with nk+1 = j0 − 1 and a new term of infinite type that is not special.
• To summarize: only in the third case does x have a double representation with special

terms of infinite type. In all other cases, the representation (11.2.1) is uniquely determined
(Exercise). Therefore, if a function f : (0, 1) −→ R is introduced via the above representa-
tion, then to have a well-defined function on (0, 1) one has only to check whether the definition
of f gives the same value for the double representations from above.

Remark 11.2.2. Let x ∈ (0, 1) be given by one of the following (general) representations:

x =

k∑

s=1

Xns(cs,0, cs)

2s−1pn1 · · · pns−1

+
X∞(ck+1,0, c)

2kpn1 · · · pnk

or x =

∞∑

s=1

Xns(cs,0, cs)

2s−1pn1 · · · pns−1

.

Then the above construction leads to (Exercise)

1− x =

k∑

s=1

Xns(c̃s,0, c̃s)

2s−1pn1 · · · pns−1

+
X∞(c̃k+1,0, c̃)

2kpn1 · · · pnk

with:

• {cs,0, c̃s,0} = {0, 1}, s = 1, . . . , k + 1,

• if cs = (cs,1, . . . , cs,ns−1), then c̃s = (k1 − 1− cs,1, . . . , kns−1 − 1− cs,ns−1), s = 1, . . . , k,

• if c = (cj)
∞
j=1, then c̃ = (kj − 1− cj)j∈N,

or

1− x =

∞∑

s=1

Xns(c̃s,0, c̃s)

2s−1pn1 · · · pns−1

with:

• {cs,0, c̃s,0} = {0, 1},
• if cs = (cs,1, . . . , cs,ns−1), then c̃s = (k1 − 1− cs,1, . . . , kns−1 − 1− cs,ns−1), s ∈ N.

Note that the term of infinite type in the first representation of x is special if and only if
the corresponding term in the representation of 1− x is special. Thus the representations for
x and 1 − x are very similar. This information will be needed when we discuss properties of
the Besicovitch–Singh function that we intend to introduce.

11.2.2 Definition of Singh’s Besicovitch Function

Recall that a given x ∈ (0, 1) has a special representation as in (11.2.1) or (11.2.2) given by
the following data:
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(a)
(
k ∈ N0, (cj,0)

k+1
j=1 ⊂ {0, 1}, (ns)

k
s=1 ⊂ N, c1 = (c1,1, . . . , c1,n1−1) ∈ Mn1−1, . . . , ck =

(ck,1, . . . , ck,nk−1) ∈Mnk−1, c = (cj)
∞
j=1 ∈M∞

)
or

(b)
(
cs,0 ∈ {0, 1}, ns ∈ N, cs = (cs,1, . . . , cs,ns−1) ∈Mns−1, s ∈ N

)
.

If x be given via (a), then put

S4(x) := Yn1(c1,0, c1) +

k∑

s=2

(−1)s−1Yns(cs,0, cs)

qn1 · · · qns−1

+ (−1)kY∞(ck+1,0, c)

qn1 · · · qnk

,

where

• qs := 2sp̃s−1, s ∈ N2, q1 := 2, with p̃s := 
1 · · · 
s, s ∈ N;

• Yns(cs,0, cs) :=
∑ns−1

j=1
bs,j
2j˜pj

+ 1
2ns

˜pns−1
, s = 1, . . . , k, with

bs,j :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

cs,j , if cs,0 = 0, cs,j < 
j

cs,j − 1, if cs,0 = 0, cs,j > 
j

kj − 2− cs,j , if cs,0 = 1, cs,j < 
j

kj − 1− cs,j , if cs,0 = 1, cs,j > 
j

, s = 1, . . . , k, j = 1, . . . , ns − 1;

• Y∞(ck+1,0, c) :=
∑∞

j=1
bj

2j˜pj
with

bj :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

cj , if ck+1,0 = 0, cj < 
j

cj − 1, if ck+1,0 = 0, cj > 
j

kj − 2− cj , if ck+1,0 = 1, cj < 
j

kj − 1− cj , if ck+1,0 = 1, cj > 
j

, j ∈ N.

On the other hand, if x is given via (b), then put

S4(x) := Yn1(c1,0, c1) +

∞∑

s=2

(−1)s−1Yns(cs,0, cs)

qn1 · · · qns−1

,

where the Yns(cs,0, cs), s ∈ N, are defined as above. Note that the series inside of the above
definition of S4 converges, i.e., the right-hand side is always defined.

Remark 11.2.3. Observe that the bj’s in the definition above are at most kj − 2. Moreover,

2j p̃j = (k1 − 1) · · · (kj − 1). Thus in fact, the series
∑∞

j=1
bj

2j˜pj
is a Cantor series with respect

to the sequence (kj − 1)∞j=1. Therefore, using Proposition A.1.1(c), one gets

• 1
qns
≤ Yns(cs,0, cs) ≤

∑ns−1
j=1

kj−2

2j˜pj
+ 1

qns
= 1− 1

2ns−1
˜pns−1

+ 1
qns

= 1− 1
qns

< 1;

• Y∞(ck+1,0, c) ≤ 1.

It remains to show that S4 is well defined, i.e., S4(x) does not depend on the chosen
representation for any x.

Lemma 11.2.4. The function S4 is well defined on the interval (0, 1).

Proof . Recall that there is only one double representation (11.2.1) of a point x ∈ (0, 1),
namely
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x =
k∑

s=1

Xns(cs,0, cs)

2s−1pn1 · · · pns−1

+
X∞(ck+1,0, c)

2kpn1 · · · pnk

=

k∑

s=1

Xns(cs,0, cs)

2s−1pn1 · · · pns−1

+
X∞(ck+1,0, c̃)

2kpn1 · · · pnk

,

where c = (c1, . . . , cj0−2, cj0−1, 0, . . . , 0 . . . ), j0 > 1, 0 < cj0−1 �= 
j0−1 + 1, and c̃ =
(c1, . . . , cj0−2, cj0−1 − 1, kj0 − 1, kj0+1 − 1, . . . ). Exploiting the definition of the bj’s in the
associated terms Y∞(ck+1,0, c) and Y∞(ck+1,0, c̃) leads to the equality of these terms. Hence
the value S4 at x is independent of the above representations of x. ��
Remark 11.2.5. If we also allow double general representations of x, then a simple calcula-
tion also gives that the value of S4 is independent of the representation used (Exercise).

Later, in discussing the nonexistence of one-sided derivatives of S4, the following observa-
tion will become important. It shows that it is enough to consider only right-sided derivatives.

Lemma 11.2.6. Let x ∈ (0, 1). Then S4(x) = S4(1− x).

Proof . The proof is left as an Exercise for the reader to become more familiar with the
definition of S4. ��

11.2.3 Continuity of S4

Theorem 11.2.7. The function S4 is continuous on (0, 1).

Proof . First we discuss continuity at a point x ∈ (0, 1) given via the representation (11.2.2),
i.e.,

x =

∞∑

s=1

Xns(cs,0, cs)

2s−1pn1 · · · pns−1

.

Fix an ε > 0. Choose a k ∈ N sufficiently large. The precise value of k will be given later.
Then

x =

k∑

s=1

Xns(cs,0, cs)

2s−1pn1 · · · pns−1

+

∞∑

s=k+1

Xns(cs,0, cs)

2s−1pn1 · · · pns−1

=: ξ +
1

2kpn1 · · · pnk

( ∞∑

s=k+1

Xns(cs,0, cs)

2s−k−1pnk+1
· · · pns−1

)
.

Note that x is an interior point of the open interval ξ+ 1
2kpn1 ···pnk

(0, 1) =: J . We may assume

that k is so large that x ∈ J ⊂ (0, 1).
Take now an arbitrary η ∈ J , i.e., η = ξ + x̃

2kpn1 ···pnk

, where x̃ ∈ (0, 1). Then there are two

possibilities:

(a) x̃ =
∑∞

s=1
Xñs (c̃s,0,c̃s)

2s−1pñ1
···pñs−1

;

(b) x̃ =
∑m

s=1
Xñs (c̃s,0,c̃s)

2s−1pñ1
···pñs−1

+
X∞(c̃m+1,0,c̃)
2mpñ1

···pñm
.
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In case (a), we rewrite η as

η =
k∑

s=1

Xns(cs,0, cs)

2s−1pn1 · · · pns−1

+
∞∑

s=1

X ñs
(c̃s,0, c̃s)

2k+s−1pn1 · · · pnk
pñ1
· · · pñs−1

=
k∑

s=1

Xns(cs,0, cs)

2s−1pn1 · · · pns−1

+
∞∑

σ=k+1

X ñσ−k
(c̃σ−k,0, c̃σ−k)

2σ−1pn1 · · · pnk
pñ1
· · · pñσ−k−1

.

Thus η is given by the representation (11.2.2). Therefore,

|S4(x) − S4(η)|

=
∣∣∣

∞∑

s=k+1

(−1)sYns(cs,0, cs)

qn1 · · · qns−1

−
∞∑

σ=k+1

(−1)σ Yñσ−k
(c̃σ−k,0, c̃σ−k)

qn1 · · · qnk
qñ1
· · · qñσ−k−1

∣∣∣

≤ 1

qn1 · · · qnk

∞∑

s=k+1

( 1

qnk+1
· · · qns−1

+
1

qñ1
· · · qñs−k−1

)
≤ 4

2k
< ε,

if k is sufficiently large.
The remaining very similar case is left as an Exercise.
Finally, assume that x is given via the representation (11.2.1), i.e.,

x =

k∑

s=1

Xns(cs,0, cs)

2s−1pn1 · · · pns−1

+
X∞(ck+1,0, c)

2kpn1 · · · pnk

=: ξ +

1
2 (ck+1,0 +

∑∞
j=1

cj
pj
)

2kpn1 · · · pnk

.

According to the above discussion on the double representation, we may assume that cj �= 0
for infinitely many j’s. Fix a j0 > 1 with cj0 > 0. Then

x = ξ +

1
2 (ck+1,0 +

c1
p1

+ · · ·+ cj0−1

pj0−1
+ 0

pj0
+


j0+1

pj0+1
)

2kpn1 · · · pnk

+

cj0
pj0

+
cj0+1

pj0+1
− 
j0+1

pj0+1
+
∑∞

j=j0+2
cj
pj

2k+1pn1 · · · pnk

= ξ +
Xnk+1

(ck+1,0, (c1, . . . , cj0−1, 0))

2kpn1 · · · pnk

+

cj0
pj0

+
cj0+1

pj0+1
− 
j0+1

pj0+1
+
∑∞

j=j0+2
cj
pj

2k+1pn1 · · · pnk

=: ξ + ξ1 +

(
cj0
kj0

+
cj0+1

kj0kj0+1
− 
j0+1

kj0kj0+1
+ 1

kj0kj0+1

∑∞
j=j0+2

cj
kj0+1···kj

)

2k+1pn1 · · · pnk
pj0−1

,

where nk+1 := j0+1 and ck+1 := (c1, . . . , cj0−1, 0). Note that the term inside the parantheses
in the line before lies in (0, 1). Therefore,

x ∈ ξ + ξ1 +
1

2k+1pn1 · · · pnk
pj0−1

(0, 1) =: J,

i.e., x is an interior point of J ∩ (0, 1). Then every ζ ∈ J ∩ (0, 1) can be written as ζ =
ξ + ξ1 +

x̃
2k+1pn1 ···pnk

pj0−1
with x̃ ∈ (0, 1). From now on, we may repeat the argument from

above to verify continuity of S4 at the point x. Details are left as an Exercise. ��
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11.2.4 Nowhere Differentiability of S4

Theorem 11.2.8. The Singh function S4 allows nowhere on (0, 1) a finite or infinite one-
sided derivative, i.e., it is a Besicovitch function.

Proof . By virtue of Lemma 11.2.6, it suffices to prove that S4 possesses nowhere on (0, 1) an
R-valued right derivative.

There are different cases of x ∈ (0, 1) to be discussed.
Case 1o. Let x be given via the representation (11.2.1), i.e.,

x =
k∑

s=1

Xns(cs,0, cs)

2s−1pn1 · · · pns−1

+
X∞(ck+1,0, c)

2kpn1 . . . pnk

with the corresponding data.

(a) Assume in addition that there is an infinite subset M ⊂ N such that cm < km−1, m ∈M.
For an m ∈M, put

n
(m)
k+1 := m + 1, ĉ

(m)
k+1 := (c1, . . . , cm−1, cm + sm) ∈M

n
(m)
k+1

−1
= Mm,

where sm :=

{
1, if cm �= 
m − 1

2, if cm = 
m − 1
.

To continue, define for each m ∈M two new points to the right of x:

x′
m :=

k∑

s=1

Xns(cs,0, cs)

2s−1pn1 · · · pns−1

+
X

n
(m)
k+1

(ck+1,0, ĉ
(m)
k+1)

2kpn1 · · · pnk

+
X∞(1,0)

2k+1p1 · · · pnk
p
n
(m)
k+1

;

x′′
m :=

k∑

s=1

Xns(cs,0, cs)

2s−1pn1 · · · pns−1

+
X

n
(m)
k+1

(ck+1,0, ĉ
(m)
k+1)

2kpn1 · · · pnk

+
X∞(1, c̃)

2k+1pn1 · · · pnk
p
n
(m)
k+1

,

where c̃ := (kj − 1)j∈N. Note that

x′
m − x

=
1

2kpn1 · · · pnk

(
X

n
(m)
k+1

(ck+1,0, ĉ
(m)
k+1)+

1

2p
n
(m)
k+1

X∞(1,0)−X∞(ck+1,0, c)
)

=
1

2kpn1 · · · pnk

1

2pm+1

(
smkm+1 +

km+1 − 1

2
+
1

2
−km+1

∞∑

j=1

cm+j

km+1 · · · km+j

)

>
1

2kpn1 · · · pnk

1

2pm+1

km+1

2
(2sm − 1) ≥ 0.

Moreover,

x′
m − x ≤ 1

2kpn1 · · · pnk

1

2pm+1

5km+1

2
≤ 5

pm
−→

M�m→∞
0,

i.e., the points x′
m converge from the right to x.
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Let us first recall the value of S4(x) and then calculate S4(x
′
m):

S4(x) = Yn1(c1,0, c1) +
k∑

s=2

(−1)s−1Yns(cs,0, cs)

qn1 · · · qns−1

+ (−1)kY∞(ck+1,0, c)

qn1 · · · qnk

and

S4(x
′
m) = Yn1(c1,0, c1) +

k∑

s=2

(−1)s−1Yns(cs,0, cs)

qn1 · · · qns−1

+ (−1)k
Y
n
(m)
k+1

(ck+1,0, (c1, . . . , cm + sm))

qn1 · · · qnk

+ (−1)k+1 Y∞(1,0)

qn1 · · · qnk
qm+1

.

Therefore,

S4(x
′
m)− S4(x) = (−1)k

Y
n
(m)
k+1

(ck+1,0, (c1, . . . , cm + sm))

qn1 · · · qnk

+ (−1)k+1 Y∞(1,0)

qn1 · · · qnk
qm+1

− (−1)kY∞(ck+1,0, c)

qn1 · · · qnk

= (−1)k 1

qn1 · · · qnk

( m∑

j=1

b̃j
2j p̃j

+
1

2m+1p̃m
− 1

qm+1

∞∑

j=1

kj − 2

2j p̃j
−

∞∑

j=1

bj
2j p̃j

)
,

where b̃j = bj , j = 1, . . . ,m− 1, and b̃m = bm + s′ with

s′ :=

{
1, if ck+1,0 = 0

−1, if ck+1,0 = 1

(use the definition of the bj ’s). Observe that 1
2m+1

˜pm+1

(
1 −∑∞

j=1
(kj−1)−1

(k1−1)···(kj−1)

)
= 0 (use

Proposition A.1.1(c)). Therefore, we end up with

S4(x
′
m)− S4(x) = (−1)k 1

qn1 · · · qnk

( s′

2mp̃m
−

∞∑

j=m+1

bj
2j p̃j

)
.

Now we discuss the associated differential quotient

ΔS4(x, x′
m) = (−1)k 2

kpn1 · · · pnk
2

qn1 · · · qnk

pm
2mp̃m

s′ −∑∞
j=1

bm+j

2j
m+1···
m+j

2sm+1
2 −∑∞

j=1
cm+j

km+1···km+j

.

Put

• mk := (−1)k 2kpn1 ···pnk
2

qn1 ···qnk

,

• am := pm

2m˜pm
.
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Thus

ΔS4(x, x′
m) = mkam

s′ −∑∞
j=1

bm+j

2j
m+1···
m+j

2sm+1
2 −∑∞

j=1
cm+j

km+1···km+j

= mkam

s′ − bm+1

2
m+1
− 1


m+1

∑∞
j=2

bm+j

2j
m+2···
m+j

2sm+1
2 − cm+1

km+1
− 1

km+1

∑∞
j=2

cm+j

km+2···km+j

.

Note that mk is independent of m and that am −→
m→∞

1
∏∞

j=1(1− 1
kj

)
=: P with P := 1

L(C) .

Since the sequences ( bm+1

2
m+1
)m∈M and ( cm+1

km+1
)m∈M are bounded, we may assume that there

is a common subsequence, given by M′ ⊂ M, such that ( bm+1

2
m+1
)m∈M′ , resp. ( cm+1

km+1
)m∈M′ ,

converges to −A, resp. −B.
Put M′′ := {m ∈M′ : cm �= 
m − 1}. Assume that M′′ is infinite. Then, since 3

2 + B �= 0,
we get

ΔS4(x, x′
m) −→

M′′�m→∞
mkP

s′ + A
3
2 + B

.

If M′′ is finite, then since 5
2 + B �= 0, we get

ΔS4(x, x′
m) −→

M′\M′′�m→∞
mkP

s′ + A
5
2 + B

.

To study ΔS4(x, x′′
m), we proceed similarly to the above. Let us first calculate x′′

m − x:

x′′
m − x =

X
n
(m)
k+1

(ck+1,0, ĉ
(m)
k+1)

2kpn1 · · · pnk

+
X∞(1, c̃)

2k+1pn1 · · · pnk
p
n
(m)
k+1

− X∞(ck+1,0, c)

2kpn1 · · · pnk

=
1

2kpn1 · · · pnk
pm

(
sm +


m+1

km+1
+

1

4km+1

(
1 +

∞∑

j=1

kj − 1

pj

)
−

∞∑

j=1

cm+j

km+1 · · · km+j

)
.

Since the last summand inside of the outer parantheses is at most equal to 1, it follows that
x′′
m − x ≥ 0. Moreover,

x′′
m − x ≤ 5

2kpn1 · · · pnk
pm

−→
m→∞ 0.

Thus the points x′′
m converge from the right to x.

Moreover, using the definition of S4, we get

S4(x
′′
m) = Yn1(c1,0, cn1−1) +

k∑

s=1

(−1)s−1Yns(cs,0, cs)

qn1 · · · qns−1

+ (−1)k
Y
n
(m)
k+1

(ck+1,0, (c1, . . . , cm−1, cm + sm))

qn1 · · · qnk

+ (−1)k+1 Y∞(1, c̃)

qn1 · · · qnk
qm+1

.
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Note that the last summand equals 0. Therefore,

S4(x
′′
m)− S4(x) = Yn1(c1,0, cn1−1) +

k∑

s=1

(−1)s−1Yns(cs,0, cs)

qn1 · · · qns−1

+ (−1)k
Y
n
(m)
k+1

(ck+1,0, (c1, . . . , cm−1, cm + sm))

qn1 · · · qnk

− Yn1(c1,0, cn1−1)−
k∑

s=2

(−1)s−1Yns(cs,0, cs)

qn1 · · · qns−1

− (−1)kY∞(ck+1,0, c)

qn1 · · · qnk

= (−1)k
Y
n
(m)
k+1

(ck+1,0, (c1, . . . , cm−1, cm + sm))

qn1 · · · qnk

− (−1)kY∞(ck+1,0, c)

qn1 · · · qnk

= (−1)k 1

qn1 · · · qnk
2mp̃m

(
s′ +


m+1

2
m+1
−

∞∑

j=m+1

bm+1

2j
m+1 · · · 
m+j

)
.

Hence the differential quotient is given by

ΔS4(x, x′′
m) = mkam

s′ + 1
2 − bm+1

2
m+1
− 1


m+1

∑∞
j=m+2

bm+j

2j
m+2···
m+j

2sm+1
2 − cm+1

km+1
− 1

km+1

∑∞
j=2

cm+j

km+2···km+j

.

If M′′ is infinite, then, taking a subsequence via M′′, it follows that

ΔS4(x, x′′
m) −→

M′′�m→∞
mkP

1 + 1
2 + A

3
2 + B

.

For the remaining case, we have

ΔS4(x, x′′
m) −→

M′\M′′�m→∞
mkP

s′ + 1
2 + A

5
2 + B

.

What we have seen is that the two sequences of differential quotients (via a subsequence)
have finite limits from the right, but these are different. Thus S4 has no right-sided finite or
infinite derivative at the point x.

(b) In the remaining case, we have cm = km − 1 for all m ≥ m0 > 1 and cm0−1 < km0−1 − 1.
Recall what was said above with respect to the double representation. Thus we may
rewrite x as

x =

k∑

s=1

Xns(cs,0, cs)

2s−1pn1 · · · pns−1

+
X∞(ck+1,0, c)

2kpn1 · · · pnk

=
k∑

s=1

Xns(cs,0, cs)

2s−1pn1 · · · pns−1

+

1
2 (ck+1,0 +

∑m0−1
j=1

cj
pj

+ 1
pm0−1

∑∞
j=m0

kj−1
km0 ···kj

)

2kpn1 · · · pnk

=

k∑

s=1

Xns(cs,0, cs)

2s−1pn1 · · · pns−1

+

1
2 (ck+1,0 +

∑m0−2
j=1

cj
pj

+
cm0−1+1

pm0−1
+
∑∞

j=m0

0
pj
)

2kpn1 · · · pnk

.

So we are back in the situation of (a) and can proceed as we did there.
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Thus S4 has no right-sided finite or infinite derivative at any point x with the first repre-
sentation.

Case 2o. Now we discuss a point x ∈ (0, 1) having the second representation (11.2.2), i.e.,

x =

∞∑

s=1

Xns(cs,0, cs)

2s−1pn1 · · · pns−1

,

where cs,0 ∈ {0, 1}, ns ∈ N, and cs ∈Mns−1, s ∈ N.
There are two cases to discuss.

(a) Assume that there is an infinite subset M ⊂ N such that cm,0 = 0, m ∈ M. As above,
two sequences (x′

m)m∈M and (x′′
m)m∈M will be discussed converging from the right to x.

Namely, for m ∈M, we put

x′
m :=

m−1∑

s=1

Xns(cs,0, cs)

2s−1pn1 · · · pns−1

+

1
2 (0 +

∑nm−1
j=1

cm,j

pj
+


nm+sm
pnm

+
∑∞

j=nm+1
0
pj
)

2m−1pn1 · · · pnm−1

,

where sm ∈ N, 
nm + sm ≤ knm − 1. The precise values of the sm’s will be chosen later.
Observe that x′

m is given via the first representation. Moreover, let

x′′
m :=

∑

s∈N,s
=m

Xns(cs,0, cs)

2s−1pn1 · · · pns−1

+

1
2 (1 +

∑nm−1
j=1

kj−1−cm,j

pnj
+


nm

pnm
)

2m−1pn1 · · · pnm−1

.

Then x < x′
m. Indeed, put

λm :=

∞∑

s=m+1

1
2 (cs,0 +

∑ns−1
j=1

cs,j
pj

+

ns

pns
)

2s−m−1pnm+1 · · · pns−1

.

Note that

λm ≤
∞∑

s=m+1

1− kns−1
4pns

2s−m−1pnm+1 · · · pns−1

≤ 1 +

∞∑

s=m+1

3− kns

2s−m+1pnm+1 · · · pns

< 1;

recall that kj > 3 for large j ∈ N. Hence, we end up with

x′
m − x =

sm − λm

2mpn1 · · · pnm−1pnm

> 0.

Moreover,

x′′
m − x′

m ≥
1
2 (1 +

∑nm−1
j=1

kj−1−2cm,j

pj
− sm

pnm
)

2m−1pn1 · · · pnm−1

≥
∑nm−1

j=1
kj−1−cm,j

pj
+

knm−1−sm
pnm

2m−1pn1 · · · pnm−1

≥ 0.

Thus x ≤ x′
m ≤ x′′

m.
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A short calculation leads to the additional fact that x′′
m −→

M�m→∞
x (Exercise), i.e., the

two sequences (x′
m)m∈M and (x′′

m)m∈M approach the point x from the right.
Using the definition of S4, we obtain for m ∈M that

S4(x
′′
m)− S4(x) = (−1)m−1Ynm(1, c̃nm−1)− Ynm(0, cnm−1)

qn1 · · · qnm−1

,

where c̃nm−1 = (k1 − 1− cm,1, . . . , knm−1 − 1− cm,nm−1). Thus,

S4(x
′′
m)− S4(x) = (−1)m−1

∑nm−1
j=1

˜bj−bj
2j˜pj

qn1 · · · qnm−1

= 0;

here we have used the definition of the new factors b̃j and bj . Hence, ΔS4(x, x′′
m) = 0. Since

m ∈M was arbitrarily chosen, it follows that limM�m→∞ ΔS4(x, x′′
m) = 0.

It remains to investigate ΔS4(x, x′
m), m ∈M:

S4(x
′
m)− S4(x)

= (−1)m−1


nm+sm−1

2nm˜pnm
− 1

2nm˜pnm−1

qn1 · · · qnm−1

−
∞∑

s=m+1

(−1)s−1Yns(cs,0, cs)

qn1 · · · qns−1

= (−1)m−1 1

qn1 · · · qnm−1qnm

(sm − 1


nm

−
∞∑

s=m+1

(−1)s−m Yns(cs,0, cs)

qnm+1 · · · qns−1

)

= (−1)m−1 1

qn1 · · · qnm−1

1

2nm−1p̃nm−1

( sm − 1

knm − 1
+

1

2
θm

)
,

where

θm :=

∞∑

s=m+1

(−1)s−m+1 Yns(cs,0, cs)

qnm+1 · · · qns−1

.

Hence, the differential quotient is given by

ΔS4(x, x′
m) = (−1)m−1 2

m−1pn1 · · · pnm−1

qn1 · · · qnm−1

pnm

2nm−1p̃nm−1
·

sm−1
2
nm

+ 1
2θm

sm − λm
.

The following estimate will show that θm ∈ (0, 1). Indeed, applying Remark 11.2.3, we
obtain

θm ≤
∞∑

s=m+1
s−m odd

1− 1
qns

qnm+1 · · · qns−1

−
∞∑

s=m+1
s−m even

1
qns

qnm+1 · · · qns−1

=
∞∑

t=0

1

qnm+1 · · · qnm+2t

−
∞∑

t=0

1

qnm+1 · · · qnm+2t+1

−
∞∑

t=1

1

qnm+1 · · · qnm+2t

= 1−
∞∑

t=0

1

qnm+1 · · · qnm+2t+1

< 1
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and

θm ≥
∞∑

s=m+1
s−m odd

1
qns

qnm+1 · · · qns−1

−
∞∑

s=m+1
s−m even

1− 1
qns

qnm+1 · · · qns−1

=

∞∑

t=0

1

qnm+1 · · · qnm+2t+1

−
∞∑

t=1

1

qnm+1 · · · qnm+2t−1

+

∞∑

t=1

1

qnm+1 · · · qnm+2t

=

∞∑

t=1

1

qnm+1 · · · qnm+2t

> 0.

Note that
2mpn1 · · · pnm−1

qn1 · · · qnm−1

−→
M�m→∞

+∞ and
pnm

2nm−1p̃nm−1
≥ 1.

We may take a subsequence M′ such that λm −→
M′�m→∞

λ ∈ [0, 1] and θm −→
M′�m→∞

θ ∈ [0, 1].

When θ > 0, then for the sm we may choose sm = 1, m ∈ M′. If θ = 0, then we choose
sm := 
nm , m ∈M′. Thus in both cases, one obtains that limM′�m→∞ |ΔS4(x, x′

m)| = +∞.
Hence we have shown that S4 has no finite or infinite right-sided derivative at the point x.

(b) Assume that there exists an m0 ∈ N such that cm,0 = 1, m ≥ m0. For m ≥ m0, put

x′
m :=

m−1∑

s=1

Xns(cs,0, cs)

2s−1pn1 · · · pns−1

+

1
2 (1 +

∑nm−1
j=1

cm,j

pj
+


nm+sm
pnm

+
∑∞

j=nm+1
0
pj
)

2m−1pn1 · · · pnm−1

.

The exact values of the sm, 
nm + sm ≤ knm − 1 will be chosen later. As above, the
sequence (x′

m)m∈Nm0
tends from the right to x. Moreover,

x′
m − x =

sm − λm

2m−1pn1 · · · pnm−1pnm

,

where λm ∈ (0, 1) as above. Moreover, the difference of the S4-values is given by

S4(x
′
m)− S4(x) = (−1)m−1 1

qn1 · · · qnm−1

1

2nm−1p̃nm−1

(−sm + 1

knm − 1
+

1

2
θm

)
.

Here we used the definition of the new coefficients bj and again Proposition A.1.1(c)
(Exercise). So for m ≥ m0, we end up with

ΔS4(x, x′
m) = (−1)m−1 2

mpn1 · · · pnm−1

qn1 · · · qnm−1

pnm

2nm−1p̃nm−1
·

−sm+1
2
nm

+ 1
2θm

sm − λm
.

Again, two cases have to be discussed.
• Assume that supm∈Nm0

θm =: θ < 1. In this situation, put sm := 
nm . Then the last
factor can be estimated by

−sm + 1

knm − 1
+

1

2
θm ≤ 3− knm

2(knm − 1)
+

1

2
θ = −1− θ

2
+

1

knm

< −1− θ

3
=: α < 0,
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whenever m is sufficiently large. Recall that km −→ +∞ as m −→ +∞. Because of the sign
(−1)m−1, one obtains lim supm→∞ ΔS4(x, x′

m) = +∞ and lim infm→∞ ΔS4(x, x′
m) = −∞,

implying that S4 has no finite or infinite right-sided derivative at the point x under discussion.
• Assume now that supm∈Nm0

θm = 1. Then there exists a subsequence (θmk
)k∈N, mk ≥

m0, such that θmk
−→
k→∞

1. We proceed, discussing only the sequence (xmk
)k∈N. Put smk

= 1.

Then
−smk

+1

kmk
−1 + 1

2θmk
−→ 1

2 . Therefore, |ΔS4(x, x′
mk

)| −→
k→∞

+∞. If, in addition, the two sets

M1 := {k ∈ N : mk odd}, M2 := {k ∈ N : mk even}

are infinite, then because of the signs (−1)m−1, one gets

lim sup
M1�k→∞

ΔS4(x, x′
m) =∞, lim inf

M2�k→∞
ΔS4(x, x′

m) = −∞.

Therefore, in this case, the function S4 has also no finite or infinite right-sided derivative at
x.

It remains to discuss the situation in which

(i) mk ∈ 2N, k ≥ k1, or

(ii) mk ∈ 2N+ 1, k ≥ k1.

In case (i) (resp. (ii)), it follows that limk→∞ ΔS4(x, xmk
) = −∞ (resp. limk→∞ ΔS4(x, xmk

)
= +∞). For the remaining m’s, m ≥ mk1 , take sm = 1. In case (i) (resp. (ii)), these m’s
are odd (resp. even), and the corresponding terms −sm+1

knm−1 + 1
2θm in ΔS4(x, x′

m) are in both

cases nonnegative. Therefore, if (i) (resp. (ii)), then D+S4(x) = −∞ and D+S4(x) ≥ 0
(resp. D+S4(x) = +∞ and D+S4(x) ≥ 0). Hence S4 has no finite or infinite derivative at
the point x. ��

11.3 BM(I) Is Residual in a Certain Subspace of C(I)

Recall that we already know that B(I) is of first category in C(I), which does not give auto-
matically the existence of a Besicovitch-type function. On the other hand, we have already
discussed concrete functions belonging to BM(I). In this section, a clever use of the categorial
approach leads to the fact that BM(I) is even a residual subset of a certain subspace of C(I)
(see [Mal84]).

Put
K := {f ∈ C(I) : f(0) = f(1) = 0, Lip(f) ≤ 1},

where
Lip(f) := sup

x,y∈I, x 
=y
|Δf(x, y)|.

Note that K is a compact subset of the metric space C(I) (Exercise, use the theorem of
Arzelà–Ascoli), where the metric is given by

d(f, g) := ‖f − g‖ = sup{|f(x)− f(y)| : x, y ∈ I}.

Finally, let E be the set of all u = (un)
∞
n=1 ∈ KN such that:

(a) un ≥ un+1 ≥ 0 (n ∈ N), (11.3.1)
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(b) if un+1 > 0 on a subinterval J ⊂ I, then un|J is constant (n ∈ N). (11.3.2)

Note that E is a closed subset of the compact metric space KN endowed with the product

topology or the metric d(u, v) =
∑∞

n=1
1
2n

‖un−vn‖
1+‖un−vn‖ , where u = (un)

∞
n=1, v = (vn)

∞
n=1 ∈ KN

(Exercise).
In order to be able to continue, let us state the following lemma.

Lemma 11.3.1. Let u = (un)
∞
n=1 ∈ E. Then ‖uk‖ < 1

k for all k ∈ N.

Proof . Assume that there is a k ∈ N with ‖uk‖ ≥ 1
k . Then there exists an x0 ∈ I with

uk(x0) ≥ 1
k . Taking into account that uk(0) = uk(1) = 0, we have x0 ∈ (0, 1). Moreover,

1
k ≤ uk(x0) = uk(x0)− uk(0) ≤ x0 − 0 = x0; in particular, k ≥ 2.

Now choose a point x1 ∈ [0, x0) such that uk(x1) = 0 and uk is strictly positive on the
interval J1 := (x1, x0]. By assumption (11.3.2), it follows that

x1 = x1 − 0 ≥ uk−1(x1)− uk−1(0) = uk−1(x1) = uk−1(x0) ≥ uk(x0) ≥ 1

k
,

and moreover,

1

k
≤ uk(x0) = |uk(x1)− uk(x0)| ≤ x0 − x1, i.e.

1

k
≤ x1 ≤ x0 − 1

k
.

In particular, k ≥ 3. Repeating this argument leads to points x2 > x3 > x4 ≥ xm with
1
k ≤ uk−m(xm) ≤ xm − 1

k ≤ x0 − m
k and m+ 1 < k. Since this process does not stop, we end

up with a contradiction. ��
Using the above lemma, we will introduce a continuous map from the compact space E

into C(I). Let ϕ ∈ C(I) be an increasing function with ϕ(0) = 0 and ϕ(1) ≥ 1. Then we define
a map Aϕ : E −→ C(I) via the following formula

Aϕ(u)(x) :=
∞∑

k=1

(−1)k+1ϕ(uk(x)), x ∈ I, u = (uk)
∞
k=1 ∈ E.

Note that ϕ(uk(x)) ≥ ϕ(uk+1(x)) ↘
k→∞

0; thus, by the Leibniz criterion, this series is conver-

gent for every x ∈ I. So Aϕ(u) is well defined on I.
Why is Aϕ(u) continuous? Fix a point a ∈ I and a positive ε. Now choose an m ∈ N such

that ϕ( 1
m ) < ε (use the fact that ϕ(0) = 0). Moreover, by the uniform continuity of ϕ, we may

find a positive δ = δε such that ϕ(t) − ϕ(τ) < ε whenever 0 ≤ τ ≤ t ≤ max{τ + δ, 1}. Take
an η > 0 such that for all x ∈ I with |x − a| < η, we have |uk(x) − uk(a)| < δ, k = 1, . . . ,m
(use the fact that the uk are continuous functions).

Now let x ∈ I with |x− a| < η. Then:

|Aϕ(u)(x) −Aϕ(u)(a)|

≤
∣∣∣

m∑

k=1

(−1)k+1(ϕ(uk(x)) − ϕ(uk(a))
∣∣∣+

∣∣∣
∞∑

k=m+1

(−1)k+1ϕ(uk(x))
∣∣∣

+
∣∣∣

∞∑

k=m+1

(−1)k+1ϕ(uk(a))
∣∣∣ ≤ mε + ϕ(um+1(x)) + ϕ(um(a)) < (m + 2)ε.

Hence Aϕ(u) ∈ C(I).



11.3 BM(I) Is Residual in a Certain Subspace of C(I) 237

Moreover, we have the following property of Aϕ.

Lemma 11.3.2. Let ϕ be as above. Then the mapping Aϕ : E −→ C(I) is continuous. In
particular, Aϕ(E) is a compact subset of the metric space C(I) and therefore a complete metric
space.

Proof . Fix a u = (uk)
∞
k=1 ∈ E and an ε > 0. The proof now is similar to the previous one.

Choose an m ∈ N such that ϕ( 1
m ) < ε and take a positive δ such that ϕ(t) − ϕ(τ) < ε

whenever 0 ≤ τ ≤ t ≤ max{τ + δ, 1}.
Now let v ∈ E be such that ‖vk − uk‖ < δ, k = 1, . . . ,m. For x ∈ I, by virtue of

Lemma 11.3.1, we get

|Aϕ(u)(x)−Aϕ(v)(x)|

≤
∣∣∣

m∑

k=1

(−1)k+1(ϕ(uk(x))− ϕ(vk(x))
∣∣∣+

∣∣∣
∞∑

k=m+1

(−1)k+1ϕ(uk(x))
∣∣∣

+
∣∣∣

∞∑

k=m+1

(−1)k+1ϕ(vk(x))
∣∣∣ ≤ mε + ϕ(um+1(x)) + ϕ(vm+1(x)) < (m + 2)ε.

Hence Aϕ is continuous. ��
Proposition 11.3.3. Let ϕ be as above. Suppose, in addition, that ϕ is differentiable (with

finite derivatives) on (0, 1) and that D+ϕ(0) = lim inf
x→0+

ϕ(x)
x < ∞. If f ∈ Aϕ(E), then f does

not have an infinite right-sided derivative at any point in [0, 1).

Proof . Let f = Aϕ(u), where u = (uk)
∞
k=1 ∈ E, and fix a point a ∈ [0, 1). Three cases have

to be discussed.
Case 1o. uk(a) > 0 for all k ∈ N.
Put

bk := inf{x ∈ (a, 1] : uk(x) = 0}.
Here bk is the first zero of uk to the right of a. Because of (11.3.1), it is clear that bk+1 ≤ bk,
k ∈ N. Using (11.3.2), we know that uk−1 is identically constant on [a, bk], k ≥ 2. Therefore,

f(a) ≥
2n∑

k=1

(−1)k+1ϕ(uk(a)) =

2n∑

k=1

(−1)k+1ϕ(uk(b2n+1)) = f(b2n+1),

f(a) ≤
2n−1∑

k=1

(−1)k+1ϕ(uk(a)) =

2n−1∑

k=1

(−1)k+1ϕ(uk(b2n)) = f(b2n), n ∈ N.

If bn −→ a, then

D+f(a) = lim inf
x→a+

Δf(a, x) ≤ lim inf
n→∞ Δf(a, b2n+1) ≤ 0,

D+f(a) = lim sup
x→a+

Δf(a, x) ≥ lim sup
n→∞

Δf(a, b2n) ≥ 0.

Thus in this case, no infinite right-sided derivative of f at a exists.
If a < b := limn→∞ bn, then all the un are constant on [a, b] (use condition (11.3.2)). Hence

D+f(a) = D+f(a) = 0, i.e., f has a finite right-sided derivative f ′
+(a) = 0 at the point a.



238 11 Besicovitch Functions

Case 2o. u1(a) = · · · = um−1(a) > 0, uk(a) = 0 for k ≥ m, and u1, . . . , um−1 are identically
constant on some interval J = [a, b] with a < b ≤ 1. In fact, because of (11.3.2), we need to
assume only that um−1 is identically constant on such an interval J .

Let x ∈ J . Then, using the Lipschitz property of uk and the monotonicity of ϕ, we get

|f(x) − f(a)| =
∣∣∣

∞∑

k=1

(−1)k+1(ϕ(uk(x)) − ϕ(uk(a))
∣∣∣

≤ ϕ(um(x)) = ϕ(um(x)− um(a)) ≤ ϕ(x − a).

Therefore, we have

lim inf
x→a+

|Δf(a, x)| ≤ lim inf
x→a+

ϕ(x − a)

x− a
= D+ϕ(0) <∞.

Hence f has no infinite right-sided derivative at the point a.
Case 3o. u1(a) = · · · = um−1(a) > 0, uk(a) = 0 for k ≥ m, and um−1 is not identically

constant on any interval (a, b] with a < b ≤ 1.
By (11.3.2), we conclude that there is a sequence of points xj < 1 with xj ↘

j→∞
a such that

um(xj) = 0 and un(a) = un(xj), n = 1, . . . ,m− 2 (use that um−1(a) > 0). Then we get

lim sup
j→∞

|f(xj)− f(a)|
xj − a

≤ lim sup
j→∞

|ϕ(um−1(xj))− ϕ(um−1(a))|
xj − a

≤ ϕ′(um−1(a))lim sup
j→∞

|um−1(xj)− um−1(a)|
xj − a

≤ ϕ′(um−1(a)) <∞.

Thus also in this case, f has no infinite right-sided derivative at the point a. ��
The main statement is formulated by the following theorem.

Theorem 11.3.4. Let ϕ, ψ be continuous strictly increasing functions on I with ϕ(0) =

ψ(0) = 0, min{ϕ(1), ψ(1)} ≥ 1, and such that ψ is a concave function. If lim sup
x→0+

ϕ(x)
ψ(x) = ∞,

then the set

M :=
{
f ∈ Aϕ(E) : ∃a∈[0,1) : lim sup

x→a+

|f(x)− f(a)|
ψ(x− a)

<∞
}

is of first category in the complete metric space Aϕ(E).

Proof . For k ∈ N, we put

Mk := {f ∈ Aϕ(E) : ∃a∈[0,1−1/k] : |f(x)− f(a)| ≤ kψ(x− a)

for all x ∈ [a, a +
1

k
]}.

Obviously, the sets Mk are closed in Aϕ(E) and M ⊂ ⋃∞
k=1 Mk. It remains to verify that each

of the sets Mk is nowhere dense in Aϕ(E).
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Let k ∈ N. Then take an f = Aϕ(u) ∈ Mk, u = (un)
∞
n=1 ∈ E, and choose an arbitrary

ε ∈ (0, 1/2). We will show that the ε-neighborhood of u contains a sequence of functions
u∗ = (u∗

n)
∞
n=1 ∈ E such that Aϕ(u

∗) does not belong to Mk. Hence, f cannot be an interior
point of Mk (use that Aϕ is continuous), which will prove that Mk is nowhere dense.

For this reason, choose an m ∈ N with 1
m < ε′ := ε

5 and put

vn := (1− 2ε′)max{0, un − nm−2}, n ∈ N.

Obviously, v := (vn)
∞
n=1 ∈ E. Moreover, vn ≡ 0 for n > m, since ‖un‖ < 1

n , and Lip(vn) ≤
1− 2ε′, n ∈ N. For later use, we mention also that if n ∈ N and x ∈ I, then

either vn+1(x) = 0 or vn(x) ≥ vn+1(x) +
1− 2ε′

m2
. (11.3.3)

Indeed, if vn+1(x) > 0, then un(x) ≥ un+1(x) > n+1
m2 > n

m2 . Therefore,

vn(x) = (1− 2ε′)(un(x)− n

m2
)

≥ (1− 2ε′)(un+1(x)− n + 1

m2
) + (1− 2ε′)

1

m2

= vn+1(x) +
1− 2ε′

m2
.

Let n > m. Then ‖un − vn‖ = ‖un‖ ≤ 1
n < 1

m < ε′; if n ≤ m, then

|un(x)− vn(x)| = |un(x) − (1− 2ε′)max{0, un(x)− nm−2}|

≤
{
|un(x)| ≤ nm−2 ≤ m−1, if un(x) ≤ nm−2

|2ε′un(x) + (1− 2ε′)nm−2| ≤ 2ε′ + 1/m, if un(x) > nm−2
;

hence ‖un − vn‖ ≤ 2ε′ + 1
m .

Using the assumption that ψ is concave, we get

lim sup
x→0+

ϕ( ε
′x
4 )

ψ(x)
≥ 1

4
ε′ · lim sup

x→0+

ϕ( ε
′x
4 )

ψ( ε
′x
4 )

=∞.

In particular, there exists a positive δ0 such that if δ < δ0, then

sup
{ϕ( ε

′x
4 )

ψ(x)
: 0 < x < δ

}
> 8k.

Choose q0 ∈ N with q0 ≥ max{k, 2}, ε′
q0

< 1
m2 ,

1
q0

< δ0, q0 ≥ ε′m2

1−2ε′ , and q20 > 2m2ε′2
1−2ε′ . Then

⋃∞
q=q0

( 1
2q ,

1
q ) = (0, 1

q0
). Taking δ = 1

q0
, we fix a point x ∈ (0, δ) with

ϕ( ε′x
4 )

ψ(x) > 8k. Then there

exists a q ≥ q0 such that 1
2q < x

4 < 1
q . Thus

ε′x
4 ≤ ε′

q and x ≥ 2
q . By virtue of the monotonicity

of ϕ and ψ, we end up with 8kψ(2q ) < ϕ( ε
′
q ), where q ≥ max{2, k} and ε′

q < 1
m2 .

Put bj :=
j
q , cj :=

j−ε′

q , and aj :=
j−2ε′

q , j = 0, . . . , q. Thus we have the following partition:

0 = b0 < a1 < c1 < b1 < a2 < c2 < b2 < · · · < aq < cq < bq = 1.
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Now we introduce the function h : I −→ I via the following rule:

h(x) :=

⎧
⎪⎨

⎪⎩

0, if x = 0

bj , if x ∈ [aj, bj ], 1 ≤ j ≤ q

bj−1 +
x−bj−1

aj−bj−1
(bj − bj−1), if x ∈ [bj−1, aj ], 1 ≤ j ≤ q

.

Note that

Lip(h) = max
{ bj − bj−1

aj − bj−1
: j = 1, . . . , q

}
=

1

1− 2ε′
.

Put w = (wn)
∞
n=1 via wn := vn ◦ h, n ∈ N. Then Lip(wn) ≤ Lip(vn) Lip(h) ≤ 1. Hence,

w ∈ E (recall that wn(0) = wn(1) = 0). Moreover,

|wn(x) − vn(x)| ≤ Lip(vn)|x− h(x)| ≤ 1

q
, x ∈ I, n ∈ N (Exercise).

Finally, we define the desired family of functions in E near to u, namely u∗ = (u∗
n)

∞
n=1, via

the following procedure. Let nj ∈ N denote the smallest n with vn(bj) < ε′
q , i.e., vnj (bj) <

ε′
q ≤ vnj−1(bj), j = 1, . . . , q. Note that such an nj exists, since vn(bj) −→

n→∞ 0. Moreover,

we have that either vnj+1(bj+1) = 0 or vnj (bj+1) ≥ vnj+1(bj+1) +
1−2ε′
m2 > ε′

q , i.e., either

vnj+1(bj+1) = 0 or nj+1 > nj .
Then we define u∗

n(x), n ∈ N, x ∈ I, by the following formulas:

• if n /∈ {n1, . . . , nq}, then u∗
n(x) := wn(x);

• if there exists a j such that n = nj, x ∈ [aj , bj ], and ϕ(vnj (bj)) ≤ 4kψ(2q ), then u∗
n(x) :=

vn(bj) +
ε′
q − |x− cj |;

• if there exists a j such that n = nj, x ∈ [aj , bj ], and ϕ(vnj (bj)) > 4kψ(2q ), then u∗
n(x) :=

vn(bj)−max{vnj (bj),
ε′
q − |x− cj |};

• if n ∈ {n1, . . . , nq}, x /∈ ⋃
j: n=nj

[aj , bj ], then u∗
n(x) := wn(x).

Note that u∗
n is well defined, since the intervals [aj, bj ] are pairwise disjoint. Obviously, u∗

n(0) =
wn(0) = 0 and u∗

n ≥ 0. Moreover, for n = nj we have either

u∗
n(bj) = vn(bj) +

ε′

q
− |bj − cj | = vn(bj) = vn(h(bj)) = wn(bj) or

u∗
n(bj) = vn(bj)−min{vn(bj), ε′

q
− |bj − cj |} = vn(bj) = wn(bj)

(in particular, u∗
n(1) = 0) and either

u∗
n(aj) = vn(bj) +

ε′

q
− |aj − cj | = vn(bj) = vn(h(aj)) = wn(aj) or

u∗
n(aj) = vn(bj)−min{vn(bj), ε′

q
− |aj − cj |} = vn(bj) = wn(aj).

Hence, the function u∗
n is continuous in I. It is clear that Lip(u∗

n) ≤ 1.
Let n = nj and x ∈ [aj , bj]. Assume that vn+1(x) > 0, then by virtue of (11.3.3), we have

1− 2ε′

m2
< vn+1(x) +

1− 2ε′

m2
≤ vn(x) ≤ vn(bj)(bj − x) <

ε′

q

2ε′

q
;
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a contradiction (because q2 > 2m2ε′2
1−2ε′ ). Thus, vn+1|[aj ,bj ] ≡ 0. Since n + 1 �= nj , we have

u∗
n+1(x) = wn+1(x) = vn+1(h(x)) = vn+1(bj) = 0, x ∈ [aj , bj ]. Therefore, u∗

n+1|[aj ,bj ] ≡ 0 ≤
u∗
n|[aj ,bj ]. Now let n > 1, n = nj, and x ∈ [aj , bj ] as above. Then we get either

u∗
n−1(x) = wn−1(x) = vn−1(bj) ≥ vn(bj)

≥ vn(x) −min{vn(bj), ε′/q − |x− cj |} = u∗
n(x) or

vnj−1(bj) > vnj (bj) +
1− 2ε′

m2
≥ vnj (bj) +

ε′

q
− |x− cj | = unj(x)

(recall that q > ε′m2

1−2ε′ ). Hence u∗
1 ≥ u∗

2 ≥ · · · ≥ u∗
n ≥ · · · ≥ 0 (recall that u∗

n(x) differs from
wn(x) only if n = nj and x ∈ [aj , bj]).

Since property (11.3.2) is also satisfied (Exercise), we have u∗ ∈ E.
Finally, we discuss |u∗

n(x) − wn(x)|, x ∈ I. Let n = nj and x ∈ [aj , bj ]. Then either

|u∗
n(x)− wn(x)| = |vn(bj) + ε′

q
− |x− cj | − wn(x)| ≤ ε′

q

(use wn(x) = vn(bj)) or

|u∗
n(x) − wn(x)| = |vn(bj)−min{vn(bj), ε′

q
− |x− cj |} − v(bj)| ≤ ε′

q
.

All the other cases are trivial. Therefore, ‖u∗
n − wn‖ ≤ ε′

q < ε′. Finally, we have

‖u∗
n − un‖ ≤ ‖u∗

n − wn‖+ ‖wn − vn‖+ ‖vn − un‖ ≤ 5ε′ < ε,

i.e., the sequence u∗ belongs to the ε-neighborhood of u.
It remains to verify that f∗ := Aϕ(u

∗) /∈ Mk. To prove this, fix an arbitrary point a ∈
[0, 1− 1

k ]. Since 1− 1
k < 1− 1

q = bq−1, there exists a j ∈ {2, . . . , q} with bj−2 ≤ a < bj−1. Recall

that nj is the smallest index l such that vl(bj) < ε′
q . Then ϕ(u∗

nj
(bj)) = ϕ(vnj (bj)) < ϕ( ε

′
q ).

If ϕ(vnj (bj)) ≤ 4kψ(2q ), then

ϕ(u∗
nj
(cj))− ϕ(u∗

nj
(bj)) = ϕ

(
vnj (bj) +

ε′

q

)
− ϕ(vnj (bj))

≥ ϕ
(ε′

q

)
− 4kψ

(2
q

)
≥ 8kψ

(2
q

)
− 4kψ

(2
q

)

= 4kψ
(2

q

)
.

If ϕ(vnj (bj)) > 4kψ(2q ), then

|ϕ(u∗
nj
(cj))− ϕ(u∗

nj
(bj)| = |ϕ(0)− ϕ(u∗

nj
(bj))|

= ϕ(u∗
nj
(bj)) = ϕ(vnj (bj)) > 4kψ

(2
q

)
.

Recall that for s �= nj , we know that u∗
s|[aj ,bj ] is identically constant. Therefore,

|f∗(cj)− f∗(bj)| ≥ 4ψ
(2

q

)
.
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Hence we get

4kψ
(2

q

)
≤ |f∗(bj)− f∗(cj)| ≤ |f∗(a)− f∗(cj)|+ |f∗(a)− f∗(bj)|,

implying that there is an x ∈ {cj, bj} such that |f∗(x)− f∗(a)| ≥ 2kψ(2q ). Moreover, we have

ψ(x− a) ≤ ψ(2q ) (recall that ψ is an increasing function). Hence

|f∗(a)− f∗(x)|
ψ(x − a)

≥ 2k.

Since bj ∈ [a, a+ 1
k ], it follows that the condition of the definition of Mk is not fulfilled. Since

a was arbitrarily chosen, we see that f∗ /∈Mk. ��
Exercise 11.3.5. Verify the existence of a strictly increasing continuous function ϕ : I −→ I

with the following properties:

ϕ(0) = 0, ϕ(1) = 1, D+ϕ(0) <∞, D+ϕ(0) =∞,

such that ϕ|(0,1) is differentiable.
Now we are able to prove the existence of a Besicovitch–Morse function using Proposi-

tion 11.3.3 and Theorem 11.3.4.

Corollary 11.3.6. There exists a Besicovitch–Morse function on I.

Proof . Take a continuous strictly increasing function ϕ : I −→ R as in Exercise 11.3.5.
Applying Proposition 11.3.3 yields that every function from Aϕ(E) has nowhere an infinite
right-sided derivatives on [0, 1).

Note that the condition D+ϕ(0) = ∞ implies (take ψ = idI) that the assumptions in
Theorem 11.3.4 are satisfied. Therefore, there is a subset S+ ⊂ Aϕ(E) of second category,
where

S+ :=
{
g ∈ Aϕ(E) : ∀a∈[0,1) : lim sup

x→a+
|Δf(a, x)| =∞

}
.

By a similar argument, we see that also the set

S− :=
{
g ∈ Aϕ(E) : ∀a∈(0,1] : lim sup

x→a−
|Δf(a, x)| =∞

}

is of second category in Aϕ(E). Hence, ∅ �= S+ ∩ S− ⊂ BM(I), which says that there exists
a Besicovitch–Morse function in Aϕ(E). ��
Remark 11.3.7. Note that the proof of the former corollary tells us even more than stated
there, namely, that the typical function in Aϕ(E) is a Besicovitch–Morse function.

We conclude this section by adding some results on the existence of a Hölder continuous
Besicovitch–Morse function.

Proposition 11.3.8. For every α ∈ (0, 1), there exists a Besicovitch–Morse function f ∈
Hα(I).

Proof . 1 Step 1o. Fix an α ∈ (0, 1) and put μ(t) := tα. Then there is a decreasing function
g such that μ(x) =

∫ x

0
g(t)dt (note that this representation is always true if μ is a concave

1 We thank Professor Jan Maly for the idea of the proof.
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function). In our case, g(t) = αtα−1, t ∈ (0, 1]. Now we choose a strictly decreasing sequence
(xk)

∞
k=1 ∈ (0, 1], which converges to 0 (the precise shape of the xk’s will be given later). Fix

x1 := 1, x2 := 1/2. Put, for t ∈ (0, 1],

h(t) :=

{
g(t), if x2k+1 < t ≤ x2k, k ∈ N

0, if x2k < t ≤ x2k−1, k ∈ N

and define ϕ1(t) :=
∫ t

0 h(τ)dτ , t ∈ (0, 1], ϕ1(0) := 0. Then ϕ1 ≤ μ, and ϕ1 is an increasing
continuous function on I, which is identically equal to ϕ1(x2k) on the intervals [x2k, x2k−1],
k ∈ N.

Then
ϕ1(x2k)

x2k
≥ xα

2k − xα
2k+1

x2k
≥ 1

x1−α
2k

− 1 −→
k→+∞

+∞,

where x2k+1 := x
1/α
2k < x2k, k ∈ N.

Moreover, for k ∈ N3, we have

ϕ1(x2k+1)

x2k+1
=

1

x2k+1

∞∑


=k+1

(xα
2
 − xα

2
+1) ≤
1

x
1/α
2k

∞∑


=k+1

xα
2
 =: Ak.

Now choose an s ∈ N with s > 1/α and put x2(m+1) := xs2

2m, m ∈ N2. Note that x2(m+1) <

x2m+1 for all m. On applying αs2
 − s ≥ (
 − 1)s, 
 ∈ N, it follows that

Ak =
1

x
1/α
2k

∞∑


=k+1

(x2k)
αs2(�−k)

=
1

x
1/α
2k

∞∑


=1

(x2k)
αs2� = x

s−1/α
2k

∞∑


=1

(x2k)
αs2�−s

≤ x
s−1/α
2k

∞∑


=0

(xs
2k)


 = x
s−1/α
2k

1

1− xs
2k

−→
k→+∞

0.

Hence we end up with D+ϕ1(0) = +∞ and D−ϕ1(0) = 0.
Step 2o. Now we will smooth the function ϕ1 to get a new function, called ϕ̃, in such a way

that ϕ1 ≤ ϕ̃ ≤ μ, limk→+∞
ϕ̃(x2k)
x2k

= +∞, and limk→+∞
ϕ̃(x2k+1)
x2k+1

= 0. To do so, we choose

ε2k > 0 such that:

• 2ε2k < x2k−1 − x2k,

• ε2kg(x2k) <
x2k+1

2k
,

• g(x) ≥ g(x2k)
x2k+ε2k−x

ε2k
, x2k ≤ x ≤ x2k + ε2k, k ∈ N.

For t ∈ I, put

h̃(t) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

h(t), if x2k+1 ≤ t ≤ x2k, k ∈ N,

g(x2k)
x2k+ε2k−t

ε2k
, if t ∈ [x2k, x2k + ε2k], k ∈ N,

g(x2k−1)
t−x2k−1+ε2k

ε2k
, if t ∈ [x2k−1 − ε2k, x2k−1], k ∈ N,

0, otherwise

.

Then the function ϕ̃ defined as ϕ̃(x) :=
∫ x

0
h̃(τ)dτ , x ∈ I, is an increasing continuous function

on I, differentiable on (0, 1), that satisfies ϕ1 ≤ ϕ̃ ≤ μ. Thus ϕ̃(x2k)
x2k

≥ ϕ1(x2k)
x2k

−→
k→+∞

+∞.
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Note that

ϕ̃(x2k+1) =
∞∑


=k+1

(xα
2
 − xα

2
+1) +
∞∑


=k+1

g(x2
)ε2


≤
∞∑


=k+1

(xα
2
 − xα

2
+1) +

∞∑


=k+1

x2
+1/2

.

Therefore,
ϕ̃(x2k+1)

x2k+1
≤ Ak + 1/2k −→

k→+∞
0.

Step 3o. Put ϕ(t) := ϕ̃(t)+ t2, t ∈ I. Then ϕ is strictly increasing with ϕ(1) ≥ 1. Moreover,
D+ϕ(0) = +∞ and D−ϕ(0) = 0.

Step 4o. Finally, if 0 ≤ x < y ≤ 1, then

ϕ(y)− ϕ(x)

μ(y − x)
≤

∫ y

x
h̃(t)dt

μ(y − x)
+

y2 − x2

(y − x)α

≤
∫ y

x
g(t)dt

μ(y − x)
+ 2(y − x)1−α ≤ μ(y)− μ(x)

μ(y − x)
+ 2 ≤ 3,

because μ is a strictly increasing concave function with μ(0) = 0 and therefore subadditive.
Hence,

Hμ(ϕ) := sup
{ |ϕ(y)− ϕ(x)|

μ(|y − x|) : x, y ∈ I, x �= y
}

<∞.

To finish the proof, we need the following lemma.

Lemma 11.3.9. Let μ be as above and let ϕ ∈ C(I) be an increasing function with ϕ(0) = 0.
If Hμ(ϕ) ≤M , then Hμ(f) ≤ 2M for every function f ∈ Aϕ(E).

Proof . Let f ∈ Aϕ(E), i.e., f = Aϕ(u), where u ∈ E. Fix points x < y in I and put
m := min{n ∈ N : un(x) �= un(y)}. By virtue of the definition of E, we find (since um is not
identically constant on the interval J := [x, y]) a point z ∈ J with um+1(z) = 0.

Assume that m is an odd number. Then

f(y) =

∞∑

n=1

(−1)n+1ϕ ◦ un(y) ≤
m∑

n=1

(−1)n+1ϕ ◦ un(y),

f(x) ≥
m+1∑

n=1

(−1)n+1ϕ ◦ un(x).

Recalling that un(x) = un(y) for n < m and the Lipschitz property of the un’s, we get

f(y)− f(x) ≤ ϕ(um(y))− ϕ(um(x)) + ϕ(um+1(x)) − ϕ(um+1(z))

≤ Hμ(ϕ)μ(|um(x) − um(y)|) + Hμ(ϕ)μ(|um+1(x)− um+1(z)|)
≤ 2Mμ(|x− y|).

Similarly, if m is even, then f(x)− f(y) ≤ 2Mμ(|y − x|) (Exercise). ��
Hence, by virtue of Proposition 11.3.3 and Theorem 11.3.4, we get α-Hölder continuous

Besicovitch–Morse functions. ��



Chapter 12

Linear Spaces of Nowhere Differentiable
Functions

Summary. This chapter gives some ideas for studying linear structures within the nonlinear set ND(I).

12.1 Introduction

A theorem of S. Banach and S. Mazur (see [AK06a], Theorem 1.4.3) states that every separable
Banach space1 X is isometrically embedded as a closed subspace of C(I). The theorem tells
us that C(I) is a “really big” space, big enough to contain every possible separable Banach
space. So one can ask whether we can require more properties of the functions in the image
of the embedding or when these properties place restrictions on the Banach space X to be
embedded. In this direction, the following results are known:

• If E is a closed linear subspace of C(I) such that every function f ∈ E has bounded variation,
then E is necessarily finite-dimensional [LM40].

• If E is a closed linear subspace of C(I) such that every function f ∈ E is differentiable at
every point of I, then E is finite-dimensional (cf. [Gur67]).

• If E is infinite-dimensional and every function in E has a derivative at every point of
(0, 1], then E must contain an isomorphic copy of c0.

2 (See [Gur67].) In fact, E must be
isomorphic to a subspace of c0.

• If 
1 can be embedded in C(I) as a linear subspace,3 then there exists a function in the
image of the embedding that is nondifferentiable at every point of a perfect subset4 of I
(see [PT84]).

• In [Gur91], using trigonometric sums, an infinite-dimensional subspace E of C(I) is con-
structed such that every f ∈ E \ {0} is nowhere differentiable on I.

• In [FGK99], the authors used van der Waerden’s functions to give a closed subspace of C(I)
that is isomorphic to 
1.

1 That is, the space contains a countable dense subset.
2 Recall that c0 := {(an)∞n=1 ⊂ R : an −→ 0} with the supremum norm.
3 Recall that �1 := {a = (an)∞n=1 ⊂ R : ‖a‖�1 :=

∑∞
n=1 |an| < +∞}.

4 A closed set A ⊂ I is called perfect if each of its points is an accumulation point of A.

© Springer International Publishing Switzerland 2015
M. Jarnicki, P. Pflug, Continuous Nowhere Differentiable Functions, Springer
Monographs in Mathematics, DOI 10.1007/978-3-319-12670-8 12

245



246 12 Linear Spaces of Nowhere Differentiable Functions

• There is a stronger version of the Banach–Mazur result by Rodriguez-Piazza (see [RP95]),
namely that every separable Banach space can be isometrically embedded as a subspace E
of C(I) such that f ∈ ND(I) whenever f ∈ E \ {0}.
Our aim in this section is to study the m-lineability (resp. m-spaceability) of ND±(I),

where m ∈ {ℵ0, c} (c stands for the continuum). A set M ⊂ B of an infinite-dimensional
Banach space B is called m-lineable (resp. m-spaceable) if there is an m-dimensional (resp. a
closed m-dimensional) subspace E ⊂ B such that E \ {0} ⊂ M . These notions were first
introduced in an unpublished paper by Enflo and Gurariy (see [EG]) that circulated among
specialists at the beginning of this century (see also the final and extended version of this
preprint [EGSS14]).5 In the sequel, the Banach space B will be given by C(I).

12.2 c-Lineability of ND∞(R)

In [Gur91], Gurariy presented a nonconstructive proof of the fact that ND(R) is ℵ0-lineable.
The aim here is to give a constructive proof of the following stronger result due to Jiménez-
Rodriguez et al. (see [JRMFSS13]).

Theorem 12.2.1. The set ND∞(R) ∩ND±(R) is c-lineable.

Proof . For a ∈ (0, 1), we put fa(x) := Ca,9(x) =
∑∞

n=0 an cos(2π9nx), x ∈ R. Now the proof
consists in proving the following two lemmas.

Lemma 12.2.2. Let 0 < a1 < a2 < · · · < ak < 1. Then the functions fj := faj , j = 1, . . . , k,
are linearly independent.

Proof . Let (λ1, . . . , λk) ∈ R
k be such that

∑k
j=1 λjfj = 0. To conclude that all the λj vanish,

it suffices (together with the Vandermonde determinant) to prove the following claim:

k∑

j=1

λja
n
j = 0 =

k∑

j=1

λj

an+1
j

1− aj
, n ∈ N0.

We will use induction. If n = 0, then

0 =

k∑

j=1

λjfj

(1
6

)
=

k∑

j=1

λj

(
cos

(π

3

)
+

∞∑

n=1

an
j cos(3

n3n−1π)
)

=

k∑

j=1

λj

(
cos

(π

3

)
− aj

1− aj

)

and

0 =

k∑

j=1

λjfj

( 1

18

)
=

k∑

j=1

λj

(
cos

(π

9

)
− aj

1− aj

)
.

Therefore, 0 = (cos(π3 ) − cos(π9 ))
∑k

j=1 λj , which immediately implies the claim in the case
n = 0.

5 We thank Professor L. Bernal-González for informing us about the history of [EG].
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Assume now that the claim is true for all m ∈ N0, 0 ≤ m ≤ n. Similarly to the argument
above, we calculate

0 =
k∑

j=1

λjfj

( 1

2 · 9n+2

)
=

k∑

j=1

λj

(
cos

( π

9n+2

)
+ aj cos

( π

9n+1

)

+ · · ·+ an
j cos

( π

92

)
+ an+1

j cos
(π

9

)
− an+2

j

1− aj

)

use twice
=

induction assumption

k∑

j=1

λj

(
an+1
j cos

(π

9

)
− an+2

j

1− aj
+

an+1
j

1− aj

)

=

k∑

j=1

λja
n+1
j

(
cos

(π

9

)
+ 1

)
,

implying the first part of the claim and then the second part. ��
Put E := span({fa : 7/9 < a < 1}). Then dimE = c.

Lemma 12.2.3. Let 7/9 < ak < · · · < a1 < 1 and (λ1, . . . , λk) ∈ R
k \ {0} be given. Then

f :=
∑k

j=1 λjfj ∈ ND±(R) ∩ND∞(R), where fj := faj .

Proof . Wemay assume that λ1 > 0. Fix an x ∈ R. The proof of the nonexistence of derivatives
at x will be based on the estimates from the proof of Theorem 3.5.1. Recall the essential part:

Δfj(x, x±
m) = ∓(−1)αm2(9aj)

m
( π

9aj − 1
Vj,m,± +

2

3
Uj,m,±

)
,

where αm ∈ Z is such that

hm := 2 · 9mx− αm ∈ (− 1
2 ,

1
2 ], x±

m :=
1

2
(αm ± 1)9−m,

Uj,m,± ≥ 1, |Vj,m,±| ≤ 1.

Note that

Hj,m :=
( π

9aj − 1
Vj,m,± +

2

3
Uj,m,±

)
≥ 2

3
− π

9a1 − 1
>

4− π

6
=: β.

Therefore, sgnΔfj(x, x+
m) = − sgnΔfj(x, x−

m).
Putting all this information together, we obtain

Δf(x, x+
m) =

k∑

j=1

λjΔfj(x, x+
m) =

k∑

j=1

λj(−1)αm+12(9aj)
mHj,m

= (−1)αm+12(9a1)
m
(
λ1H1,m +

k∑

j=2

λj

(aj

a1

)m

Hj,m

)
,

where λ1H1,m+
∑k

j=2 λj(
aj

a1
)mHj,m ≥ λ1β/2 for sufficiently largem. Therefore, max{|D+f(x)|,

|D−f(x)|} = max{|D−f(x)|, |D−f(x)|} = +∞. Moreover, if, e.g., Δf(x, x+
mk

) −→ ±∞, then
Δf(x, x−

mk
) −→ ∓∞. Thus an infinite derivative f ′(x) does not exist. �� ��
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12.3 Spaceability of ND±(I)

The aim of this section is to construct a closed linear subspace E of C(I), norm-isomorphic
to 
1, such that E \ {0} ⊂ ND±(I).

Theorem 12.3.1 (Theorem of Berezhnoi (see [Ber03])). There exists a closed linear subspace
E of C(I), dimE =∞, such that E \ {0} ⊂ ND±(I). Moreover, E is norm-isomorphic to the
sequence space 
1.

Remark 12.3.2. A weaker result is contained in [FGK99], namely that there exist a closed
linear subspace E ⊂ C(I), dimE = ∞, and a subset A ⊂ I with L1(A) = 1 such that if
f ∈ E \ {0}, then f ∈ ND((0, 1)), and moreover, f has neither a finite right-sided nor a finite
left-sided derivative at any point of A.

The proof of Theorem 12.3.1 will be done in several steps.

12.3.1 Two Matrices

Let D = (dj,k)j,k∈N (resp. H = (nj,k)j,k∈N) be an upper-triangular matrix, i.e., dj,k = 0
(resp. nj,k = 0) for k < j, such that dj,k > 0 (resp. nj,k ∈ N), k ≥ j ∈ N. Moreover, we
assume that these matrices satisfy the following conditions:

if j ∈ N, k ∈ Nj+1, then dj,k > 23+kdj+1,k; (12.3.1)

if j ∈ N, k ∈ Nj , then dj,k+1 > 23dj,k; (12.3.2)

if k ∈ N, then
nk+1,k+1

8n1,k
∈ N; (12.3.3)

if j ∈ N, k ∈ Nj+1, then
nj,k

8nj+1,k
∈ N; (12.3.4)

if j ∈ N, then 1 <
2dj,j

nj,j
< 2; (12.3.5)

if j ∈ N, k ∈ Nj , then
dj,k+1

nj,k+1
≤ dj,k

8nj,k
. (12.3.6)

Proposition 12.3.3. There exist matrices D and H as above with properties (12.3.1)–
(12.3.6).

Proof . Fix an arbitrary n1,1 ∈ N. Then choose a positive number d1,1 such that (12.3.5)
is true. Next we find an n2,2 ∈ N such that (12.3.3) holds, and then we take a positive
d2,2 satisfying (12.3.5). Now choose a positive d1,2 with (12.3.1) and (12.3.2). Finally, fix an
n1,2 ∈ N such that (12.3.4) and (12.3.6) hold. Thus the 2 × 2 left upper parts of D and
H are constructed. What remains is to use an induction argument to complete the proof
(Exercise). ��
Corollary 12.3.4. Let H and D be as in Proposition 12.3.3 and put hj,k := 1

nj,k
, j ∈ N,

k ∈ Nj. Then:

8j−1h1,k ≤ hj,k, if j ∈ N, k ∈ Nj ; (12.3.7)

h1,k ≥ 8hk+1,k+1, if k ∈ N; (12.3.8)

nj,k ≥ 8k−jdj,k, if j ∈ N, k ∈ Nj ; (12.3.9)

nj,
 ∈ 8nj,k+1N, if j ∈ N, k ∈ Nj , 
 ∈ Nk+1;
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nj,k+1 ∈ 2n1,kN, if j ∈ N, k ∈ Nj ; (12.3.10)

nj,m ∈ nk+1,k+1N, if j ∈ N, k ∈ Nj , m ∈ Nk+1 or

k ∈ N, j ∈ Nk+1, m ∈ Nj ; (12.3.11)

dj,k ≥ 8k−j−sdj,j+s, if j ∈ N, k ∈ Nj , s ∈ N0 \ Nk−j+1;

k−1−j∑

s=0

dj,j+s

dj,k
≤ 1

7 , if j ∈ N, k ∈ Nj+1. (12.3.12)

Proof . The proof is left as an easy Exercise. ��

12.3.2 Auxiliary Functions

From now on, we fix matrices D and H as in Proposition 12.3.3. Recall the function ψ(x) =
dist(x,Z) (see Chap. 4). Put ϕ0(x) := − 1

4 + ψ(x), x ∈ R. Obviously, ϕ0 has period 1 and
satisfies |ϕ0(x) − ϕ0(y)| ≤ |x− y|, x, y ∈ R. Define

ϕj,k(t) =
1

nj,k
ϕ0(nj,kt), t ∈ R, j ∈ N, k ∈ Nj .

Then the functions ϕj,k are continuous and satisfy |ϕj,k(x)− ϕj,k(y)| ≤ |x− y|, x, y ∈ R.
In the sequel, we will use the abbreviations hj,k := 1

nj,k
(see Corollary 12.3.4) and τj,k,
 :=


hj,k

2 , 
 ∈ Z.

Lemma 12.3.5. Let s, t ∈ R, j ∈ N, k ∈ Nj, and 
 ∈ Z.

(a) If τj,k,
 ≤ s, t ≤ τj,k,
+1, then |ϕj,k(t)− ϕj,k(s)| = |t− s|.
(b) If t < τj,k,
 < t + hk+1,k+1, then |ϕj,k(t + h1,k/2)− ϕj,k(t)| ≥ h1,k/4.

Proof . (a) Step 1o. If 
 = 2m, m ∈ Z, then m ≤ nj,ks, nj,kt ≤ m + 1/2. Recall that ϕ0 is a
linear function on [0, 1/2]. Therefore,

|ϕj,k(s)− ϕj,k(t)| = hj,k|ϕ0(nj,ks−m)− ϕ0(nj,kt−m)| = |s− t|.

Step 2o. If 
 = 2m + 1, then m + 1/2 ≤ nj,ks, nj,kt ≤ m + 1. Thus (a) follows with the
same argument as in Step 1o, since ϕ0 is also linear on [1/2, 1].

(b) By the assumption and (12.3.7), we have

t + h1,k/2 ≤ τj,k,
 + h1,k/2 ≤ 
hj,k/2 + h1,k/2 ≤ (
 + 1)hj,k/2 = τj,k,
+1.

On the other hand, using (12.3.8), we get

t + h1,k/2 ≥ h1,k/2− hk+1,k+1 + τj,k,
 ≥ τj,k,
.

Thus t + h1,k/2 ∈ [τj,k,
, τj,k,
+1]. Applying (a), it follows that

|ϕj,k(t + h1,k/2)− ϕj,k(t)|
≥ |ϕj,k(t + h1,k/2)− ϕj,k(τj,k,
)| − |ϕj,k(τj,k,
)− ϕj,k(t)|
≥ |t + h1,k/2− τj,k
| − |τj,k,
 − t| ≥ h1,k/2− 2|τj,k,
 − t|
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≥ h1,k/2− 2hk+1,k+1 = h1,k(1− 4
hk+1,k+1

h1,k
)/2 ≥ h1,k(1− 4/8)/2

= h1,k/4,

where we used (12.3.8).
��

12.3.3 The Closed Linear Subspace E ⊂ ND±(I)

For j ∈ N, put

ψj(t) :=
∞∑

k=j

dj,kϕj,k(t), t ∈ R.

By virtue of (12.3.9), note that

∞∑

k=j

dj,k|ϕj,k(t)| ≤ 1
4

∞∑

k=j

dj,khj,k ≤ 1
4

∞∑

k=j

8−k+j = 2
7 ;

thus ψj is a continuous function on R.
Let now j, k,m ∈ N with j ≤ k < m. Then by virtue of (12.3.11), we get

ϕj,m(t + hk+1,k+1) = hj,mϕ0(nj,mt + nj,mhk+1,k+1) = hj,mϕ0(nj,mt) = ϕj,m(t).

Thus all the functions ϕj,m have period hk+1,k+1 whenever j ≤ k < m. In particular,
using (12.3.10) and (12.3.11), we see that ϕj,m has also period h1,k/2.

Lemma 12.3.6. Let j ∈ N, k ∈ Nj+1, 
 ∈ Z, and t ∈ R.

(a) If τj,k,
 ≤ t < t + hk+1,k+1 < τj,k,
+1, then

|ψj(t + hk+1,k+1)− ψj(t)| ≥ 6
7dj,khk+1,k+1.

(b) If t < τj,k,
 < t + hk+1,k+1, then

|ψj(t + h1,k/2)− ψj(t)| ≥ 5
28dj,kh1,k.

Proof . (a) Recall that ϕj,m has period hk+1,k+1 as long as m ≥ k + 1, k ∈ Nj . Thus, using
Lemma 12.3.5 and (12.3.12), we obtain

|ψj(t + hk+1,k+1)− ψj(t)| =
∣∣∣

k∑

m=j

dj,m(ϕj,m(t + hk+1,k+1)− ϕj,m(t))
∣∣∣

≥ dj,k|ϕj,k(t + hk+1,k+1)− ϕj,k(t)|−
k−1∑

m=j

dj,m|ϕj,m(t + hk+1,k+1)− ϕj,m(t)|

≥ hk+1,k+1

(
dj,k −

k−1∑

m=j

dj,m

)
≥ 6

7dj,khk+1,k+1.

(b) Using that ϕj,
, 
 ≥ k + 1, k ∈ Nj , has period h1,k/2 (apply (12.3.3)), we get, using the
same argument as before,
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|ψj(t + h1,k/2)− ψj(t)| =
∣∣∣

k∑

m=j

dj,m(ϕj,m(t + h1,k/2)− ϕj,m(t))
∣∣∣

≥ dj,k|ϕj,k(t + h1,k/2)− ϕj,k(t)| −
k−1∑

m=j

dj,m|ϕj,m(t + h1,k/2)− ϕj,m(t)|

≥ 1
4dj,kh1,k

(
1− 2

k−1∑

m=j

dj,m
dj,k

)
= 5

4·7dj,kh1,k. ��

Put now ej :=
ψj

‖ψj‖I

, j ∈ N. These will be the functions generating the linear subspace E

we are looking for.

Lemma 12.3.7. For j ∈ N, we have 3
28 ≤ 3

14dj,jhj,j ≤ ‖ψj‖I ≤ 2
7dj,jhj,j ≤ 2

7 .

Proof . Fix a t ∈ R and a j ∈ N. Then

|ψj(t)| ≤
∞∑

m=j

1

4
dj,mhj,m =

1

4
dj,jhj,j

∞∑

m=j

dj,mhj,m

dj,jhj,j
≤ 2

7
dj,jhj,j ,

where we have used (12.3.6).
Moreover,

‖ψj‖I ≥ 1
4

(
dj,jhj,j −

∞∑

m=j+1

dj,mhj,m

)
≥ 1

4

(
2− 8

7

)
= 3

14dj,jhj,j ,

which completes the proof. ��
Note that if N ∈ N and a1, . . . , aN ∈ R, then ‖∑N

j=1 ajej‖I ≤
∑N

j=1 |aj |. So it remains to

find an estimate of ‖∑N
j=1 ajej‖I from below.

Let j ∈ N and 
 ∈ Z. Put

D(j, 
)± := {t ∈ [τj,
, τj,
+1] : ±ϕ0(nj,j) ≥ α/4},

where α ∈ (1/7, 1/4). Then by a simple estimate (Exercise), we have

if t ∈ D(j, 
)+, then ψj(t) ≥ dj,jhj,j

4 (α− 1
7 ),

if t ∈ D(j, 
)−, then ψj(t) ≤ − dj,jhj,j

4 (α− 1
7 ).

Note that if 
 = 2m, then

t ∈ D(j, 
)+ if and only if 1
4 (1 + α) ≤ nj,jt−m ≤ 1

2 ,

t ∈ D(j, 
)− if and only if 0 ≤ t ≤ nj,jt−m ≤ 1
4 (1− α).

Moreover, if ε := ±, then there exists an m̃ = m̃(m, ε) ∈ Z such that

[τj+1,j+1,2m̃, τj+1,j+1,2m̃+1] ⊂ D(j, 2m)±.

Indeed, let us discuss in detail the case ε = +. Choose m̃ such that

2m̃− 1

2nj+1,j+1
≤ 1 + α + 4m

4nj,j
≤ 2m̃

2nj+1,j+1
≤ 1 + α + 4m

4nj,j
+

2

2nj+1,j+1
.
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Then by virtue of α ≤ 1/4 and
nj,j

nj+1,j+1
≤ 8−j , we get

2m̃ + 1

2nj+1,j+1
≤ 1 + α + 4m

4nj,j
+

3

2nj+1,j+1
≤ 1

4nj,j

(
1 + α + 4m + 6

nj,j

nj+1,j+1

)

≤ 1 + α + 4m + 6
8

4nj,j
≤ 2 + 4m

4nj,j
.

The second case is left as an Exercise.
Putting together all the information obtained thus far, we get the following result.

Proposition 12.3.8. Let N ∈ N, aj ∈ R (j = 1, . . . , N). Then

7α− 1

8

N∑

j=1

|aj | ≤
∥∥∥

N∑

j=1

ajej

∥∥∥
I

≤
N∑

j=1

|aj|.

Proof . We may assume that a1 ≥ 0. Put T1 := D(1, 0)+. If now a2 ≥ 0, then choose m2 ∈ Z

such that T2 := D(2, 2m2)+ ⊂ T1. If a2 < 0, take an m2 ∈ Z such that T2 := D(2, 2m2)− ⊂ T1,
etc.

Fix a t ∈ ⋂N
j=1 Tj , and recall that ajψj(t) ≥ 0. Then

∣∣∣
n∑

j=1

ajej(t)
∣∣∣ ≥

n∑

j=1

|aj |
1
4dj,jhj,j(α− 1

7 )
2
7dj,jhj,j

=
7α− 1

8

N∑

j=1

|aj |. ��

Put E := span{ej : j ∈ N}. Then the previous proposition says that the mapping 
1 �
(aj)j∈N �−→

∑∞
j=1 ajej |I is a norm-isomorphism between 
1 and the closed linear subspace E

of C(I). Finally, it remains to verify that E \ {0} ⊂ ND±(I).

Proposition 12.3.9. If f ∈ E \ {0}, then f ∈ ND±(I).

Proof . Let f =
∑∞

j=j0
ajej ∈ E with aj0 �= 0, j0 ∈ N, and t0 ∈ [0, 1). Recall that

‖(aj)
∞
j=1‖
1 < +∞ and ‖ψj‖I ≥ 3

28 . Therefore, we may assume that f =
∑∞

j=j0
ajψj with∑∞

j=j0
|aj | ≤ 1. We will show that f has no finite right-sided derivative at t0.

Recall that nk+1,k+1 ≥ 8k −→
k→+∞

∞. Thus there exists a k0 ∈ N such that hk,k < 1− t0.

Step 1o. Fix a k ≥ k0 and assume that there is an 
 ∈ Z such that t0, t0 + hk+1,k+1 ∈
[τj0,k,
, τj0,k,
+1]. We are going to estimate Ak := |f(t0 + hk+1,k+1)− f(t0)|:

Using (12.3.11), if j ≤ k < m or k + 1 ≤ j ≤ m, then

ϕj,m(t + hk+1,k+1) = hj,mϕ0(nj,mt + nj,mhk+1,k+1) = ϕj,m(t).

Therefore,

Ak =
∣∣∣

k∑

j=j0

aj(ψj(t + hk+1,k+1)− ψj(t0))
∣∣∣

≥ |aj0 ||ψj0(t0 + hk+1,k+1)− ψj0(t0)|

−
k∑

j=j0+1

|aj |
k∑

m=j

dj,m|ϕj,m(t0 + hk+1,k+1)− ϕj,m(t0)|
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Lemma 12.3.6≥ 6

7
|aj0 |dj0,khk+1,k+1 −

k∑

j=j0+1

|aj |
k∑

m=j

dj,mhk+1,k+1

≥ 6

7
hk+1,k+1

(
|aj0 |dj0,k −

7

6

k∑

j=j0+1

|aj |(dj,j + dj,j+1 + · · ·+ dj,k)
)

≥ 6

7
hk+1,k+1

(
|aj0 |dj0,k −

4

3

k∑

j=j0

|aj |dj,k
)

≥ 6

7
dj0,khk+1,k+1

(
|aj0 | −

4

3

k∑

j=j0

dj,k
dj0,k

)

≥ 6

7
dj0,khk+1,k+1

(
|aj0 | −

4

3

8

7

dj0+1,k

dj0,k

)

≥ 6

7
dj0,khk+1,k+1

(
|aj0 | −

32

21

1

23+k

)
and if k ≥ k1 ≥ k0, then

≥ 6

14
dj0,khk+1,k+1|aj0 | −→

k→+∞
+∞.

Thus, if there is a sequence (sk)k∈N ⊂ Nk1 such that t0, t0+hsk+1,sk+1 ∈ [τj0,sk,
k , τj0,sk,
k+1],
then |f(t0 + hsk+1,sk+1)− f(t0)|

hsk+1,sk+1
−→

k→+∞
+∞,

meaning that f allows no finite right-sided derivative at t0.
Step 2o. On the other hand, there is a k2 ≥ k0 such that

t0, t0 + hk+1,k+1 /∈ [τj0,k,
, τj0,k,
+1], k ≥ k2, 
 ∈ Z.

Thus there exists a sequence (
k)k∈Nk2
such that t0 ≤ τj0,k,
k ≤ t0 + hk+1,k+1 whenever

k ≥ k2.
Similarly to how we proceeded above, we would like to estimate Bk := |f(t0+ h1,k

2 )−f(t0)|,
k ≥ k2:

Bk =
∣∣∣

∞∑

j=j0

aj(ψ(t0 +
h1,k

2 )− ψj(t0))
∣∣∣

=
∣∣∣

∞∑

j=j0

aj

∞∑

m=j

dj,m(ϕj,m(t0 +
h1,k

2 )− ϕj,m(t0))
∣∣∣.

Recall that if k < j ≤ m, then
nj,m

2n1,k
∈ N. Therefore,

Bk =
∣∣∣

k∑

j=j0

aj

k∑

m=j

dj,m(ϕj,m(t0 +
h1,k

2 )− ϕj,m(t))
∣∣∣

≥ |aj0 ||ψj0(t0 +
h1,k

2 )− ψj0(t0)|

−
k∑

j=j0+1

|aj |
k∑

m=j

dj,m|ϕj,m(t0 +
h1,k

2 )− ϕj,m(t0)| =: B̃k.
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Using Lemma 12.3.6, it follows that

Bk ≥ 5

28
|aj0 |dj0,kh1,k −

k∑

j=j0+1

|aj |
k∑

m=j

dj,m
h1,k

2

≥ 5

14

h1,k

2

(
|aj0 |dj0,k −

14

5

k∑

j=j0+1

k∑

m=j

dj,m

)

≥ 5

14

h1,k

2

(
|aj0 |dj0,k −

14

5

k∑

j=j0+1

dj,k

k∑

m=j

(1
8

)k−m)

≥ 5

14

h1,k

2

(
|aj0 |dj0,k −

16

5

k∑

j=j0+1

dj,k

)

≥ 5

14

h1,k

2
dj0,k

(
|aj0 | −

16

5

8

7

dj0+1,k

dj0,k

)

≥ 5

14

h1,k

2
dj0,k

(
|aj0 | −

16 · 8
35 · 23+k

)
≥ 5

14

h1,k

2
dj0,k

|aj0 |
2

,

if k ≥ k∗ ≥ k2, k∗ sufficiently large. Hence,

|f(t0 + h1,k

2 )− f(t0)|
h1,k

2

≥ 5

14

|aj0 |dj0,k
2

≥ 5

28
|aj0 |23(k−j0)dj0,j0 −→

k→+∞
+∞,

implying again that f allows no finite right-sided derivative at t0. ��
Remark 12.3.10. In a recent paper (see [Bob14]), Bobok has shown that even ND∞

± (I) is a
spaceable set. The proof of this result is based on the construction of Besicovitch (see [Bes24])
and its description by Pepper (see [Pep28]). For earlier results, see also [Bob05, Bob07].



Part IV

Riemann Function



Chapter 13

Riemann Function

13.1 Introduction

The aim of this chapter is to discuss the problem of differentiability of the classical Riemann
function

R(x) :=

∞∑

n=1

sin(πn2x)

n2
, x ∈ R.

To get some feeling of the behavior of R see Fig. 13.1.
At the outset, we should notice that R /∈ ND(R) (cf. Remark 13.1.1). Thus in fact, the

functionR is not in line with this book. Nevertheless, for many years, mathematicians believed
that R ∈ ND(R). The first to claim that R ∈ ND(R) was B. Riemann (cf. [BR74], p. 28,
and [Wei95], p. 71).

Remark 13.1.1. (a) Obviously, R(x + 2) = R(x), R(−x) = −R(x), x ∈ R. In particular,
the differentiability of R may be checked only for x ∈ (0, 2].

(b) Hardy proved in [Har16] that R has no finite derivative at irrational x nor at x = 2p+1
2q

(see also [Ita81]) or x = 2p
4q+1 (p ∈ Z, q ∈ N).

(c) Hardy’s result was extended by Gerver, who proved in [Ger70] that R′(x) = −π
2 for

x = 2p+1
2q+1 (p ∈ Z, q ∈ N). Moreover, he proved in [Ger71] that R has no finite derivative

at points x = 2p
2q+1 , x = 2p+1

2q (p ∈ Z, n ∈ N); see also [Moh80].

(d) Our presentation will be based on [Smi72, Smi83]. Theorem 13.3.1 gives the full charac-
terization of finite or infinite one-sided derivatives R′

±(x) for x ∈ Q, and shows that a
finite derivative R′(x) at x /∈ Q does not exist.
It remains an open question

? whether an infinite derivative R′(x) exists for x /∈ Q ? and, more generally,

? whether finite or infinite one-sided derivatives R′
±(x) exist for x /∈ Q ?
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Fig. 13.1 Riemann function I 	 x �−→
∞∑

n=1

sin(πn2x)

n2

13.2 Auxiliary Lemmas

Lemma 13.2.1. Let ϕ ∈ C(R,C) ∩ L1(R) be such that:

(a) for every h > 0, the series
∑∞

k=−∞ hϕ(h(t+k)) is locally uniformly convergent for t ∈ R,

(b) there exist β > 1, C > 0 such that |τ |β |ϕ̂(τ)| ≤ C, τ ∈ R, where ϕ̂ is the Fourier
transform of ϕ (cf. § A.3).

Then
∞∑

n=−∞
hϕ(hn + hα) = ϕ̂(0) + A(h, α)hβ , h > 0, α ∈ R,

where |A(h, α)| ≤ 2C
∑∞

n=1
1
nβ .

Proof . Fix h > 0 and α ∈ R. Define f(t) := hϕ(h(t + α)), t ∈ R. Obviously, f ∈
C(R,C)∩L1(R). Moreover, the series

∑∞
n=−∞ f(t+n) =

∑∞
n=−∞ hϕ(h(t+n+α)) is uniformly

convergent for t ∈ I. Observe that

f̂(τ) =

∫

R

hϕ(h(t + α))e−2πiτtdt =

∫

R

ϕ(u)e−2πiτ(u
h−α)du = e2πiατ ϕ̂

( τ

h

)
.

Consequently, |τ |β |f̂(τ)| ≤ Chβ . Thus, we may apply Proposition A.5.1, and we get

∞∑

n=−∞
hϕ(hn + hα) =

∞∑

n=−∞
f(n) =

∞∑

n=−∞
f̂(n) =

∞∑

n=−∞
e2πiαnϕ̂

(n

h

)
.
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It remains to observe that

∣∣∣
∑

n∈Z∗

e2πiαnϕ̂
(n

h

)∣∣∣ ≤
∑

n∈Z∗

C
( h

|n|
)β

= 2C
( ∞∑

n=1

1

nβ

)
hβ. ��

Lemma 13.2.2. Let

ψ1(x) :=

{
sin(πx2)

πx2 , if x �= 0

1, if x = 0
, ψ2(x) :=

{
1−cos(πx2)

πx2 , if x �= 0

0, if x = 0
.

Then ∞∑

k=−∞
hψj(hk + hα) =

√
2 + Aj(h, α)h2, h > 0, α ∈ R, j = 1, 2,

where the functions A1, A2 are bounded.

Proof . We are going to apply Lemma 13.2.1. First observe that for every h,R > 0, if |t| < R,
then ∑

|k|>R

|hψj(h(t + k))| ≤
∑

|k|>R

h

πh2(t + k)2
≤ 1

πh

∑

|k|>R

1

(|k| − R)2
< +∞.

Thus for every h > 0, the series
∑∞

k=−∞ hψj(h(t+k)) is locally uniformly convergent for t ∈ R.
Let ϕ := ψ1 + iψ2. We have proved that for every h > 0, the series

∑∞
k=−∞ hϕ(h(t + k)) is

locally uniformly convergent for t ∈ R. Now, in view of Lemma 13.2.1, we have only to show
that

∃C>0 : y2|ϕ̂(y)| ≤ C, y ∈ R, (13.2.1)

ϕ̂(0) =
√
2(1 + i). (13.2.2)

We have

ϕ̂(y) =

∫

R

eiπx
2 − 1

iπx2
e−2πixydx = 2

∫ ∞

0

eiπx
2 − 1

iπx2
cos(2πxy)dx, y ∈ R.

Proof of (13.2.1). Observe that ϕ̂(−y) = ϕ̂(y). So it suffices to prove that the function
(0,+∞) � y �−→ y2ϕ̂(y) is bounded. We have

ϕ̂(y) =
2

i
√

π

∫ ∞

0

eit
2 − 1

t2
cos(2

√
πty)dt.

Consequently, it suffices to prove that the function u �−→ u2F (u), where

(0,+∞) � u
F�−→

∫ ∞

0

eit
2 − 1

t2
cos(tu)dt,

is bounded. Observe that the function Q(t) := eit
2−1
t2 , t ∈ R∗, Q(0) := i, is real analytic and

Q′(0) = 0. Obviously, limt→+∞ Q(t) = 0. Moreover,

Q′(t) = 2
eit

2

(it2 − 1) + 1

t3
.
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In particular, limt→+∞ Q′(t) = 0. Integration by parts gives

F (u) = Q(t)
sin(tu)

u

∣∣∣
∞

0
− 1

u

∫ ∞

0

Q′(t) sin(tu)dt = − 1

u

∫ ∞

0

Q′(t) sin(tu)dt

=
1

u

(
Q′(t)

cos(tu)

u

∣∣∣
∞

0
− 1

u

∫ ∞

0

Q′′(t) cos(tu)dt
)

= − 1

u2

∫ ∞

0

Q′′(t) cos(tu)dt.

Thus we need to show only that the function u �−→ ∫∞
0

Q′′(t) cos(tu)dt is bounded. We have

Q′′(t) = −4eit2 − 6

t4

(
eit

2

(it2 − 1) + 1
)
.

It is clear that the function u �−→ ∫∞
0

1
t4 (e

it2(it2 − 1) + 1) cos(tu)dt is bounded. Thus, it

remains to prove that the function u �−→ ∫∞
0 eit

2

cos(tu)dt is bounded. Fix a u > 0 and let
q := u

2 . Using Fresnel integrals (cf. § A.4), we have

∫ ∞

0

eit
2

cos(tu)dt =
1

2

(∫ ∞

0

eit
2+itudt +

∫ ∞

0

eit
2−itudt

)

=
e−iq2

2

(∫ ∞

0

ei(t+q)2dt +

∫ ∞

0

ei(t−q)2dt
)
=

e−iq2

2

(∫ ∞

q

eit
2

dt +

∫ ∞

−q

eit
2

dt
)

=
e−iq2

2

√
π

2

(∫ ∞

q
√

2
π

ei
1
2πt

2

dt +

∫ ∞

−q
√

2
π

ei
1
2πt

2

dt
)

=
e−iq2

2

√
π

2

(1
2
(1 + i)− Fr

(
q

√
2

π

)
+

1

2
(1 + i)− Fr

(
− q

√
2

π

))

=
e−iq2

2

√
π

2
(1 + i).

Thus, | ∫∞
0 eit

2

cos(tu)dt| =
√
π
2 .

Proof of (13.2.2). Let g(z) := eiπz2−1
iπz2 , z ∈ C∗, g(0) = 1. Note that g is holomorphic on

C. For R > 0, consider the contour ΓR := [0, R] ∪ γR ∪ [ei
π
4 , 0] ⊂ C, where γR is the arc

[0, π
4 ] � θ �−→ Reiθ. By Cauchy’s theorem, we get

0 =

∫

ΓR

f(z)dz

=

∫ R

0

eiπx
2 − 1

iπx2
dx − ei

π
4

∫ R

0

1− e−πx2

πx2
dx +

∫ π/4

0

eiπR
2e2iθ − 1

Reiθ
dθ.

Observe that

∣∣∣
∫ π/4

0

eiπR
2e2iθ − 1

Reiθ
dθ
∣∣∣ ≤ 1

R

∫ π/4

0

(e−R2 sin 2θ + 1)dθ ≤ π

2R
−→

R→+∞
0.
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Thus

ϕ̂(0) = 2ei
π
4

∫ ∞

0

1− e−πx2

πx2
dx = 2ei

π
4

∫ ∞

0

∫ 1

0

e−πx2tdtdx

= 2ei
π
4

∫ 1

0

∫ ∞

0

e−πx2tdxdt = 2ei
π
4

∫ 1

0

1

2

√
1

t
dt = 2ei

π
4 =
√
2(1 + i). ��

13.3 Differentiability of the Riemann Function

To simplify notation, instead of R (cf. § 13.1), we will study the function

f(x) := x +
2

π
R(x) = x + 2

∞∑

n=1

sin(πn2x)

πn2
, x ∈ R.

The following theorem characterizes the differentiability of the Riemann function.

Theorem 13.3.1. (a) If x = r
s , r ∈ Z, s ∈ N, (r, s) = 1, then:

—if rs = 0 (mod 2), then:

(i) if r = 0, then f ′(0) = +∞;

(ii) if r �= 0, r ≡ 0 (mod 2), and s ≡ 1 (mod 4), then f ′(x) =
{

1
2 r

s

}
· (+∞);

(iii) if r �= 0, r ≡ 0 (mod 2), and s ≡ 3 (mod 4), then f ′
±(x) = ∓

{
1
2 r

s

}
· (+∞);

(iv) if s ≡ 0 (mod 2), and r ≡ 1 (mod 4), then f ′
+(x) = 0, f ′

−(x) =
{

1
2 s

r

}
· (+∞);

(v) if s ≡ 0 (mod 2), and r ≡ 3 (mod 4), then f ′
+(x) =

{
1
2 s

r

}
· (+∞), f ′

−(x) = 0.

—if rs = 1 (mod 2), then f ′(x) = 0.

(b) If x ∈ R \Q, then a finite derivative f ′(x) does not exist.

Thus, for x = r
s with r ∈ Z, s ∈ N, (r, s) = 1, the above result may be written in the

following tabular form.

s ∈ 2N s ∈ 4N0 + 1 s ∈ 4N0 + 3

r = 0 f ′(x) = +∞

r ∈ 2Z∗ × f ′(x) ∈ {−∞,+∞} f ′
±(x)∈{−∞,+∞}
f ′

+(x) 
=f ′
−(x)

r ∈ 4Z+ 1
f ′

+(x)=0

f ′
−(x)∈{−∞,+∞}

f ′(x) = 0

r ∈ 4Z+ 3
f ′

+(x)∈{−∞,+∞}
f ′

−(x)=0

Proof of Theorem 13.3.1. (a) Case 1o: x = r
s , r ∈ Z, s ∈ N, (r, s) = 1, rs ≡ 0 (mod 2).

Then for h > 0, we get (cf. Lemma 13.2.2)

1

2

(
f(x + h2) + f(x− h2)

)
= x + 2

∞∑

n=1

sin(πn2x)

πn2
cos(πn2h2)

= f(x) − h2
∞∑

n=−∞
sin(πn2x)ψ2(nh).
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Let n = ks + m, k ∈ Z, m ∈ {0, . . . , s− 1}. Then
1

2

(
f(x + h2) + f (x− h2)

)

= f (x)− h2
s−1∑

m=0

∞∑

k=−∞
sin(π(ks + m)2x)ψ2(khs + hm)

x= r
s , rs≡0 (mod2)

= f(x)− h2
s−1∑

m=0

∞∑

k=−∞
sin(πm2x)ψ2(khs + hm)

Lemma 13.2.2
= f(x) − h

s

s−1∑

m=0

sin(πm2x)
(√

2 + A2

(
hs,

m

s

)
(hs)2

)

= f (x)−√2S(x)h
s
+ Bx,+(h)h

3,

where the function h �−→ Bx,+(h) := −s
∑s−1

m=0 sin(πm2x)A2(hs, m
s ) is bounded. Note that

|Bx,+| ≤ cs2, where c is independent of x and h > 0. Analogously,

1

2

(
f(x + h2)− f (x− h2)

)
= 2

∞∑

n=1

cos(πn2x)

πn2
sin(πn2h2)

= h2
∞∑

n=−∞
cos(πn2x)ψ1(nh) = h2

s−1∑

m=0

∞∑

k=−∞
cos(πm2x)ψ1(khs + hm)

=
h

s

s−1∑

m=0

cos(πm2x)
(√

2 + A1

(
hs,

m

s

)
(hs)2

)
=
√
2C(x)

h

s
+ Bx,−(h)h3,

where the function h �−→ Bx,−(h) := s
∑s−1

m=0 cos(πm2x)A1(hs, m
s ) is bounded, |Bx,−| ≤ cs2.

Consequently,

f(x ± h2) = f(x)−
√
2
(
S(x)∓ C(x)

)h

s
+ Px,±(h)h3,

where the functions h �−→ Px,±(h) := Bx,+(h) ± Bx,−(h) are bounded and |Px,±| ≤ 2cs2.
Thus

f ′
±(x) = sgn(C(x) ∓ S(x)) · (+∞) ∈ {−∞, 0,+∞}

with 0 · ±∞ := 0. Using Lemma A.7.3, we get (i)–(v).

Case 2o: x = r
s , r ∈ Z, s ∈ N, (r, s) = 1, rs ≡ 1 (mod 2).

First observe that

f(x) + f(x + 1) = 2x+ 1 + 2

∞∑

n=1

sin(πn2x) + sin(πn2(x + 1))

πn2

= 2x+ 1 + 2

∞∑

k=1

2 sin(π(2k)2x)

π(2k)2
= 1 +

1

2
f(4x), x ∈ R.
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Moreover, 4x = 4r
s and x + 1 = r+s

s are as in Case 1o. Thus for h > 0, we have

f(x ± h2) = 1 +
1

2
f(4x± (2h)2)− f(x + 1± h2)

= f(x) −√2
(
S(4x)− S(x + 1)∓ (C(4x)− C(x + 1))

)h

s
+ Qx,±(h)h3,

where the functions h �−→ Qx,±(h) := 2P4x,±(2h) ∓ Px+1,±(h) are bounded. Recall (cf.
Remark A.6.2(f)) that

{2r

s

}
=
{ r+s

2

s

}
.

Hence by Lemma A.7.3, G(4x) = G(x + 1), which gives

f(x± h2) = f (x) + Qx,±(h)h3,

and therefore f ′(x) = 0, and even more, namely

lim
h→0+

f(x + h)− f(x− h)

h
= 0.

(b) Since f(−x) = −f(x), we may assume that x > 0. By Proposition A.8.3, there exists
a sequence of rational numbers xn = rn

sn
such that rn, sn ∈ N, (rn, sn) = 1, rnsn ≡

0 (mod 2), and |x− xn| < 1
s2n
, n ∈ N.

Using Case 1o with hn = s
−3/2
n and Lemma A.7.3, we get

f(xn ± s−3
n ) = f(xn)−

√
2
(
S(xn)∓ C(xn)

)
s−5/2
n + Pxn,±(s

−3/2
n )s−9/2

n

= f(xn) + T±(xn)s
−2
n + U±(xn)s

−5/2
n , (13.3.1)

where |T±(xn)| ≤ 2 and |U±(xn)| ≤ 2c. Moreover, |Tεn(xn)| ≥ 1 in each of the following cases:

• rn ≡ 0 (mod 2) and εn ∈ {−,+};
• sn ≡ 0 (mod 2), rn ≡ 1 (mod 4), and εn = −;
• sn ≡ 0 (mod 2), rn ≡ 3 (mod 4), and εn = +.

For each n ∈ N, let us fix εn as above. We will identify εn = − with εn = −1 and εn = +
with εn = +1.

Suppose that f ′(x) exists and is finite. Let

f(x + q) = f (x) + f ′(x)q + α(q)q,

where limq→0 α(q) = 0. Put qn := xn − x. Then (13.3.1) gives

f(x) + f ′(x)(qn + εns−3
n ) + α(qn + εns−3

n )(qn + εns−3
n )

= f (x) + f ′(x)qn + α(qn)qn + Tεn(xn)s
−2
n + Uεn(xn)s

−5/2
n .
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Hence

f ′(x)εns−1
n + α(qn + εns−3

n )(s2nqn + εns−1
n )

= α(qn)s
2
nqn + Tεn(xn) + Uεn(xn)s

−1/2
n .

Recall that s2n|qn| < 1. Letting n −→ +∞ gives Tεn(xn) −→ 0; a contradiction. ��



Appendix A

We collect here various auxiliary results that may help the reader.

A.1 Cantor Representation

Fix a sequence (qn)
∞
n=1 ⊂ N2. A series of the form

∞∑

n=1

an

q1 · · · qn ,

where an ∈ {0, . . . , qn − 1}, is called a Cantor series.

Proposition A.1.1 (cf. [Can69]). (a) Every number x ∈ I may be represented in the form
of a Cantor series

x =

∞∑

n=1

an(x)

q1 · · · qn .

It is called the Cantor representation of x. In the case qn := b, n ∈ N, the Cantor
representation reduces to the b-adic representation. Write

Sk(x) :=

k∑

n=1

an(x)

q1 · · · qn , k ∈ N.

(b) If x = Sk(x) with ak(x) ≥ 1, then x may be also represented in the form

x = Sk(x) +
ak(x)− 1

q1 · · · qk +

∞∑

n=k+1

qn − 1

q1 . . . qn
.

The above situation is the only one in which x has a double representation.

(c) 1 =
∑∞

n=1
qn−1
q1...qn

.

(d) For x, x′ ∈ I, if Sk(x) = Sk(x
′), then an(x) = an(x

′), n = 1, . . . , k.

(e) x ≤ Sk(x) +
1

q1···qk
, k ∈ N.

(f) If Sk(x) < Sk(x
′), then Sk(x) +

1
q1···qk

≤ Sk(x
′).
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A.2 Harmonic and Holomorphic Functions

Let D denote the open unit disk in the complex plane C, i.e.,

D = {z = x + iy ∈ C : |z| < 1},

where |z| :=
√

x2 + y2. Then O(D) is the set of all holomorphic functions on D. Put A(D) :=
C(D,C) ∩ O(D); A(D) is called to be the disk algebra.

Proposition A.2.1. A(D) equipped with the supremum norm is a Banach space.

Proof . Use that C(D,C) with the above norm is a Banach space and the fact (Weierstrass
theorem) that the uniform limit of a sequence of holomorphic functions is again a holomorphic
function. ��

Recall that a function u ∈ C2(D,R) is called harmonic if ux,x + uy,y = 0 on D, where

ux,x := ∂2u
∂x∂x and uy,y = ∂2u

∂y∂y . It is easy to see that if f ∈ O(D), then Re f (the real part

of f) and Im f (the imaginary part of f) are harmonic functions on D. Therefore, a function
f ∈ A(D) leads to functions Re f, Im f ∈ C(D) ∩ H(D), where H(D) denotes the set of all
real-valued harmonic functions on the open unit disk.

Recall the maximum principle for harmonic functions.

Proposition A.2.2. If u ∈ C(D) ∩H(D), then u(z) ≤ maxT u, z ∈ D, where T := ∂D.

Moreover, we have the following solution of a Dirichlet problem on D.

Proposition A.2.3. If u ∈ C(T), then there exists a unique function û ∈ C(D) ∩H(D) with
û|T = u.

Proof . Put

û(reit) :=

{
u(eit), if r = 1

P (u)(reit), if r ∈ [0, 1)
,

where

P (u)(reit) :=
1

2π

∫ 2π

0

1− r2

1− 2r cos(t− θ) + r2
dθ.

Then û satisfies the properties of the proposition. Details may be found in any standard book
on complex analysis. ��

Moreover, every harmonic function on D is the real part of a function f ∈ O(D). To be
more precise, we state the following result.

Proposition A.2.4. Let u ∈ H(D). Then there exists a unique (up to an additive constant)
v ∈ H(D) such that u + iv ∈ O(D).
Proof . Put

v(z) := −
∫ x

0

uy(t, 0)dt +

∫ y

0

ux(x, t)dt, z = x + iy ∈ D.

Further details are left to the reader. ��
The function v is called the harmonic conjugate to u.

A Appendix
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Example A.2.5. For later use, we will construct a function u∗ ∈ C2π(R), i.e., u∗ is a continu-
ous function on R having period 2π, and a function hu∗ ∈ C(D)∩H(D) with hu∗(eiθ) = u∗(θ),
θ ∈ R, such that its conjugate harmonic function h̃u∗ is unbounded on D.

Indeed, put

Ω := {z = x + iy ∈ C : 0 < |x| < 1, 0 < y < 1/x2} ∪ {z = 0 + iy : 0 < y}.

Obviously, Ω is a simply connected domain in C, and therefore, by virtue of the Riemann
mapping theorem, there exists a biholomorphic mapping f : D −→ Ω. Applying a general
theorem on the boundary behavior of biholomorphic mappings (see [Pom92], Theorem 2.1),

one concludes that f extends to a topological mapping f̃ : D −→ Ω ⊂ C (C denotes the
Riemann sphere endowed with the spherical distance). In particular, one finds a point a =

eiθ0 ∈ T such the function f̃ |
D\{a} gives a homeomorphism from D \ {a} onto Ω ∩ C (now

with respect to the Euclidean metric on both sides). Observe that Re f̃ |T\{a} extends to a

continuous function on T by putting Re f̃(a) = 0. Define u∗(θ) := Re f̃(eiθ), θ ∈ R. Then u∗

is continuous on R having period 2π. Solving the Dirichlet problem (see Proposition A.2.3),
there exists hu∗ ∈ C(D)∩H(D) such that h(eiθ) = u∗(θ), θ ∈ R. Using the maximum principle

gives that hu∗ = Re f̃ . Then its conjugate harmonic function h̃u∗ is given as h̃u∗ = Im f , which
is unbounded on D.

Moreover, we recall Schwarz’s lemma: if f : D −→ D, f(0) = 0, then |f(z)| ≤ |z|, z ∈ D.
Applying this result leads to the so-called Carathéodory inequality.

Proposition A.2.6. Let f be a holomorphic function in a neighborhood of D(R), R > 0,
where D(R) := {z ∈ C : |z| < R}. Then

|f(reiθ)| ≤ |f(0)|+ 2r

1− r

(
A(R)− Re f(0)

)
, 0 < r < R, θ ∈ R,

where A(R) := sup{Re f(w) : |w| = R}.
Proof . There is nothing is to prove if f is a constant. If f is not a constant, then we may
start with the case f(0) = 0. Put

g :=
f

2A(R)− f
.

Then g is holomorphic in a neighborhood of D(R), g(0) = 0. A simple estimate leads to

|g(z)| ≤ 1 on D(R). Applying Schwarz’s lemma gives |g(z)| ≤ |z|
R for z ∈ D(R), which finally

proves the proposition. For more details see [Boa10]. ��
Finally, we present a result due to L. Fejér.

Proposition A.2.7. If f ∈ C(T) and ε > 0, then there exists a complex polynomial p ∈ C[z]
such that ‖Re p− f‖T < ε.

Proof . The proof is based on the Stone–Weierstrass theorem. Put A := C(T,C) and A′ =
C[z, z] =: the algebra of all complex-valued polynomials in z and z. Then A′ is a subalgebra
of A, A′ is closed under complex conjugation, i.e., A′ ⊂ A′, and A′ separates points in T,
i.e., the assumptions for the Stone–Weierstrass theorem are satisfied. Hence, A′ is dense in
A. Therefore, there exists a polynomial

p(z, z) =

N∑

j=0

ajz
j +

N∑

j=0

bjz
j
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with ‖p − f‖T < ε. Thus, ‖Re p − f‖T < ε. Using that z = 1
z , z ∈ T, allows one to rewrite

p and to get a complex polynomial q(z) =
∑N

j=0 cjz
j with Re q = Re p on T (Exercise).

Hence the proposition is proved. ��

A.3 Fourier Transform

Let Lp(R) denote the space of all p-integrable (with respect to the Lebesgue measure) func-
tions f : R −→ C with the norm ‖ ‖Lp (1 ≤ p ≤ +∞).

Definition A.3.1. For f ∈ L1(R), we define its Fourier transform f̂ : R −→ C,

f̂(τ) :=

∫

R

f(t)e−2πitτdt, τ ∈ R.

Put X(R) := {f ∈ C(R,C) ∩ L∞(R) ∩ L1(R) : f̂ ∈ L1(R)}.
To simplify notation, set

∨
f(t) := f(−t).

Remark A.3.2. (a) f̂ is uniformly continuous.

(b) f̂ ∈ L∞(R) and ‖f̂‖L∞ ≤ ‖f‖L1.

(c) The operator L1(R) � f �−→ f̂ ∈ C(R,C) ∩ L∞(R) is C-linear.

(d) If tkf ∈ L1(R) for some k ∈ N, then the differentiation under the integral gives f̂ ∈ Ck(R)
and f̂ (k) = (−2πi)k t̂kf . Notice that here and in the sequel, tkf denotes the function

t �−→ tkf(t). In particular, if f ∈ C∞0 (R), then f̂ ∈ C∞(R).

(e) If f ∈ Ck0 (R) for some k ∈ N, then integration by parts gives τk f̂ = 1
(2πi)k f̂ (k). In

particular, if f ∈ Ck0 (R) for some k ∈ N2, then τk−2f̂ ∈ L1(R).

(f) X(R) is a complex vector space.

(g) C20(R) ⊂ X(R).

(h)
∨̂
f =

∨
f̂ , f ∈ L1(R).

Proposition A.3.3. (̂̂f) =
∨
f , f ∈ X(R). In particular, the operator

X(R) � f
F�−→ f̂ ∈ X(R)

is bijective and

F−1(g) =
∨
ĝ, i.e., (F−1(g))(t) =

∫

R

ĝ(τ)e2πitτdτ, t ∈ R, g ∈ X(R).

We need the following two lemmas to prove Proposition A.3.3.

Lemma A.3.4. For f, g ∈ L1(R) we have

̂
(g · f̂)(τ) =

∫

R

ĝ(u + τ)f(u)du, τ ∈ R.
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Proof .

̂
(g · f̂)(τ) =

∫

R

g(t)f̂(t)e−2πitτdt =

∫

R

g(t)
(∫

R

f(u)e−2πiutdu
)
e−2πitτdt

Fubini
=

∫

R

( ∫

R

g(t)e−2πit(u+τ)dt
)
f(u)du =

∫

R

ĝ(u + τ)f(u)du. ��

Lemma A.3.5.

̂e−at2(τ) =

√
π

a
e−

π2

a t2 , τ ∈ R, a > 0.

Note that ê−at2 is the Fourier transform of the function t �−→ e−at2 .

Proof . Let

F (τ) := ̂e−at2(τ) =

∫

R

e−at2e−2πitτdt, τ ∈ R.

Then F ∈ C∞(R) and

F ′(τ) =
∫ ∞

−∞
e−at2(−2πit)e−2πitτdt

= e−at2 πi

a
e−2πitτ

∣∣∣
∞

−∞
−
∫ ∞

−∞
e−at2 πi

a
(−2πiτ)e−2πitτdt = −2π2

a
τF (τ).

Hence

F (τ) = Ce−
π2

a τ2

, τ ∈ R,

where

C = F (0) =

∫ ∞

−∞
e−at2dt =

√
π

a
. ��

Proof of Proposition A.3.3. Let gε(t) := e−πε2t2 , t ∈ R, ε > 0. Note that gε ∈ L1(R) and

gε
pointwise−→ 1 when ε −→ 0+. In particular, by Lebesgue’s theorem,

(̂̂f)(τ) =

∫

R

f̂(t)e−2πitτdt = lim
ε→0+

∫

R

gε(t)f̂(t)e
−2πitτdt, τ ∈ R.

By Lemmas A.3.4 and A.3.5, we get

∫

R

gε(t)f̂(t)e
−2πitτdt =

̂
(gεf̂)(τ) =

∫

R

ĝε(t + τ)f(t)dt =

∫

R

ĝε(t)f(t− τ)dt

=

∫

R

1

ε
e−

π
ε2

t2f(t− τ)dt =

∫

R

e−πt2f(εt− τ)dt, τ ∈ R.

Using once again Lebesgue’s theorem, we easily conclude that the last integral tends to f(−τ)
when ε −→ 0+. ��
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A.4 Fresnel Function

Definition A.4.1 (cf. [OMS09]). We define the Fresnel function Fr : R −→ C,

Fr(x) :=

∫ x

0

e
i
2πt

2

dt, x ∈ R.

Observe that Fr(−x) = −Fr(x), x ∈ R.

Proposition A.4.2. limx→+∞ Fr(x) = 1
2 (1 + i).

Proof . Consider the holomorphic function f(z) := e
π
2 z2

, z ∈ C. Take an R > 0 and consider
the contour ΓR := [0, eiπ/4R]∪γR∪[iR, 0], where γR stands for the arc [π/4, π/2] � θ �−→ eiθR.
By Cauchy’s theorem, we have

0 =

∫

ΓR

f(z)dz =

∫

[0,eiπ/4R]

f(z)dz +

∫

γR

f(z)dz +

∫

[iR,0]

f(z)dz

= eiπ/4 Fr(R) +

∫ π/4

0

f(ei(
π
4 +θ)R)ei(

π
4 +θ)iRdθ − i

∫ R

0

e−
π
2 t2dt.

Then,

∣∣∣
∫ π/4

0

f(ei(
π
4 +θ)R)ei(

π
4 +θ)iRdθ

∣∣∣ ≤ R

∫ π/4

0

|e π
2 e2i(

π
4

+θ)R2 |dθ

= R

∫ π/4

0

e−
π
2 R2 sin(2θ)dθ ≤ R

∫ π/4

0

e−2R2θdθ =
1

2R
(1− e−

π
2 R2

) −→
R→+∞

0

and

lim
R→+∞

∫ R

0

e−
π
2 t2dt =

∫ ∞

0

e−
π
2 t2 =

√
2

2
.

Thus,

0 =

√
2

2
(1 + i) lim

R→+∞
Fr(R)− i

√
2

2
,

which implies that limR→+∞ Fr(R) = 1
2 (1 + i). ��

A.5 Poisson Summation Formula

Proposition A.5.1 (Poisson Summation Formula, cf. [Zyg02], p. 68). Let f ∈ C(R,C)∩L1(R)
be such that:

(a) the series
∑∞

k=−∞ f(t + k) is uniformly convergent on I,

(b) there exist β > 1, C > 0 such that |τ |β |f̂(τ)| ≤ C, τ ∈ R,

where f̂ stands for the Fourier transform of f (cf. § A.3). Then
∞∑

n=−∞
f(n) =

∞∑

n=−∞
f̂(n).
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Proof . Let g(t) :=
∑∞

k=−∞ f(t + k), t ∈ I. Note that g is continuous. Let cn = cn(g) be the
nth Fourier coefficient of g, i.e.,

cn :=

∫ 1

0

g(t)e−2πintdt, n ∈ Z.

Using (a), we get

cn =

∫ 1

0

∞∑

k=−∞
f(t + k)e−2πintdt =

∞∑

k=−∞

∫ 1

0

f(t + k)e−2πintdt

=

∞∑

k=−∞

∫ k+1

k

f(t)e−2πintdt =

∫

R

f(t)e−2πintdt = f̂(n).

In view of (b), the function h(t) :=
∑∞

n=−∞ f̂(n)e2πint, t ∈ I, is well defined and continuous.

Moreover, cn(h) = f̂(n) = cn(g), n ∈ Z. Hence h ≡ g. In particular, for t = 0 we get the
required equality. ��

A.6 Legendre, Jacobi, and Kronecker Symbols

Definition A.6.1 (Legendre, Jacobi, and Kronecker Symbols; cf. [HW79]). For n, p ∈ Z, we
define the symbol {np } in the following four steps.

Step 1o: n ∈ Z, p ∈ N3, p prime.
Then the Legendre symbol {np }L is defined by the formula

{n

p

}

L

:=

⎧
⎪⎨

⎪⎩

0, if p|n
1, if p� |n and there exists an m ∈ N: n ≡ m2 (mod p)

−1, if p� |n and for all m ∈ N: n �≡ m2 (mod p)

.

Step 2o: n ∈ Z, p ∈ N3, p odd.
If p = pk1

1 · · · pks
s , where p1, . . . , ps ∈ N3, p1, . . . , ps are distinct primes, k1, . . . , ks ∈ N, then

we define the Jacobi symbol {np }J :
{n

p

}

J

:=
{ n

p1

}k1

L

· · ·
{ n

ps

}ks

L

.

Moreover, we put {n1 }J := 1. It is clear that {np }J = {np }L, provided that p is prime.

Step 3o: n ∈ Z, p ∈ Z∗.
If p = upk1

1 · · · pks
s , where u ∈ {−1,+1}, p1, . . . , ps ∈ N2, p1, . . . , ps are distinct primes,

k1, . . . , ks ∈ N, then we define the Kronecker symbol {np }K :

{n

p

}

K

:=
{n

u

}

K

{ n

p1

}k1

K

· · ·
{ n

ps

}ks

K

,
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where { n
pj
}
K

:= { n
pj
}
L
for pj ∈ N, pj odd,

{ n

−1
}

K
:=

{
−1, if n < 0

1, if n ≥ 0
, and

{n

2

}

K
:=

⎧
⎪⎨

⎪⎩

0, if n ≡ 2 (mod 2)

1, if n ≡ ±1 (mod 8)

−1, if n ≡ ±3 (mod 8)

.

It is clear that {np }K = {np }J , provided that p ∈ N3 is odd.

Step 4o. Finally, we put

{n

0

}

K
:=

{
1, if n ∈ {−1,+1}
0, otherwise

.

In the sequel, the subindices in {np }L, {np }J , {np }K will be skipped, and we will simply write

{np }.
The following remark collects some properties of the Legendre, Jacobi, and Kronecker

symbols.

Remark A.6.2. Assume that n,m ∈ Z, p ∈ N3, p is odd.

(a) (Euler’s criterion; cf. [HW79], Theorem 83) If p is prime, then {np } ≡ n
p−1
2 (mod p).

(b) {nmp } = {np } · {mp }.
Indeed, if p is prime, then we use (a). The general case follows directly from the definition
of {np }J .

(c) {np } = 0 iff n and p are not relatively prime.

This follows directly from the definitions of {np }L and {np }J .
(d) If n ≡ m (mod p), then {np } = {mp }.

Indeed, if p is prime, then we use (a). In the general case, if n ≡ m (mod p), then
n ≡ m (mod pi). Hence { n

pi
} = {mpi

}, i = 1, . . . , s, and we have only to use the definition

of {np }J .

(e) {−1
p } = (−1) p−1

2 =

{
1, if p ≡ 1 (mod 4)

−1, if p ≡ 3 (mod 4)
.

Indeed, if p is prime, then we use (a). To get the general case, we have only to observe
that if p, q ∈ N3 are odd, then pq−1

2 ≡ p−1
2 + q−1

2 (mod 2). In fact, a − 1 ≡ 0 (mod 2),
b − 1 ≡ 0 (mod 2). Hence ab − a − b + 1 = (a − 1)(b − 1) ≡ 0 (mod 4). Thus ab − 1 ≡
(a− 1) + (b− 1) (mod 4).

In particular, by (b), {−n
p } = (−1) p−1

2 {np } =
{
{np }, if p ≡ 1 (mod 4)

−{np }, if p ≡ 3 (mod 4)
.

(f) If r ∈ Z, s ∈ N are relatively prime and rs ≡ 1 (mod 2), then

{2r

s

}
(d)
=

{2r + 2s

s

}
=
{4 r+s

2

s

}
(b)
=

{4

s

}{ r+s
2

s

}
=
{ r+s

2

s

}
.

(g) If s ∈ Z, r ∈ N, then { s
−r} =

{
−{ sr}, if s < 0

{ sr}, if s ≥ 0
.

This follows directly from the definition of { s
−r}K .
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A.7 Gaussian Sums

Definition A.7.1 (cf. [BE81]). For n ∈ Z, p ∈ N with (n, p) = 1, we define the Gaussian
sum

G(n, p) :=

p−1∑

m=0

eπim
2n/p.

Remark A.7.2 (cf. [BE81]). (a) G(0, p) = p.

(b) G(2n, p) = {np }G(2, p).

(c) G(2, p) =

{√
p, if p ≡ 1 (mod 4)

i
√

p, if p ≡ 3 (mod 4)
.

(d) (Schaar identity) If n, p ∈ N, (n, p) = 1, and n, p are of opposite parity, then

G(n, p) = eiπ/4
√

p

n
G(−p, n).

Lemma A.7.3. Let x = r
s , r ∈ Z∗, s ∈ N, (r, s) = 1,

G(x) := G(r, s) =

s−1∑

n=0

eiπn
2x =

s−1∑

n=0

cos(πn2x) + i

s−1∑

n=0

sin(πn2x)

=: C(x) + iS(x).

Then:

(a) if r ≡ 0 (mod 2), s ≡ 1 (mod 4), then G(x) =
{

1
2 r

s

}√
s;

(b) if r ≡ 0 (mod 2), s ≡ 3 (mod 4), then G(x) =
{

1
2 r

s

}√
si;

(c) if s ≡ 0 (mod 2), r ≡ 1 (mod 4), then G(x) =
{

1
2 s

r

}√
s
2 (1 + i);

(d) if s ≡ 0 (mod 2), r ≡ 3 (mod 4), then G(x) =
{

1
2 s

r

}√
s
2 (1− i);

(e) if rs ≡ 0 (mod 2), then |G(x)| = √s.

Proof . (a, b) Using Remark A.7.2, we have

G(x) = G(r, s) =
{ 1

2r

s

}
G(2, s) =

{ 1
2r

s

}√
s

{
1, if s ≡ 1 (mod 4)

i, if s ≡ 3 (mod 4)
.

(c, d) If r > 0, then using (a, b) and Remarks A.6.2, A.7.2, we get

G(x) = G(r, s) = eiπ/4
√

s

r
G(−s, r)

=
1 + i√

2

√
s

r

{− 1
2s

r

}√
r

{
1, if r ≡ 1 (mod 4)

i, if r ≡ 3 (mod 4)
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= (1 + i)

√
s

2

{ 1
2s

r

}{−1
r

}{
1, if r ≡ 1 (mod 4)

i, if r ≡ 3 (mod 4)

=

√
s

2

{ 1
2s

r

}{
1 + i, if r ≡ 1 (mod 4)

1− i, if r ≡ 3 (mod 4)
.

If r < 0, then using (a, b) and Remarks A.6.2, A.7.2, we get

G(x) = G(r, s) = G(−(−r), s) = e−iπ/4

√
s

−r
G(s,−r)

=
1− i√

2

√
s

−r

{ 1
2s

−r

}√−r

{
1, if − r ≡ 1 (mod 4)

i, if − r ≡ 3 (mod 4)

= (1− i)

√
s

2

{ 1
2s

r

}{
1, if r ≡ 3 (mod 4)

i, if r ≡ 1 (mod 4)

=

√
s

2

{ 1
2s

r

}{
1 + i, if r ≡ 3 (mod 4)

1− i, if r ≡ 1 (mod 4)
.

(e) is obvious. ��

A.8 Farey Fractions

Definition A.8.1 (cf. [HW79]). We say that a
b is a Farey fraction of order n if 0 ≤ a ≤ b ≤ n,

b > 0, and (a, b) = 1. The Farey fractions of order n form an increasing sequence, e.g., for
n = 5, we have

0

1
,
1

5
,
1

4
,
1

3
,
2

5
,
1

2
,
3

5
,
2

3
,
3

4
,
4

5
,
1

1
.

Remark A.8.2 (cf. [HW79], Theorems 28–31, 36). (a) If a
b ,

a′
b′ are two successive Farey

fractions of order n, then a′b− ab′ = 1.

(b) If a
b ,

a′′
b′′ ,

a′
b′ are three successive Farey fractions of order n, then a′′

b′′ = a+a′
b+b′ .

(c) If a
b ,

a′
b′ are two successive Farey fractions of order n, then b + b′ > n.

(d) If a
b ,

a′
b′ are two successive Farey fractions of order n ≥ 2, then b �= b′.

(e) For every x ∈ R \ Q and n ∈ N2, there exists an irreducible fraction r
s with 0 < s ≤ n

such that |x− r
s | ≤ 1

s(n+1) .

Proposition A.8.3. For every x ∈ R \Q, we have

∀n∈N ∃rn∈Z, sn∈N : (rn, sn) = 1, rnsn ≡ 0 (mod 2),
∣∣∣x− rn

sn

∣∣∣ <
1

s2n
. (A.8.1)

Note that such an approximation without the condition rnsn ≡ 0 (mod 2), n ∈ N, follows
directly from Remark A.8.2(e).

Proof . First observe that if x satisfies (A.8.1), then so does−x. Moreover, if x satisfies (A.8.1),
then x + 2k also satisfies (A.8.1) (k ∈ Z). Consequently, we may assume that 0 < x < 1.

Suppose that for some n ∈ N2, we have
a
b < x < a′

b′ , where
a
b ,

a′
b′ are successive Farey fractions
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of order n. We know (cf. the proof of Theorem 36 in [HW79]) that either r
s := a

b or r
s := a′

b′
satisfies the condition |x− r

s | < 1
s2 . We also know that a′b−ab′ = 1 (Remark A.8.2(a)). Thus,

there are the following three possibilities.

(1) ab ≡ 0 (mod 2) and a′b′ ≡ 0 (mod 2): Then we continue with Farey fractions of order
n + 1.

(2) ab ≡ 1 (mod 2) and a′b′ ≡ 0 (mod 2): Consider the intervals

Ik :=
(ka + a′

kb + b′
,
(k − 1)a + a′

(k − 1)b+ b′
)
=

(ak

bk
,
a′
k

b′k

)
, k ∈ N.

Observe that:

• a′
1

b′1
= a′

b′ and ak

bk
↘ a

b . Hence there exists a k ∈ N such that ak

bk
< x <

a′
k

b′k
.

• akbk ≡ 0 (mod 2) and a′
kb

′
k ≡ 0 (mod 2).

• (ak, bk) = 1 = (a′
k, b

′
k). Thus

ak

bk
,

a′
k

b′
k
are Farey fractions of order kb + b′ > n (cf. Re-

mark A.8.2(c)).

• a′
kbk − akb

′
k = 1, and hence ak

bk
,

a′
k

b′k
are successive Farey fractions.

Consequently, we are in the situation of (1) (with new n = kb+ b′), and we may continue.

(3) ab ≡ 0 (mod 2) and a′b′ ≡ 1 (mod 2): Then we use the intervals Ik := (a+(k−1)a′

b+(k−1)b′ ,
a+ka′
b+kb′ ),

k ∈ N—Exercise.

��

A.9 Normal Numbers

Definition A.9.1. (a) We say that a number x ∈ I is a dyadic rational (x ∈ D) if x = k
2m

with m ∈ N, k ∈ N0, k ≤ 2m (note that D is countable).

(b) For a number x =
∑∞

k=1
εk(x)
2k
∈ D′ := I \D, where εk(x) ∈ {0, 1}, let

d1(x) := lim
n→+∞

1

n

n∑

k=1

εk(x),

if the limit exists. We say that x ∈ D′ is normal if d1(x) =
1
2 .

The following proposition shows that almost all numbers are normal.

Proposition A.9.2 (Borel Theorem). The set of all normal numbers is a full-measure set.

Proof . (Cf. [Kac59]) For x =
∑∞

k=1
εk(x)
2k
∈ D′, let

Dn(x) := X1(x) + · · ·+ Xn(x),

where Xk(x) := 1− 2εk(x) = (−1)εk(x) ∈ {−1, 1}. Obviously, Dn(x) = n− 2In(x) = On(x)−
In(x), where In(x) = ε1(x)+ · · ·+ εn(x) and On(x) := n− In(x) stands for the number of 1’s
and 0’s, respectively. Observe that x is normal iff limn→+∞ 1

nDn(x) = 0. Note that each of
the functions εk : D′ −→ {0, 1} is piecewise constant, and therefore Borel measurable. First,
we prove that
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∫ 1

0

Xs1(t) · · ·Xsp(t)dt = 0, s1 < · · · < sp, p ∈ N2. (A.9.1)

Indeed, let T := 1
2s1 . Observe that for t ∈ (0, 1− T ) ∩D′, we have:

• Xs1(t + T ) = −Xs1(t),
• Xsj (t + T ) = Xsj (t), j = 2, . . . , p.
Thus

∫ 1

0

Xs1(t) · · ·Xsp(t)dt =

1
2T −1∑

j=0

∫ 2(j+1)T

2jT

Xs1(t) · · ·Xsp(t)dt

=

1
2T −1∑

j=0

(∫ (2j+1)T

2jT

Xs1(t) · · ·Xsp(t)dt +

∫ 2(j+1)T

(2j+1)T

Xs1(t) · · ·Xsp(t)dt
)

=

1
2T −1∑

j=0

∫ (2j+1)T

2jT

(
Xs1(t) · · ·Xsp(t) + Xs1(t + T ) · · ·Xsp(t + T )

)
dt = 0.

Using (A.9.1), we easily get

∫ 1

0

(Dn(t))
4dt = n +

(
n

2

)
4!

2!2!
.

Hence ∞∑

n=1

∫ 1

0

( 1

n
Dn(t)

)4

dt < +∞.

Consequently,
∞∑

n=1

( 1

n
Dn(t)

)4

< +∞ for almost all t.

In particular, limn→+∞ 1
nDn(x) = 0 for almost all x. ��

Proposition A.9.3. The set

{x ∈ D′ : sup
n∈N

Dn(x) < +∞ or inf
n∈N

Dn(x) > −∞}

is of measure zero.

Proof . Observe that Dn(1 − x) = −Dn(x), x ∈ D′. Thus, it suffices to show that the set
Z := {x ∈ D′ : supn∈N

Dn(x) < +∞} is of measure zero. Obviously, Z =
⋃

k∈Z
Zk, where

Zk := {x ∈ D′ : supn∈N Dn(x) = k}. Hence, we have only to prove that for arbitrary
(k, 
) ∈ Z× N, the set Zk,
 := {x ∈ D′ : supn∈N Dn(x) = D
(x) = k} is of measure zero. We
have Zk,
 =

⋃
c∈Ck,�

Zk,
,c, where

Zk,
,c := {x ∈ D′ : sup
n∈N

Dn(x) = D
(x) = k, Xj(x) = cj , j = 1, . . . , 
},
Ck,
 := {c = (c1, . . . , c
) ∈ {−1, 1}
 :

c1 + · · ·+ c
 = k, c1 + · · ·+ cj ≤ k, j = 1, . . . , 
}.
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We have to prove that each set Zk,
,c is of measure zero. Fix k, 
, c. Let

Φ(x) := 2

(
x−


∑

j=1

1− cj
2j+1

)
, x ∈ R;

Φ is an affine isomorphism. We have

Φ(Zk,
,c) ⊂ Q := {x ∈ D′ : Dn(x) ≤ 0, n ∈ N}.

Thus it suffices to prove that Q is of measure zero. Observe that Q =
⋂∞

p=1 Qp, where
Qp := {x ∈ D′ : Dn(x) ≤ 0, n = 1, . . . , 2p}. We have

Qp =
⋃

c∈Cp

[
xc, xc +

1

22p

)
∩D′,

where xc :=
∑2p

j=1
1−cj
2j+1 and

Cp := {c = (c1, . . . , c2p) ∈ {−1, 1}2p : c1 + · · ·+ cj ≤ 0, j = 1, . . . , 2p}.

Our aim is to show that L(Qp) −→ 0. Obviously, L(Qp) ≤ 1
22p#Cp. First, we will show that

#Cp =
(
2p
p

)
. Fix a p ∈ N and let

Bd := {c = (c1, . . . , c2p) ∈ {−1, 1}2p : #{j ∈ {1, . . . , 2p} : cj = 1} = d}.

Since #Cp +
∑2p

d=0#(Bd \ Cp) = 22p, it suffices to prove that

2p∑

d=0

#(Bd \ Cp) = 22p −
(
2p

p

)
.

Obviously, #(Bd \ Cp) =
(
2p
d

)
for d < p, since Bd ∩ Cp = ∅. Clearly, #(B2p \ Cp) = 0, since

B2p ⊆ Cp. It suffices to show that #(Bd\Cp) =
(

2p
d+1

)
for p ≤ d < 2p (then

∑2p
d=0 #(Bd\Cp) =∑p−1

d=0

(
2p
d

)
+
∑2p−1

d=p

(
2p
d+1

)
= 22p − (

2p
p

)
).

Fix a d ∈ {p, . . . , 2p−1}. To prove that #(Bd\Cp) =
(

2p
d+1

)
, we will apply André’s reflection

method [And87]:
For c ∈ Bd \ Cp, let

μ(c) := min{j ∈ {1, . . . , 2p} : c1 + · · ·+ cj = −1}.

Define ι(c) := (−c1, . . . ,−cμ(c), cμ(c)+1, . . . , c2p). Then ι : Bd \ Cp −→ Bd+1 is bijective
(Exercise), which immediately gives the required result.

Finally, using Stirling’s formula, we get

L(Qp) ≈ 1

22p
(2pe )

2p
√
2π2p

((pe )
p
√
2πp)2

=
1√
πp

. ��



Appendix B

List of Symbols

B.1 General Symbols

N := the set of natural numbers, 0 /∈ N;
N0 := N ∪ {0};
Nk := {n ∈ N : n ≥ k};
Z := the ring of integers;
Q := the field of rational numbers;
R := the field of real numbers;

sgn : R −→ {−1, 0,+1}, sgn(x) :=

⎧
⎪⎨

⎪⎩

−1, if x < 0

0, if x = 0

+1, if x > 0

;

I := [0, 1] ⊂ R;
A+ := {x ∈ A : x ≥ 0}, A>0 := {x ∈ A : x > 0} (A ⊂ R), e.g. R+, R>0;
�t� := sup{k ∈ Z : k ≤ t} = the least-integer part of t ∈ R;
R := R ∪ {−∞,+∞};
C := the field of complex numbers;
Re z := x = the real part of z = x + iy ∈ C (x, y ∈ R);
Im z := y = the imaginary part of z = x + iy ∈ C (x, y ∈ R);
z := x− iy = the conjugate of z = x + iy ∈ C (x, y ∈ R);

|z| :=
√

x2 + y2 = the modulus of z = x + iy ∈ C (x, y ∈ R);
D := {z ∈ C : |z| < 1} = the unit disk;
T := ∂D;
D(z0, r) := {z ∈ C : |z − z0| < r} = z0 + rD = the disk centered at z0 ∈ C with radius r > 0;
A∗ := A \ {0}, e.g., C∗;
C := C ∪ {∞} = the Riemann sphere;
arg z := {ϕ ∈ R : z = |z|eiϕ} = the argument of z ∈ C (arg 0 = R);
#A := the number of elements of A;
diamA := the diameter of the set A ⊂ C

n with respect to the Euclidean distance;
A ⊂⊂ X :⇐⇒ A is relatively compact in X ;
‖f‖A := sup{|f(a)| : a ∈ A}, f : A −→ C;
id : X −→ X , id(x) := x, x ∈ X ;

fk
K
=⇒
k→∞

f :⇐⇒ fk −→ f locally uniformly;

fk =⇒
k→∞

f :⇐⇒ fk −→ f uniformly;
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supp f := {x : f(x) �= 0} = the support of f ;
Ck(X,Y ) := the space of all Ck-mappings f : X −→ Y ;
Ck(X) := Ck(X,R);
Ck0 (X) := {f ∈ Ck(X) : supp f ⊂⊂ X};
L := the Lebesgue measure in R.

B.2 Symbols in Individual Chapters

Chapter 2

Δϕ(t, u) := ϕ(u)−ϕ(t)
u−t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

ϕ′(t) derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
ϕ′
+(t), ϕ

′
−(t) one sided (unilateral) derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

D+ϕ(t), D+ϕ(t) right Dini derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
D−ϕ(t), D−ϕ(t) left Dini derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
ND(I) := {ϕ ∈ C(I,C) : for all t ∈ I, a finite derivative

ϕ′(t) does not exist} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
ND∞(I) := {ϕ ∈ C(I) : for all t ∈ I, a finite or infinite derivative

ϕ′(t) does not exist} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
ND±(I) := {ϕ ∈ C(I,C) : for all t ∈ I, there is neither a finite

right nor a finite left derivative at t} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
ND∞

± (I) := B(I) = {ϕ ∈ C(I) : for all t ∈ I, finite or infinite
one-sided derivatives ϕ′

+(t), ϕ
′
−(t) do not exist}

= the set of Besicovitch functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
M(I) := {ϕ ∈ C(I) : ∀t∈I : max{|D+ϕ(t)|, |D+ϕ(t)|} = max{|D−ϕ(t)|,

|D−ϕ(t)|} = +∞} = the set of Morse functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
BM(I) := B(I) ∩M(I) = the set of Besicovitch–Morse functions . . . . . . . . . . . . . . . . 12
Hα(I; t) = the space of all continuous functions that are α-Hölder continuous at t . . 16
Hα(I) = the space of all α-Hölder continuous functions . . . . . . . . . . . . . . . . . . . . . . . . . 16
NHα(I) = the set of all continuous functions that are nowhere α-Hölder continuous 17

Chapter 3

Wp,a,b,θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Wθ := Wp,a,b,θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Ca,b, Sa,b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Wp,a,b,θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Chapter 4

ψ(x) := dist(x,Z) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Tθ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
T = the Takagi (blancmange) function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Chapter 5

K = the Kiesswetter function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Fα = the Okamoto function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
S = the Sierpiński function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
P = the Petr function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
U = the Wunderlich–Bush–Wen function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89



B.2 Symbols in Individual Chapters 281

W1 = the Wen function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
S1 = the Singh function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
S2 = the Singh function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
S3 = the Singh function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Chapter 6

Φ, Ψ = the Schoenberg functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
W2 = the Wen function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Chapter 7

B(g, r) = {h ∈ (I) : ‖h− g‖I < r} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
zr,s = “zigzag” function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Δsg(x, h) := g(x+h)−g(x−h)
2h = symmetric differential quotient . . . . . . . . . . . . . . . . . . . . 112

Chapter 8

Fp,a,b,θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Fθ := FΦ,p,a,b,θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
F := FΦ,p,a,b,θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Wp,a,b,θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Ea,b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Ca,b, Sa,b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Δf(t, t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Hβϕ(t, u) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
E+

x (ε) := {s ∈ R : f(x + s)− f(x) ≥ ε|s|α} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
E−

x (ε) := {s ∈ R : f(x + s)− f(x) ≤ −ε|s|α} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Ex(ε) := {s ∈ R : |f(x + s)− f(x)| ≥ ε|s|α} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
E±

x (ε, η) := E±
x (ε) ∩ [0, η] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

E±
x (ε,−η) := E±

x (ε) ∩ [−η, 0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Ex(ε, η) := Ex(ε) ∩ [0, η] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Ex(ε,−η) := Ex(ε) ∩ [−η, 0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Chapter 9

On := n− In, Dn := On − In . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
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ferentiierbarkeit stetiger Funktionen). Jahresber. Deutschen Math. Verein. 17,
46–51 (1908) 61

[Leb40] H. Lebesgue, Une fonction continue sans dérivée. Enseign. Math. 38, 212–213
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l’enseigment. Enseign. Math. 1, 157–162 (1899) 4
[Pom92] C. Pommerenke, in Boundary Behaviour of Conformal Maps. Grundlehren Der

Mathematischen Wissenschaften, vol. 299 (Springer, Berlin, 1992) 267
[Por19] M.B. Porter, Derivativeless continuous functions. Bull. Am. Math. Soc. 25,

176–180 (1919) 33, 34, and 34
[PT84] P.P. Petrushev, S.L. Troyanski, On the Banach–Mazur theorem on the univer-

sality of w[0, 1] (Russian). C. R. Acad. Bulg. Sci. 37, 283–285 (1984) 245
[PV13] M. Pratsiovytyi, N. Vasylenko, Fractal properties of functions defined in terms

of Q-representation. Int. J. Math. Anal. 7, 3155–3167 (2013) 69, 86, and 87
[Rha57a] G. de Rham, Sur quelques courbes définies par des équations fonctionelles.
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[Sie14a] W. Sierpiński, An arithmetic example of a continuous non-differentiable func-
tion (Polish). Wektor 3, 337–343 (1914) 85
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